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Abstract
The brain is the characteristic of a complex structure. By representing brain function, measured
with EEG, MEG, and fMRI, as an abstract network, methods for the study of complex systems
can be applied. These network studies have revealed insights in the complex, yet organized,
architecture that is evidently present in brain function. We will discuss some technical aspects
of formation and assessment of the functional brain networks. Moreover, the results that have
been reported in this respect in the last years, in healthy brains as well as in functional brain
networks of subjects with a neurological or psychiatrical disease, will be reviewed.
& 2012 Elsevier B.V. and ECNP. All rights reserved.
1. Introduction

The understanding of the physiological substrate of complex
brain function, such as cognition, has been one of the major
challenges in neuroscience. It is thought that higher order
actions derive from interactions between specialized areas
(Posner et al., 1988; Friston, 2002). Cognition can be assessed
with a wide variety of tests and brain activity can also be
measured with an increasing variety of imaging techniques,
but the true relationship between the two is hard to establish.
One of the reasons is that the brain is a very complex system,
making it difficult to study with conventional methods
(Bullmore and Sporns, 2009; Bassett and Gazzaniga, 2011).
The output from modalities that assess brain function
(functional MRI (fMRI), electroencephalography (EEG), or
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magnetoencephalography (MEG) studies) can provide useful
information that cannot otherwise be gathered, but usually
contains such a large amount of data that constitutes a
challenge for analysis and interpretation.

One way to organize and scale down the amount of data
is to represent the output as a network (Sporns et al., 2004;
Bullmore and Sporns, 2009). A branch of mathematics,
called graph theory, describes and quantifies networks by
reducing them to an abstract sets of nodes and connections.
It provides a context to study aspects of brain function that
otherwise remain hidden.

Modern network theory is increasingly used in neuroscience
to study the brains of healthy as well as diseased subjects. It is
an umbrella theory, based on graph theory for the mathema-
tical description of networks, and uses probability theory and
statistical mechanics to deal with stochastic aspects of large
networks. Additionally, aspects of dynamical systems theory
are involved. For reviews see Bassett and Bullmore (2009),
Bullmore and Sporns (2009), Kaiser (2011), Bassett and
Gazzaniga (2011) and Stam and van Straaten (2012).

Here, we will describe how brain activity can be trans-
formed to a functional network. Second, methodological
reserved.
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issues that can influence results are outlined. Finally, an
overview of the results of research of complex brain
networks in healthy as well as in neurological disease will
be given.
2. Graphs

2.1. Network building blocks and forms

A graph (G) is a mathematical representation of a network
and consists of a set of vertices or nodes (V) that are
connected by a set of so-called edges (E) (Figure 1a). The
edges can represent any structural or functional relation-
ship between the nodes. They can have a value (for
instance: strength, length or importance of the connection)
and these values can be presented in an adjacency matrix A
(Figure 1b). This matrix therefore contains all informa-
tion of the network (see Van Steen (2011) for extensive
Figure 1 (a) Example of a graph with points as the vertices
(V, numbered), and the lines connecting them as the edges (E).
From this figure it can be seen which vertices are connected to
which others. The connections are undirected (information can
go either way) and unweighted (strength of all connections is
equal). (b) Example of the adjacency matrix (A) corresponding
to the presented network. Cells in gray represent a connection
between the vertices.
information on graphs, digitally available through
/www.distributed-systems.net/gtcnS). The edges can have
a direction in which the activity of one node depends on the
other and not vice versa, or can be undirected in which the
direction of the dependency is both ways or cannot be
established. If the network takes into account the value of
the edges, it is called weighted. On the other hand, in an
unweighted network, the edges either exist or not. The
connections have the same value and the adjacency matrix
becomes binary.

