3-trees with few vertices of degree 3 in circuit graphs

Atsuhiro Nakamotoa,*, Yoshiaki Odab, Katsuhiro Otab

aDepartment of Mathematics, Faculty of Education and Human Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

bDepartment of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Received 20 June 2007; received in revised form 3 January 2008; accepted 5 January 2008

Available online 14 February 2008

Abstract

A circuit graph (G, C) is a 2-connected plane graph G with an outer cycle C such that from each inner vertex v, there are three disjoint paths to C. In this paper, we shall show that a circuit graph with n vertices has a 3-tree (i.e., a spanning tree with maximum degree at most 3) with at most $\frac{n-7}{3}$ vertices of degree 3. Our estimation for the number of vertices of degree 3 is sharp. Using this result, we prove that a 3-connected graph with n vertices on a surface F_χ with Euler characteristic $\chi \geq 0$ has a 3-tree with at most $\frac{n}{3} + c_\chi$ vertices of degree 3, where c_χ is a constant depending only on F_χ.

Keywords: 3-connected graph; Circuit graph; 3-tree; Surface

1. Introduction

We consider only finite simple graphs embedded in the sphere, the projective plane, the torus and the Klein bottle. These surfaces have Euler characteristics at least 0 and at most 2. For a graph G, we denote the vertex set and the edge set of G by $V(G)$ and $E(G)$, respectively. In particular, let $V_i(G)$ denote the set of vertices of G whose degree are exactly i. Let $\Delta(G)$ denote the maximum degree of G. For an edge e of G, let $G - e$ and G/e denote the graphs obtained from G by deleting and contracting e, respectively. (An edge-contraction of e or contracting e is to remove e, identify the endpoints of e and replace all pairs of multiple edges by single edges, respectively. The inverse operation of an edge-contraction is called a vertex splitting or splitting a vertex.) For a plane graph G, let ∂G denote the subgraph of G induced by the vertices and the edges incident with the infinite region. (If G is a 2-connected plane graph, then ∂G is a cycle, and is called the outer cycle.) A vertex or an edge of G is said to be outer (resp., inner) if it is (resp., is not) contained in ∂G.

A spanning tree of maximum degree at most k is called a k-tree. Tutte [9] proved that every 4-connected planar graph has a Hamiltonian cycle, i.e., a cycle passing through all vertices exactly once (hence a 4-connected planar graph has a 2-tree), but every 3-connected planar graph is not necessarily Hamiltonian. On the other hand, it has been shown in [1] that a 3-connected planar graph has a 3-tree. Furthermore, every 3-connected graph embedded in a

* Corresponding author.

E-mail addresses: nakamoto@edhs.ynu.ac.jp (A. Nakamoto), oda@math.keio.ac.jp (Y. Oda), ohta@math.keio.ac.jp (K. Ota).

0012-365X/$ - see front matter \copyright$ 2008 Elsevier B.V. All rights reserved.
A circuit graph \((G, C)\) is a 2-connected plane graph \(G\) with an outer cycle \(C\) such that for each inner vertex \(v\) of \(G\), there exist three disjoint paths from \(v\) to \(C\). Such a condition of a 2-connected plane graph to be a circuit graph is called the three path condition. Observe that a 3-connected planar graph is a circuit graph, and moreover, a 3-connected planar graph with one vertex removed is also a circuit graph. (Such a 2-connected graph obviously has a planar embedding satisfying the three path condition.)

In this paper, we shall bound the number of vertices of degree 3 of 3-trees in circuit graphs, as follows:

Theorem 1. Let \(G\) be a circuit graph with \(n\) vertices. Then \(G\) has a 3-tree with at most \(\max\{0, \frac{n-7}{3}\}\) vertices of degree 3. Moreover, the estimation for the number of vertices of degree 3 is best possible.

Using Theorem 1, we shall prove the following theorems:

Theorem 2. Let \(G\) be a 3-connected graph with \(n\) vertices on the sphere or the projective plane. Then \(G\) has a 3-tree with at most \(\max\{0, \frac{n-7}{3}\}\) vertices of degree 3. The bound for the number of vertices of degree 3 is best possible when \(G\) is on the projective plane.