Individual networks can vary greatly with respect to mean
connectivity, and as a result the size (total number of
vertices and edges). This variation influences network
measures and hampers optimal comparison between (groups
of) subjects. The process of normalization enables compar-
ison of network metrics between subjects while leaving the
network sizes unchanged. This is done by creating a ratio of
the observed network measure and that of a set of random
networks of the same size and mean connectivity.
2.2. Network metrics

2.2.1. Clustering coefficient, path length, degree and
degree distribution
The most basic and frequently used measures are the
clustering coefficient C, path length L, degree k, and degree
distribution P(k).

The clustering coefficient C is a measure of local con-
nectivity and defined as to what extent the neighboring
nodes to which a node is connected are connected with
each other (Figure 2). So, if a node A is connected to nodes
B, C and D (its neighbors), the clustering coefficient of A is
the probability that the nodes B, C and D will be connected
to each other. For the whole graph, a mean C can be
computed.

Shortest path length is the smallest number of edges
between two nodes, so it is the minimum number of steps
to travel through the network from node A to B (Figure 3).
Figure 2 Example of a clustering coefficient. Vertex 8 has two
neighbors that are themselves also connected. The clustering
coefficient is defined by the number of edges between neigh-
boring vertices divided by the total number of possible con-
nections. In this case: C=1/1=1.



Figure 3 Example of a shortest path length. The minimum
number of vertices that is involved to travel from vertex 1 to
vertex 12 through connecting edges is 4 (including the start-
and end-vertex).

Figure 4 Example of a graph with modules. The network can
be divided into two subgraphs (clusters of vertices within the
lines) that have a higher connectivity within the subgraph than
going outside. The vertex that is indicated with the black square
is the connection between the modules (connector-hub).
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The average shortest path length L is thought of as a
measure of global efficiency. It is defined as the mean
number of steps along the shortest paths between all
possible pairs of network nodes. Intuitively, when the
average path length is short, it is easy to travel fast from
one point in the network to a random other point.

The degree k of a node is the number of edges connecting
this node to others. The degree can give a ‘meaning’ to or
indicate the relative importance of the node: nodes with a
high degree can be regarded as important points in the
network (so-called hubs). A mean degree can be computed
for the whole network.

In addition, the degree distribution P(k) reflects the
probability that a randomly chosen node will have degree k.
A power-law degree-distribution, in which some vertices have
an exceptionally high degree, and most others a low degree,
indicates the presence of hubs.

2.2.2. Other measures: Degree correlation,
modularity/motifs, centrality, and graph spectral analysis
With the above mentioned basic network measures, some
network models can be described. However, for further
characterization, other measures might be informative as
well. The goal is to have a set of measures that would allow
a description of that part of the network that is informative,
more specifically the part that deviates from a completely
random network. Here we mention some measures that
have an application in neuroscience.

The measure ‘degree correlation’ indicates to what
extent nodes with the same or different degree are
connected to each other. When nodes show a tendency to
be connected to nodes with the same degree, the network is
said to be assortative. When the nodes tend to be con-
nected to nodes with a different degree, the network is
called disassortative. Interestingly, most social networks are
assortative and most biological and technological networks
are disassortative (Newman, 2003). The brain, as measured
macroscopically with EEG, MEG and fMRI, seems to have an
assortative degree organization (Deuker et al., 2009;
Hagmann et al., 2008; Braun et al., 2012) while it is
disassortative at the neuronal level (Bettencourt et al.,
2007). The assortative tendency of high degree (macro-
scopically, fMRI) nodes to connect to each other was
referred to as rich-club organization (van den Heuvel and
Sporns, 2011). However, this assortativity is not always
confirmed and decisions on the parcellation and centrality
measures might contribute to varying results (Zuo et al.,
2012). With high parcellation schemes, where local connec-
tions are abundantly represented and the probability of high
degree hubs is less, assortativity might be easier to detect
than with low parcellation schemes (Fornito et al., 2010).
On the other hand, even with a low parcellation scheme,
such as the Automated Anatomical Labelling (AAL), assorta-
tivity could be found (Braun et al., 2012). Apparently, at
least in the brain, degree correlation is a measure with
different values when looking at complex networks at
different levels. The explanation for this phenomenon is
not known. Newman proposed that in networks with a
modular structure such as the brain, the degree correlation
points toward assortativity (Newman, 2006). High degree
nodes might serve as the connector hubs, a part of the
communication line between the modules, for the integra-
tion of locally processed information. The assortativity at
the macroscopic scale might arise from the way the network
is formed: by modulation based on synchronization rather
than growth (Stam, 2010).