Theorem 3. Let \(G\) be a 3-connected graph with \(n\) vertices on the torus or the Klein bottle. Then \(G\) has a 3-tree with at most \(\frac{n-3}{3}\) vertices of degree 3. The bound for the number of vertices of degree 3 is best possible.

A \(k\)-walk in a graph \(G\) is a walk in \(G\) passing through every vertex of \(G\) at least once and at most \(k\) times. (A 1-walk is just a Hamilton path.) It is easy to see that if \(G\) has a \(k\)-walk, then \(G\) has a \((k + 1)\)-tree. Moreover, a vertex visited twice in a 2-walk \(W\) corresponds to a vertex of degree 3 in the 3-tree corresponding to \(W\). In [4], it was shown that every circuit graph has a 2-walk, and hence has a 3-tree. Moreover, this result has been extended to that every 3-connected planar graph \(G\) has a 2-walk \(W\) in which every vertex visited twice by \(W\) is included in a 3-cut of \(G\) [5]. (Since a 4-connected planar graph \(G\) has no 3-cut, this implies the existence of a Hamilton path in \(G\).) However, this result does not bound the number of vertices visited twice in 2-walks, and hence it is independent of our theorem.

One might expect a result for the number of vertices visited twice in 2-walks in a 3-connected planar graph, similarly to our theorem for 3-trees.

2. Examples

In this section, we construct examples of 3-connected graphs on surfaces and circuit graphs each of whose 3-tree must have many vertices of degree 3.

Let \(F_\chi\) be a surface with Euler characteristic \(\chi \geq 0\). That is, \(F_\chi\) is either the sphere, the projective plane, the torus or the Klein bottle depending on \(\chi = 2, 1, 0, 0\), respectively. Let \(G\) be a triangulation on \(F_\chi\) with \(k\) vertices. Let \(M\) be the face subdivision of \(G\), that is, the one obtained from \(G\) by putting a new vertex in each face of \(G\) and joining it with all three vertices of the corresponding boundary cycle.

By Euler’s formula, \(G\) has \(2k - 2\chi\) faces, and hence \(M\) has \(k + (2k - 2\chi)\) vertices. Let \(n = 3k - 2\chi\). Let \(X = V(G)\) and \(Y = V(M) - X\). Since \(Y\) is independent in \(M\), each edge of a 3-tree \(T\) of \(M\) is incident to a vertex of \(X\). Hence we have

\[
\sum_{v \in X} \deg_T(v) \geq |E(T)| = n - 1 = 3k - 2\chi - 1 = 2|X| + k - 2\chi - 1.
\]

Therefore, at least \(k - 2\chi - 1 = \frac{n - 4\chi - 3}{3}\) vertices of \(X\) have degree 3 in \(T\). Similarly, considering the graph obtained from the above example by subdividing one or two faces more, we have the following proposition:

Proposition 4. Let \(F_\chi\) be a surface with Euler characteristic \(\chi \geq 0\). For each \(n \geq 4\chi + 3\), \(F_\chi\) admits a 3-connected graph with \(n\) vertices each of whose 3-tree has at least \(\lceil \frac{n - 4\chi - 3}{3}\rceil\) vertices of degree 3. ■

By Proposition 4, the bounds on the number of vertices of degree 3 in Theorems 2 and 3 are best possible, except the spherical case. One may ask whether every 3-connected graph on the sphere with \(n\) vertices has a 3-tree with at most \(\frac{n - 11}{3}\) vertices of degree 3.
Now we turn our attention to circuit graphs. Let \(G \) be a spherical triangulation with \(k \) vertices, and let \(L \) be the face subdivision of \(G \). Let \(L' \) be the graph obtained from \(L \) by removing a vertex of \(G \), and let \(|V(L')| = n \). Then \(L' \) is a circuit graph. By the same computation as above, we have \(|V(L')| = n = 3k - 5\). Let \(X' = V(L') \cap V(G) \). For any 3-tree \(T \) of \(L' \),
\[
\sum_{v \in X'} \deg_T(v) \geq |E(T)| = n - 1 = 3k - 6 = 2|X'| + k - 4.
\]
Therefore, at least \(k - 4 = \frac{n - 7}{2} \) vertices of \(X' \) have degree 3 in \(T \). Similarly, considering the graph obtained by subdividing one or two faces more, we have the following proposition:

Proposition 5. For each \(n \geq 7 \), there exists a circuit graph with \(n \) vertices each of whose 3-tree has at least \(\left\lceil \frac{n - 7}{3} \right\rceil \) vertices of degree 3.

By Proposition 5, the estimation for the number of vertices of degree 3 in Theorem 1 is sharp.

3. Lemmas

In this section, we shall give lemmas to prove Theorem 1. We begin with describing a nice recursive property of circuit graphs. Let \(B_1, B_2, \ldots, B_r \) be circuit graphs or \(K_2 \)'s. Suppose that for \(i = 1, \ldots, r - 1 \), \(B_i \) intersects only \(B_{i+1} \) at one common outer vertex \(v_i \), where \(v_1, \ldots, v_{r-1} \) are all distinct. Then, \(\mathcal{D} = B_1 \cup \cdots \cup B_r \) is said to be a linear chain of circuit graphs of length \(r \), where possibly \(r = 1 \). In this case, we use the expression \(\mathcal{D} = B_1, v_1, \ldots, v_{r-1}, B_r \). Note that each \(B_i \) is a block of \(\mathcal{D} \), and \(B_1 \) and \(B_r \) are end blocks. Each \(v_i \) is a separating vertex of \(\mathcal{D} \). Clearly, a linear chain \(\mathcal{D} \) of circuit graphs of length \(r \) is 2-connected if and only if \(r = 1 \) and \(\mathcal{D} \neq K_2 \).

Proposition 6 ([4], Lemma 3). If \((G, C) \) is a circuit graph and \(v \in V(C) \), then \(G - v \) is a linear chain of circuit graphs of length \(r \geq 1 \). Moreover, if \(r \geq 2 \), then the neighbors of \(v \) in \(C \) are non-separating vertices lying on the distinct end blocks of \(G - v \).

We point out an important fact on circuit graphs which will be used in our argument later. Let \(G \) be a 3-connected plane graph on a surface and let \(C \) be any cycle of \(G \). Then the subgraph \(G' \) consisting of all vertices and edges lying on \(C \) and contained in the region bounded by \(C \) must be a circuit graph with boundary \(C \). (The three path condition of \(G' \) clearly holds by the 3-connectedness of \(G \).

Let \((G, C)\) be a circuit graph. A \(C \)-path of \(G \) is a path \(P \) joining a vertex \(u \in V(C) \) and a vertex \(v \in V(C) \) such that \(V(P) \cap V(C) = \{u, v\} \) and \(E(P) \cap E(C) = \emptyset \). An edge \(e \in E(G) \) is said to be removable in \(G \) if \(G - e \) (with the embedding induced by \(G \)) is also a circuit graph. Note that an edge \(e = xy \in E(C) \) is removable if and only if there exists a \(C \)-path joining \(x \) and \(y \). (Equivalently, \(e \in E(C) \) is not removable if and only if \(G - e \) is a linear chain of circuit graph of length at least 2.) Also, an edge \(e \in E(G) - E(C) \) is not removable if and only if there exists an inner vertex \(v \) such that any three disjoint paths from \(v \) to \(C \) must pass through the edge \(e \). A circuit graph \((G, C)\) is said to be edge-minimal if \(G \) has no removable edge.

Lemma 7. Let \((G, C)\) be an edge-minimal circuit graph and let \(v \in V(C) \) be a vertex of degree at least 3. Then \(G - v \) is a linear chain of circuit graphs of length at least 2.