Nodes can be grouped in such a way that a simple sub-
graph, called motif, can be recognized (Milo et al., 2002).
Triangles of three interconnected nodes are examples of
such motifs. The simple motif of a triangle underlies the
important property of clustering. When larger groups of
nodes tend to be more connected within groups than
between groups, this group is called a module (Figure 4)
(Newman, 2006). Algorithms exist to detect and quantify
modular structure (Newman, 2006), where the number of
edges within groups minus the expected number of edges
from an equivalent random network play a role. Modules
can be connected to other modules in a hierarchical
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fashion, resulting in subsystems within systems, sometimes
several levels deep (Simon, 1965). This enables a phenom-
enon that is typical of hierarchical systems: influencing
the neighboring modules or subsystems, without affect-
ing directly their intrinsic function (Simon, 1965). We can
therefore distinguish interactions within subsystems and
between subsystems, and characterize specific nodes and
their function in the network: for example connector hubs
for connections going out of the module (Guimera and
Nunes Amaral, 2005), and regional hubs for important
connections within the modules.

The importance of a node can be quantified by means of
centrality measures, of which degree is a simple example.
Another measure is the betweenness centrality. It is defined
as the number of shortest paths going through a node or
edge. The betweenness centrality is high when the node or
edge is used for many shortest paths. This measure can be
normalized by dividing it by its maximum value (the total
amount of shortest paths in the network). A relative draw-
back of this method is that, especially in networks with
many nodes, computation time can be long. A different
measure of node centrality is the eigenvector centrality.
Eigenvector centrality allocates a value to each node in the
network in such a way that the node receives a large value if
it has strong connections with many other nodes that have
themselves a central position within the network (Lohmann
et al., 2010). In other words, the connections to important
nodes count more, making the nodes with relatively few
edges to very important nodes also important (maybe more
important than nodes with many edges to less important
nodes). The advantages of the eigenvector centrality are
therefore the fact that the quality of the connections is
taken into account, and the relatively short computation
time. In the brain, the centrality measures are not inter-
changeable and can provide additional information about
the network (Zuo et al., 2012).
2.3. Network models

A number of typical network models have been described
that are useful in understanding optimal and suboptimal
Figure 5 Representation of the construction and principle of thr
connected to its neighbors in a repetitive way, and without long dis
connections between the vertices are totally random (some local
world network, as a transition situation between the regular and ra
few local connections to become long distance connections, C st
networks).
networks. They have helped putting network metrics into
perspective. Here we will discuss some of the models that
are frequently used in functional brain network research.
With C, L and P(k), four types of networks can be char-
acterized: the random graph, the regular graph, the small-
world network, and the scale-free network. Historically, the
concepts of the graphs have grown and the descriptions of
the network models were published in the course of
several years.

The first network model was the random graph, described
by Erdös and R �enyi (1959). This model consists of a set of
nodes and connections between them that are totally
random. There is a probability p that a connection exists
between two nodes, and this p is equal for every combina-
tion of two nodes. This model is characterized by a low
clustering coefficient, because there is no preference for
extra local connections, other than based on chance. In
other words, the fact that a node A is connected to nodes B
and C does not influence the probability that node B is
connected to node C. The average shortest path length L is
also low in the random graph: it takes few steps to travel
from one point in the network to a randomly chosen
other point.