Proof. By Proposition 6, \(G - v \) is a linear chain of circuit graphs of length \(r \) for some \(r \geq 1 \). To show the lemma, we shall prove that \(r \geq 2 \). Suppose that \(r = 1 \), that is, \(G - v \) is 2-connected. By the assumption, there are at least three edges incident to \(v \). Hence, if we let \(f \) be an edge in \(C \) incident to \(v \), then \(G - f \) is a circuit graph, which is contrary to the edge-minimality of \(G \).

Lemma 8. Let \((G, C)\) be an edge-minimal circuit graph and let \(xy \in E(C) \). If \(x \) and \(y \) have degree at least 3, then \(G/xy \) is also an edge-minimal circuit graph.

Proof. Since \(G \) has no \(C \)-path joining \(x \) and \(y \), \(G/xy \) satisfies the three path condition and hence is a circuit graph. Note also that every three disjoint paths from an inner vertex \(v \) to \(C/xy \) in \(G/xy \) corresponds to three disjoint paths from \(v \) to \(C \) in \(G \). This implies that every edge in \(E(G/xy) - E(C/xy) \) is not removable in \(G/xy \).
Suppose that an edge $st \in E(C/xy)$ is removable in G/xy. Then there exists a C/xy-path P joining s and t. Let P' be the path in G corresponding to P. Since st is not removable in G, the endvertices of P' are not consecutive in C. This implies that one of the endvertices of P' is x or y, say y, and the other endvertex, say s, is a neighbor of x in C.

Let C' be the cycle $P' \cup \{sx, xy\}$. Since $\deg_G(x) \geq 3$, there exists an inner vertex $v \in N_G(x)$. If $v \in V(P') - \{s, y\}$, then we find a C-path joining x and y in G, which contradicts that xy is not removable. Thus v lies in the interior of the region bounded by C'. By the three path condition, there exists a path Q joining v and C' which avoids s and x. Then, $Q \cup P' \cup \{xy\}$ contains a C-path joining x and y, and hence xy is removable, a contradiction. ■

The following lemma is essential to prove Theorem 1.

Lemma 9. Let (G, C) be an edge-minimal circuit graph with $n \geq 4$ vertices, and let u, v be any distinct vertices in C. Then G has a spanning connected subgraph H with $\Delta(H) \leq 3$ such that

(i) $C \subset H$,
(ii) $\deg_H(u) = \deg_H(v) = 2$,
(iii) $|E(H)| = n$, and
(iv) $|V_3(H)| \leq \frac{n-4}{3}$.

By (i) and (iii), for any $e \in E(C)$, the graph $H - e$ is a 3-tree of G.

Proof of Lemma 9. We use induction on n. An edge-minimal circuit graph with exactly four vertices is a 4-cycle and it obviously satisfies the lemma. This verifies the first step of induction. So we assume that $n \geq 5$.

Claim 1. We may assume $\deg_G(u) \geq 3$ and $\deg_G(v) \geq 3$.

Proof. If $V(G) = V(C)$, then by the edge-minimality of G, G is just the cycle C. Then, the lemma clearly holds with $H = C$. Hence we may suppose that $V(G) \neq V(C)$. By the three path condition, there are at least three vertices of degree at least 3 on C. Assume that $\deg_G(v) = 2$ for example. Then, specifying one of the other vertices, say $w(\neq u)$, instead of v, we suppose to obtain a required H with $\deg_H(w) = 2$. In this H obtained, we must have $\deg_H(v) = 2$ since $H \supset C$ and $\deg_G(v) = 2$. Therefore, we may suppose that $\deg_G(v) \geq 3$. The same argument follows for the other vertex u. ■

Claim 2. We may assume that no two vertices of degree at least 3 are adjacent in C.

Proof. Suppose that there is an edge xy in C such that $\deg_G(x) \geq 3$ and $\deg_G(y) \geq 3$. We shall show that we can easily find a required H in G.