Watts and Strogatz (1998) published a paper in which
they described a new network model: the small-world
network (Figure 5). Starting with a set of nodes represented
on a ring, each node is only connected to its nearest
neighbors (the number of nearest neighbors can vary with
k, and is symmetrical so k/2 connections on each side of the
node on the ring). This was called a regular or lattice
network. In this model, C is high (only connections to
neighbors exist) and L is high as well: it takes a large
number of steps to travel through the network to a distant
node, via small steps only. Then, with a probability p, a few
connections in the lattice network are randomly rewired.
This results in a fast decrease in L because of the newly
formed ‘short-cuts’, whereas C initially remains high. This
network was called ‘small-world’ and the authors showed
that the values for C and L of this new network matched
real networks (for example the anatomical network of
neurons in the worm Caenorhabditis elegans and social
networks) better than the values of C and L of random
ee networks. On the left the regular network, with each node
tance connections. On the right the random network where the
and some long distance connections). In the middle the small-
ndom networks. Taking the regular network, and rewiring only
ays high (as in regular networks) and L drops (as in random



Figure 7 Result of a three dimensional brain network based on
coupling of MEG signals.

Figure 6 Example of a scale-free network. Characteristic are
few vertices with a high degree (black squares) and many more
vertices with a low degree (dots). From van Dellen et al. PLoS
One 2009.

11Functional brain network analysis with EEG, MEG, and functional MRI
and regular networks. When p is increased further, C
eventually drops and the network becomes an Erd +os–R �enyi
random network with low C and low L. The small-world
network model can thus be placed in between the Erd +os–
R �enyi and lattice network models.

Barabasi and Albert (1999) proposed a model for network
growth. They took into account the degree of the network:
the probability of a new connection depends on the number
of edges a node already has: nodes with a high degree have
a higher probability of getting a new connection. The result
of this preferential attachment is a so-called scale-free
network with a power law degree distribution: few nodes
have a very large k and a large number of nodes have a
small k (Figure 6).
3. The brain as a functional network

3.1. The complex brain

How can the principles of network analyses be applied to
the human brain? It has been shown that the brain has the
characteristics of a complex structure. The definition of
complex in this context describes a network that is large,
sparsely connected, and has an organization between order
and randomness (Sporns, 2011).

The brain network can be studied on various scales. At
the cellular level, the network is made up of neurons as the
vertices and the synapses as the connecting edges. At this
level, connectivity between a limited number of neurons
can be studied at the same time, providing information on
the details of information exchange but limited information
on large scale information integration. We are maximally
zoomed in. It was shown that at this level, brain networks
show a scale-free topology with short path lengths, and high
synchronizability (Bonifazi et al., 2009).

On a higher level, neurons sharing a particular function
are grouped into so-called modules, and are organized to
communicate with other sets of neurons with a different
function (Tononi et al., 1994). This modular hierarchy seems
essential for the presence of sustained spontaneous brain
activity (S.J. Wang et al., 2011).

At an even larger scale, larger brain regions can be
regarded as the vertices, with the long distance white
matter tracts as the edges. These regions can comprise
one to several cubic millimeters (fMRI, voxel level) or larger
(several square centimetres in EEG).

At this level, brain activity can be measured macrosco-
pically, even outside the skull. With these functionalities,
global brain network topology can be studied in analogy
with other existing networks (Figure 7). Order can be seen
in the way the network is functioning, with high clustering
and hierarchical levels (Meunier et al., 2010; Kaiser, 2011).