By **Lemma 8**, $G/xy = G'$ is also an edge-minimal circuit graph with $n' = n - 1$ vertices. By induction hypothesis, G' has a spanning subgraph H' with $H' \supset \partial G'$, $\Delta(H') \leq 3$, $|E(H')| = n'$ and $|V_3(H')| \leq \frac{n'-4}{3}$. From H', we construct a required spanning subgraph H of G by splitting the vertex $[xy]$, where $[xy]$ is the image of an edge xy by the contraction. Clearly, H satisfies the conditions (i) and (iii). If one or both of x and y are specified as u or v in G, then we can make $\deg_H([xy]) = 2$, by specifying $[xy]$ in the induction hypothesis for G'. By splitting $[xy]$ in H', we obtain H with $\deg_H(x) = \deg_H(y) = 2$. In other cases, the degree of u and v in H are the same as in H'. Therefore, H satisfies (ii). Since $\deg_H([xy]) \leq 3$, we can make at least one of x and y have degree 2 in H by splitting $[xy]$. Therefore, the number of vertices of degree 3 does not increase by splitting $[xy]$, and hence we have

$$|V_3(H)| = |V_3(H')| \leq \frac{n'-4}{3} < \frac{n-4}{3}.$$

Thus, H satisfies (iv). ■

Since v has degree at least 3 in G by Claim 1, the graph $G' = G - v$ is a linear chain of circuit graphs of length at least 2, by **Lemma 7**. Let $G' = B_1, v_1, \ldots, v_{r-1}, B_r$, where each B_i is a circuit graph or K_2, and v_1, \ldots, v_{r-1} are distinct separating vertices of G'. Let v_0 and v_r be the two neighbors of v in C belonging to B_1 and B_r, respectively. (See **Fig. 1**.) Let k be the smallest integer such that B_k contains the vertex u. We may assume that $k < r$, for otherwise we reverse the sequence of blocks of the linear chain. By Claims 1 and 2, u and v are not adjacent in C. Therefore we have $v_0 \neq u$.

Consider the graph \tilde{G}'' induced by $V(B_{k+1}) \cup \cdots \cup V(B_r) \cup \{v\}$ with an additional edge joining v_k and v for the case when $vv_k \notin E(G)$. Observe that any inner vertex w of \tilde{G}'' belongs to B_j in G for some $j \in \{k+1, \ldots, r\}$, and that w has at least three disjoint paths to $\partial B_j \cap C$ and v. Moreover, since the outer cycle (denoted by C'') is a cycle, \tilde{G}'' must be a circuit graph. Let $G'' = \tilde{G}'' - v_k$ be a linear chain of circuit graphs of length $l - k \geq 1$. In particular, we put

$$G'' = D_{k+1}, u_{k+1}, D_{k+2}, u_{k+2}, \ldots, D_l, u_l, D_l,$$

where u_k' and v are the two neighbors of v_k in C'' belonging to different end blocks D_{k+1} and D_l, respectively, if $r \geq 2$.

For simpleness of notations, we rename v_{i-1}, B_i, v_i to be u_{i-1}, D_i, u_i, for $i = 1, \ldots, k$. Then we have $V(G) = V(D_1 \cup \cdots \cup D_l)$. (See Fig. 2.)

Claim 3. Each D_i $(i = 1, \ldots, l)$ is isomorphic to K_2 or has at least 4 vertices.

Proof. For contradictions, suppose that D_m is isomorphic to K_3 for some m. In particular, we suppose that u_{m-1}, u_m and another vertex x form a 3-cycle. In this case, we can remove the edge $u_{m-1}u_m$ from G, and the resulting graph is easily verified to be a circuit graph. This contradicts the edge-minimality of G. ■

Claim 4. D_1 and D_{k+1} are isomorphic to K_2.

Proof. By Claim 1, we have $\deg_G(v) \geq 3$. Therefore, we have $\deg_G(u_0) = 2$ by Claim 2, and hence $D_1 = K_2$. If D_k is 2-connected, then u_k has degree at least 3 in G. Otherwise, it follows that $u_k = u$, and hence we have $\deg_G(u_k) \geq 3$ by Claim 1. Thus in either case, u_k has degree at least 3, and hence its neighbor u_k' has degree 2 in G, by Claim 2. Therefore, $D_{k+1} = K_2$. ■

For each $i = 1, \ldots, l$ with $D_i \neq K_2$, we define D'_i to be an edge-minimal spanning circuit subgraph of D_i. If $D_i = K_2$, then we set $D'_i = D_i$.