How the network at the macroscopic level is organized, is
a result of how it grows and evolves at the cellular level.
The human adult brain contains on average 2� 1010 neurons
and 15� 1013 synapses, resulting in a mean number of
connections of 7000 for each neuron (Pakkenberg and
Gundersen, 1997; Pakkenberg et al., 2003). With a limited
amount of cost (in terms of material and metabolism) the
network has to be highly efficient and robust. The network
organization is the result of a multiconstraint optimization
process where limiting the number of long distance con-
nections reduces wiring cost (Bullmore and Sporns, 2012).
The continuing trade-off between wiring cost and optimal
information processing results in the network characteris-
tics that can be found in neuronal systems. The question is
how this trade-off can be modeled to replicate these
networks. Kaiser et al. (2009) showed that a model for
random growth of axons, with the rule that the axons
establish a new connection to the first neurons they hit,
resulted in a pattern of decreasing connectivity with
increasing distance, as found in neural networks. The
resulting network was highly connected locally, but allowed
for some long distance connections. In a study on the
development of the neuronal network of C. elegans, it
was found that the long distance connections start out as
short distant connections when the worm is young and small
and grow along as the animal grows (Varier and Kaiser,
2011). This indicates that the long distance connections are
in fact the oldest ones. Vertes et al. (2012) proposed a
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model for the emergence of brain networks based upon
rules for a price for long distance connections and a higher
likelihood of connections between regions receiving the
same input. With this model, many of the qualities of real
networks could be explained. Taken together, this research
opens the road to the search for universal rules of the
organization of brain function.

3.2. Network construction

To investigate the highly complex neuronal network in vivo, a
representation of the network at the macroscopic scale can
serve as a biomarker of the cellular network. Neuronal
populations generate oscillations which can be measured
(Buzsaki, 2006). For functional brain networks, activity as
measured with EEG (electrical activity), MEG (magnetic
activity) and fMRI (changes in cerebral blood flow as a measure
of neural activity) forms the building block of the network
(Stephan et al., 2000). The nodes are therefore EEG electro-
des, MEG sensors and fMRI voxels or regions of interest (ROIs),
consisting of a compound signal of the activity of many
neurons, with a spatial distribution. The connecting edges
are formed by establishing some sort of functional connection
between the nodes. This functional connection builds on the
general rule that interconnected oscillating systems will
synchronize their activity (Strogatz, 2003).

The proportion or likelihood of similarity in two or more
time series can be addressed in various ways. Once the
coupling between the time series is quantified, an adja-
cency matrix can be formed, composed of cells with a value
that describes the probability or strength of the connection.
With this adjacency matrix, network metrics are computed.

3.3. Establishing connections

Statistical interdependencies between two or more neuro-
physiological time series can be characterized in various
ways (Pereda et al., 2005). A straightforward approach is by
applying a linear method, such as coherence: how similar
are the waveforms of each frequency when a time-lag is
applied to one of them, quantified by a cross-correlation
function. Since non-linear components of coupling are
abundantly present in neuronal activity, non-linear connec-
tivity measures are also available (Stam and van Dijk, 2002).
In resting-state EEG and MEG studies, the problem of
volume conduction interferes with analysis (Nunez et al.,
1997, 1999). When different electrodes or sensors pick up
activity of the same generating cortical source, the func-
tional coupling is spurious. Measures like the imaginary part
of the coherence (Nolte et al., 2004) and the Phase Lag
Index (PLI) (Stam et al., 2007b) partly correct for this
problem by discarding zero lag connections, since these
cannot reliably be distinguished from volume conduction or
common reference effects. Many possible solutions for the
volume conduction problem have been proposed, but none
provide a complete solution. This hampers the conversion
from signal space (the EEG or MEG recording points) to
source space and with that anatomically localizing the
activity.

Resting-state fMRI has the advantage of lacking the
common source problem. The resulting time series have a
high spatial resolution, but a lower temporal resolution. The
relationship with neuronal activity is indirect, and influ-
ences of other physiological oscillations have to be taken
into account. Functional coupling between fMRI regions can
be established with seed-based techniques, which require
the identification of a region of interest before analysis
(Fransson, 2005; Andrews-Hanna et al., 2007). Alterna-
tively, methods exist that can assess whole brain activity,
such as independent component analysis (ICA) (Calhoun
et al., 2001; Beckmann and Smith, 2004). In addition,
parcellation scales (the size of the nodes) influence proper-
ties of the networks (Zalesky et al., 2010; Joudaki et al.,
2012).

It is important to be aware that the characteristics of a
functional brain network depend on recording technique,
and the way the parameters and thresholds are chosen
(Dodel et al., 2002; van Wijk et al., 2010). Reassuringly,
there is similarity in results between the methods.
4. Healthy and developing functional brain
networks

It has been shown that the brain displays an architecture
that optimizes information processing combining specializa-
tion and integration (Tononi et al., 1994; Sporns et al.,
2000). The hierarchical modular structure, with regions that
have more connections within than between themselves,
and the scale-free degree distribution are optimal config-
urations for efficient information processing (Latora and
Marchiori, 2001; Sporns, 2006; Achard and Bullmore, 2007).
In healthy subjects, several brain areas are consistently
found to be interconnected under certain circumstances.
For example, when a subject is processing a visual stimulus,
brain areas that are functionally coupled during that task
can be regarded as belonging to the same functional net-
work. Several networks have been identified in healthy
subjects. When the subject is awake, but not active and
with eyes closed, resting state networks can be identified.
One of them is the default mode network (Raichle et al.,
2001; Greicius et al., 2003). Structures involved in this
network are the precuneus, posterior and anterior cingulate
cortex, lateral parietal, and medial prefrontal cortex. It is
robust, easy to register and is therefore frequently used in
studies (Raichle et al., 2001; Greicius et al., 2003;
Damoiseaux et al., 2006; Laufs, 2008; de Pasquale et al.,
2010).

After the paper of Erd +os and R �enyi on random networks,
it was noted that real neural networks do not behave
exactly like random networks. Especially, a larger local
clustering was found (Muller et al., 1996). With the descrip-
tion of small-world networks, part of this problem was
accounted for: functional brain networks have small-world
like features combining high local clustering and short path
length (Stam, 2004; Bassett et al., 2006; Achard et al.,
2006; Micheloyannis et al., 2006b). In children, this struc-
ture seems to develop with age: the networks of children
were found to be more regular at age seven, as reflected by
higher clustering and longer path lengths, than at five years
of age (Boersma et al., 2011). In a longitudinal EEG study on
twins and siblings, the functional networks showed an
inverse U-shaped change in path length over the years,
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with the resulting networks being most small-world-like in
middle age and more random in adolescence and later life
(Smit et al., 2010). Also, network measures C and L, as well
as the connectivity measure SL, were found to be inheri-
table to a great extent (Smit et al., 2008). Scale-free and
modular characteristics could also be demonstrated in
functional brain networks (Eguiluz et al., 2005; Salvador
et al., 2005; Bassett et al., 2006; van den Heuvel et al.,
2008; He et al., 2009; Meunier et al., 2009; Ferrarini et al.,
2009; Van de Ville et al., 2010), although a scale-free
topology was disputed in other studies (Achard et al.,
2006; Gong and Zhang, 2009).

Cognitive functions are said to be possible because of the
combination of specialization and integration (Tononi et al.,
1998). It is therefore interesting to know to what extent
functional brain network architecture is correlated to
cognitive processes. In fMRI and high density EEG studies,
a relationship was found between a short path length,
consistent with more efficient networks, and higher IQ
(van den Heuvel et al., 2009; Langer et al., 2011).

5. Functional networks in neurological and
psychiatric disease

An increasing number of studies show disturbances of the
optimal organization of brain function in various brain
disorders. These results show that even localized processes
have an impact on the global topology because of the
integrative nature of the system (Sporns, 2011). Some
consistent patterns of network changes are being found in
several neurological and psychiatrical diseases.

5.1. Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative condition
that affects cognitive function, with typically, but not
exclusively, memory deficits. Studies showed that functional
networks in Alzheimer’s disease lose their normal small-
world structure, and regress towards a more random
architecture (Stam et al., 2006, 2007a; Supekar et al.,
2008; de Haan, 2009; Sanz-Arigita et al., 2010).