Claim 5. For each $i = 1, \ldots, l$, $D'_i \subseteq (D_i \cap C)$.

Proof. By Claim 2, each edge of C is incident with a vertex of degree two in G. Thus, we cannot remove any edge of C when we obtain D'_i. ■
Note that each D'_i is isomorphic to either a K_2 or an edge-minimal circuit graph with at least four vertices, by Claim 3. Let $n_i = |V(D'_i)|$ for $i = 1, \ldots, l$. Then we have
\[
\sum_{i=1}^{l} n_i = n + l - 2. \tag{1}
\]

Now we define a spanning tree T_i of D'_i for $i = 1, \ldots, l$. For D'_i with $n_i = 2$, let $T_i = D'_i$. For D'_i including u, if $n_k \geq 4$, let H_k be a spanning connected subgraph with $\Delta(H_k) \leq 3$, including $\partial D'_k$, such that $|\partial(H_k)| = n_k$, $\deg_{H_k}(u_{k-1}) = \deg_{H_k}(u) = 2$ and $|V_3(H_k)| \leq (n_k - 4)/3$, whose existence is guaranteed by induction hypothesis. For each D'_i with $n_i \geq 4$ and $i \neq k$, let H_i be a spanning connected subgraph with $\Delta(H_i) \leq 3$, including $\partial D'_i$, such that $|\partial(H_i)| = n_i$, $\deg_{H_i}(u_{i-1}) = \deg_{H_i}(u_i) = 2$ and $|V_3(H_i)| \leq (n_i - 4)/3$. Note that the vertex u_k in D'_{k+1} is u'_k, and the vertex u_l in D'_l is v.

For each i with $n_i \geq 4$, let $e_i \in E(\partial D'_i) - E(C)$ be the edge incident to u_i, and let T_i be the 3-tree $H_i - e_i$. Let
\[
H = \left(\bigcup_{i=1}^{l} T_i \right) \cup \{vu_0, u_ku'_k\}.
\]

Then H is connected and has maximum degree at most 3, and moreover, $|E(H)| = n$ and $\deg_H(u) = \deg_H(v) = 2$. Since $T_i \supset D_i \cap C$ for any i, we have $H \supset C$. Hence H satisfies the condition (i), (ii) and (iii).

Now, in order to show (iv), we count the number of vertices of H which have degree 3. For any T_i with $n_i \geq 4$, we have $|V_3(T_i)| \leq \frac{n_i - 4}{3}$. Moreover, we might have $\deg_H(u_{i-1}) = 3$ for each T_i with $n_i \geq 4$. (Note that $\deg_H(u_k) = 3$ holds if and only if $\deg_{H_k}(u_k) = 3$. Thus it is counted in H_k as a vertex of degree 3 of H_k.) Therefore, by Claims 3 and 4, and Eq. (1), we have
\[
|V_3(H)| \leq \sum_{n_i \geq 4} \frac{n_i - 4}{3} + \sum_{n_i \geq 4} 1
\]
\[
= \sum_{i=1}^{l} \frac{n_i - 1}{3} - \sum_{n_i = 2}^{l} \frac{2 - 1}{3}
\]
\[
\leq \frac{1}{3}(n + l - 2) - \frac{l}{3} - 2 \cdot \frac{1}{3}
\]
\[
= \frac{n - 4}{3}.
\]

Thus, the lemma follows.

In Lemma 9, the edge-minimality of G cannot be omitted, as explained below. Let K be a maximal outerplane graph with precisely $k \geq 3$ vertices and let G be the plane graph obtained from K by adding a vertex to each finite face of K and joining it to the three vertices of the corresponding boundary. Then, by Euler’s formula, K has $k - 2$ finite faces, and hence G has $k + (k - 2) = 2k - 2 \geq 4$ vertices. Let $n = |V(G)| = 2k - 2$. The subgraph H of G with $\Delta(H) \leq 3$ including ∂G must have at least $k - 2 = \frac{4}{3} - 1$ vertices of degree 3, since $V(G) - V(K)$ is independent. In this case, all edges in ∂G are removable in G.