A hypothesis on the mechanism leading to this pattern
was tested using simulations. It was shown that a specific
loss of hub areas (simulated lesions of the hubs by so-called
targeted attacks) lead to networks with a topology similar
to that found in subjects with AD. Loss of less connected
areas (the random attack model) did not lead to comparable
networks (Stam et al., 2009). By now it has become clear
that the hub regions of the default mode network are also
the regions that typically show the most amyloid deposition,
characteristic for Alzheimer’s disease (Buckner et al.,
2009). Amyloid deposition and loss of function are therefore
anatomically linked to certain regions, in particular the
widely connected parts (posterior cingulate, precuneus) of
the default mode network. Bero et al. (2011) showed that
synaptic activity influences amyloid deposition, linking the
patterns found in functional network analysis and pathology.
In a simulation study, de Haan et al. (2012) showed that the
hub regions of the default mode network (defined by degree
centrality) are indeed electrically most active. Additionally,
they were also most vulnerable for decompensation and
brake-down in case of a general process of decreasing
connectivity. Also, a relationship between functional con-
nectivity and APOE genotype, both in healthy subjects as
well as Alzheimer patients, was found (Kramer et al., 2008).
The APOE 4 allele predisposes for Alzheimer’s disease, and
it seems that it exerts its action on functional networks
before symptoms are manifest, even before amyloid deposi-
tions can be visualized with positron emission tomography
acquired with Pittsburg compound B (PiB-PET) that specifi-
cally binds to these proteins (Sheline et al., 2010). Long-
itudinal studies are needed to show if network changes are
systematically changed before clinical signs and symptoms
start, but the findings yield some potential for early
diagnostic purposes.

5.2. Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative disorder
with prominent motor signs, but other domains, such as
cognition and mood, are increasingly recognized to be
involved in the disease as well. Recently, some network
analysis studies have become available, showing that in PD
network efficiency is reduced (Skidmore et al., 2011). In
analogy to AD, it would be interesting to see future studies
unraveling the associations of changes in the networks with
the pathological process.

5.3. Brain tumors

It is obvious that brain tumors have an impact on anatomical
structures. It is also well known that they can lead to loss of
function and epilepsy. Interestingly, some cognitive signs of
brain tumor patients, such as lack of concentration and
slowing of mental speed, are almost invariably encountered
and cannot be attributed to the location of the lesion.
These symptoms occur in the presence of right as well as
left-sided lesions, and regardless of the area within the
hemisphere. They seem to represent a non-specific global
effect of the focal lesion. Bartolomei et al. (2006a) showed
extensive global changes in brain networks of brain tumor
patients, especially loss of connectivity independent of the
location of the lesion. In a follow-up study, the network
analysis revealed a more random topology of brain networks
in brain tumor patients (Bartolomei et al., 2006b), and
these changes were also related to cognitive disturbances
(Bosma et al., 2009), and seizures (Douw et al., 2010).
These studies indicate that global cognitive dysfunction is
related to disruption of network structure.

5.4. Epilepsy

Epilepsy is often referred to as a result of a hyperexcitable
state of (parts of) the brain and characterized by an
abnormal synchronized firing activity of the neurons
involved in the seizure (Lehnertz et al., 2009). The under-
lying mechanisms are not clear. What happens with func-
tional networks before, during and after a seizure might
provide insight into the dynamical processes involved.
Netoff et al. (2004) reported in a modeling study of
hippocampal neuronal networks that in a small-world con-
figuration increasing connectivity between the neurons was
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associated with the tendency of neurons to synchronize
their activity into spiking activity seen also in seizures. An
fMRI study on the dynamics of the functional networks
showed that the networks are near a threshold of order/
disorder transition (Bassett et al., 2006). Wu et al. (2006)
reported a change from random towards small-world-like
during the seizure, as measured with intracerebral EEG
depth electrodes. Ponten et al. (2007)confirmed this result
in a study with seven patients. They suggested that epilepsy
is characterized by an interictal pathologically random
functional network that is prone to transitions to a state
of hyperconnectivity (due to a pathological process) asso-
ciated with the start-off and propagation of seizures. The
fact that in random networks activity is synchronized more
easily than in small-world networks was reported previously
(Chavez et al., 2005). Randomness of resting state networks
in subjects with epilepsy was also found in an EEG and MEG
study (Horstmann et al., 2010). The concept that patholo-
gically active hubs contribute to epilepsy was reported by
Ortega et al. (2008). Wilke et al. (2011) studied whether
critical nodes could be identified in the networks of patients
undergoing epilepsy surgery. With EEG signals from depth
electrodes in 25 patients, they found that reduced post-
surgery number of seizures was associated with the resec-
tion of brain regions that had the highest betweenness
centrality, suggesting that critical network points are
involved in either beginning or spreading of seizures.