4. Proof of the theorems

In this section, we shall prove our main theorems.

Proof of Theorem 1. Let (G, C) be a 2-connected circuit graph with n vertices. When $n = 3$, (G, C) clearly has a 2-tree, that is, a 3-tree with no vertex of degree 3. Therefore, we may suppose that $n \geq 4$.

We may assume that (G, C) is an edge-minimal circuit graph. Then, by Lemma 9, G has a spanning connected subgraph H with n edges such that $H \supset C$, $\Delta(H) \leq 3$ and $|V_3(H)| \leq \frac{n - 4}{3}$. If $V_3(H) \neq \emptyset$, then there exists a vertex $w \in V(C)$ such that $\deg_H(w) = 3$. (For otherwise, i.e., all vertices on C have degree 2 in H, then we have $H = C$, since H is connected and $H \supset C$. This contradicts that $V_3(H) \neq \emptyset$.) Removing an edge e of H which is incident to w and contained in C, we can reduce the number of vertices of H whose degree are 3 at least by one. Therefore, we obtain a 3-tree T of G with at most $\frac{n - 4}{3} - 1 = \frac{n - 7}{3}$ vertices of degree 3, if $|V_3(H)| \geq 1$. ■
Proof of Theorem 2. Since a 3-connected graph on the sphere can be regarded as a circuit graph, we can apply Theorem 1. For the projective plane, Gao and Richter [4] proved that every 3-connected graph on the projective plane has a spanning circuit subgraph G', and hence we can apply Theorem 1 to G' directly. Proposition 4 guarantees the sharpness of the estimation for the number of vertices of degree 3 in the projective planar case. ■

In order to prove Theorem 3, we use the following fact, which is immediately obtained from Theorems 6.11 and 6.12 in [7].

Lemma 10 ([7]). Every 3-connected graph on the torus or the Klein bottle has a spanning subgraph which is a linear chain of circuit graphs.

Now we shall prove Theorem 3.

Proof of Theorem 3. Let G be a 3-connected graph with n vertices embedded in the torus or the Klein bottle. Since G is 3-connected, we have $n \geq 4$. By Lemma 10, we can put

$$G' = B_1, v_1, B_2, v_2, \ldots, v_{r-1}, B_r,$$

where each B_i is a circuit graph or K_2 and each v_i is a separating vertex of G'. If $r = 1$, then the conclusion of the theorem immediately follows from Theorem 1.

Suppose $r \geq 2$. Take a vertex v_0 in $\partial B_1 - \{v_1\}$ and a vertex v_r in $\partial B_r - \{v_{r-1}\}$. Then, the boundary $\partial G'$ consists of two paths both joining v_0 and v_r. Let P be one of these paths. We define a new graph \tilde{G} to be obtained from G' by adding a new vertex z in the infinite region so that z is adjacent to all vertices of P. Then, it is easy to check that \tilde{G} is a circuit graph of order $n + 1$ with $\partial \tilde{G} = P \cup \{v_r, zv_0\}$.

Let \tilde{G}' be an edge-minimal spanning circuit graph of \tilde{G}. Note that z is in $\partial \tilde{G}'$. By Lemma 9, \tilde{G}' has a spanning connected subgraph H with $n + 1$ edges such that $H \supset \partial \tilde{G}'$, $\deg_H(z) = 2$, $\Delta(H) \leq 3$ and $|V_3(H)| \leq \frac{(n+1) - 4}{3} = \frac{n-3}{3}$. Since z is contained in a unique cycle in H with $\deg_H(z) = 2$, it follows that $T = H - z$ is a connected spanning subgraph of G. Consequently, T is a 3-tree of G with $|V_3(T)| \leq |V_3(H)| \leq \frac{n-3}{3}$.

The sharpness of the bound has already been verified in Proposition 4. Therefore, the theorem holds. ■

References