5.5. Schizophrenia

Application of modern network theory to EEG and fMRI data
of individuals with schizophrenia revealed loss of overall
functional connectivity and small-world properties with
increased randomness of the networks (Micheloyannis
et al., 2006a; Liu et al., 2008; Rubinov et al., 2009; Yu et
al. 2011). In addition, a decrease in efficiency of high
degree nodes was noted (Bassett et al., 2008; Lynall
et al., 2010; Q. Wang et al., 2011). Decreased functional
connectivity and reduced global integration of specific brain
areas, especially frontal hubs, were also reported for
structural connectivity (van den Heuvel et al., 2010).

On the other hand, other authors found an increase in
connectivity of the default mode network, and a decrease
in suppression of this network during a task (hyperactivity),
and these findings correlated with clinical symptoms
(Whitfield-Gabrieli et al., 2009). Changes in functional
networks might be detectable many years before the
disease is clinically manifest. This could potentially identify
subjects at a particular risk of developing the disease and
thereby serve as endophenotypes (Bullmore and Sporns,
2009).

5.6. Other psychiatric disease

Changed functional brain networks in patients with atten-
tion-deficit/hyperactivity disorder (ADHD) were reported.
The topology was changed towards a more regular type of
network (Wang et al., 2009).

Functional MRI studies showed disturbed functional net-
works in subjects with a major depression, more specifically
a shift towards a random network type (Zhang et al., 2011)
and disturbed modular structure (Lord et al., 2012). In
another study, decreased small-world index in depressed
individuals was also found (Jin et al., 2011).

In subjects with autism, a decrease in frontal–parietal
(Just et al., 2007) and frontal–temporal (Coben et al., 2008)
connectivity was found. Additionally, Lai et al. (2010)
reported a shift towards randomness. How these network
changes relate to the pathological mechanisms involved
remains to be studied.
6. Conclusion

It has now become clear that the application of modern
network theory to functional brain studies is feasible and
provides additional information. It allows the study of the
brain as a hierarchical, complex and self-organizing organ
and has shown that it has small-world, scale-free and
modular characteristics. The description of the default
mode network, which is de-activated by activity, has been
linked to cognitive function. These findings are in line with
the general idea that brain function is a result of a
combination of specialization and integration, although
additional work is needed to further investigate this rela-
tionship. The comparison of the brain networks of healthy
subjects to that of individuals with neurological or psychia-
trical disease has added to knowledge on the mechanisms
involved in disease. Network studies have contributed to
progress in understanding the pathophysiological processes
and explaining the topology of a variety of neurodegenera-
tive and psychiatric disease. One of the challenges in future
studies will be to establish the relationship of network
changes to pathological processes for other diseases as well
and to relate the functional networks to therapeutic
strategies.

Another challenge will be the development of an addi-
tional network model that captures the brain even better
than the currently available models. The presence of hubs,
together with a high local clustering, has to be explained by
the model, at the same time taking into account the
influence of the factor space, which is an obvious factor
inside the skull. Studies of the development of the brain
networks might prove of value in this respect.
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