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ew technologies for assaying biological activity on a global basis in experimental
samples, various new “-omics” signatures have been developed to predict disease progression. Such
signatures hold the potential to alter the nature of clinical management of human disease. In this article, we
describe some necessary statistical considerations needed to take these signatures from the discovery phase
to a clinically useful assay. Much of the work discussed is in the area of cancer.

© 2008 Elsevier Inc. All rights reserved.
Introduction
The explosion of high-throughput technologies available for
generating large-scale molecular-level measurements in human
populations has led to an increased interest in the discovery and
validation of molecular biomarkers in medical research. Uses of
biomarkers in medical decision making is quite varied and includes
such key features as surrogate endpoints [1], proxies for exposure [2],
early detection of disease [3], and identification of predictive and
prognostic factors in disease management [4].

A biomarker is formally defined as “a biological characteristic that
is objectively measured and evaluated as an indicator of normal
biologic processes, pathogenic processes, or pharmacologic responses
to a therapeutic intervention” [5]. In translating this definition into the
context of “omics” data (e.g., transcriptomic, proteomic, genomic) it is
difficult to identify what is meant by a “biological characteristic.”
Often when omics data are evaluated for features associated with the
medical condition of interest multiple molecular features emerge.
Combined, these features may have biomarker potential and thus the
biological characteristic of interest is in fact a set of features. This
subtle change from considering a single molecular biomarker to
considering a biomarker profile has motivated discussion on their
proper reporting [6] and governmental regulation of clinical use [7].
Ultimately, a biomarker profile should undergo the same scrutiny
required of single molecular markers.
l rights reserved.
In the following we explore current trends in biomarker research
in the context of omics data. Examples will focus primarily on cancer,
given our expertise, though we acknowledge that omics-based
biomarker research is utilized in other areas [8].

The bioinformatics approach to signature discovery and its
reporting

Studies reporting new genomic signatures are being published at
an astonishing rate in the scientific and medical literature. Before
we can assess the utility of these signatures as biomarkers we must
consider the complexity of the data analyses used to derive them.
Many of these studies use the same general statistical paradigm,
data preprocessing within and between samples to reduce experi-
mental noise, followed by statistical assessment of association of the
molecular measures with disease. Associations may be assessed by
supervised methods, in which clinical outcomes are related directly
to genomic features through statistical tests and models [9], or
unsupervised methods, in which measured elements are clustered
independent of clinical outcome and then assessed for clinical
trends [10]. Associations found are nominated as candidate
molecules for further study or experimentation. The actual statistical
test used will depend on the nature of the data generated. For
example, quantitative measures of gene expression from micro-
arrays will require a treatment different from that of the allele calls
that arise using high-throughput single-nucleotide polymorphism
arrays.

Although this general bioinformatic paradigm is consistent across
omics studies, the actual experimental design and analysis may vary
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widely within and between omics areas. With this experimental
variation in mind McShane and coauthors [6] recently proposed a set
of criteria that should be usedwhen reporting the results of biomarker
studies. Known as REMARK (Reporting Recommendations for Tumor
Marker Prognostic Studies), this document provides a detailed
description as to the minimum amount of information that should
be given in the reporting of results from tumor biomarker studies. The
REMARK guidelines can be found at the URL http://cancerdiagnosis.
nci.nih.gov/assessment/progress/remark.htm. Specifically, they list 20
items that investigators should attempt to report in any tumor
biomarker study. Included are items such as a description of the
patient population, a report of why some data are missing from the
study, and a statistical report of how cut-points are determined for
categorization of biomarkers as well as the model building procedures
used for univariate and multivariate analyses.

The REMARK guidelines are applicable to all biomarker studies and
are not specific to those arising from omics data. The use of high-
throughput data additionally provides unique challenges that need
careful attention. Consider, for instance, a gene expression study in
which the features are the expression levels of the individual spots on a
microarray so that thousands of features will be tested for association
with disease. Two cautionary flags should be immediately raised.

First, if each feature is tested independently, then the major issue
of multiple comparisons arises [11], namely that the number of
features is so large that one would expect to find many spurious
associations by chance. Practically this means that many of the
significant associations in the data are likely spurious. The study of the
effects of multiple comparisons on discovery error (false positive and
false negative rates) in omics data analysis has produced a growing
body of literature. Much work has been done to adjust p values or
p-value thresholds to control the false discovery rate while maintai-
ning power [12,13]. Though the issue of multiple comparisons is fairly
obvious when hundreds or thousands of tests are run, it should be
considered even beyond the univariate analysis phase of analysis.
Ideally preplanned analyses addressing a priori hypotheses should be
used to control discovery error rates. Given that most omics studies
are exploratory, spurious findings are best sifted out by follow-up
studies and independent validation.

The second cautionary flag should be raised for the so-called “large
P, small N” [14] problem. When there are more parameters (“P”) than
subjects (“N”) many standard statistical models and tests are no longer
applicable. In particular, it will be possible for many different
signatures to perform equally well based on classification perfor-
mance. Such an example was seen in the work of Fan and colleagues
[15], in which several breast cancer genomic signatures were found to
have strong concordance in classification of patients despite having no
overlap. Additionally, when deriving a biomarker profile, a set of N
subjects can be perfectly classified into clinically meaningful cate-
gories using only N features. Here again we see that it is of utmost
importance that biomarker profiles be validated appropriately.

Given the complexity of the data analysis from which biomarkers
are derived, either singly or as profiles, it is clear that their utility will
be determined through additional studies. In fact, the amount of
evidence supporting a biomarker’s validity is minimal at the time of
first discovery. This will be discussed further in the section entitled
Two paradigms for assessing the strength of evidence. Through
“transparent and complete reporting” [6] of biomarker discovery
studies, as promoted by the REMARK guidelines, independent groups,
whether labs or regulatory agencies, can evaluate their potential use
in clinical settings.

Predictive and prognostic biomarkers and their potential clinical
utility

In the area of disease management, two types of biomarker
signatures are of general interest: predictive and prognostic. Clinically,
a prognostic biomarker is one that can separate a diseased population
into groups of similar prognosis, while a predictive factor is one that
can identify a subpopulation of patients that is more likely to benefit
from a certain treatment. These two concepts are related, since a
prognostic marker may also be predictive, though their distinction is
important for experimental design, analysis, reporting, and validation.
In statistical jargon, prognostic factors involve finding important main
effects, while predictive factors are those that represent an interaction
between the treatment and the factor. While there are similarities in
the statistical techniques used to determine if biomarkers are
prognostic or predictive, in practice they will be used quite differently.
An important point is that if the standard treatment for a disease
changes, a predictive biomarker would have to be revalidated in the
context of the new treatment.

For the sake of illustration, consider the breast cancer genomic
studies conducted by van’t Veer et al. [16] and Paik et al. [17]. In the
gene expression study by van’t Veer et al. [16], a series of 98 breast
cancers was profiled using a 25,000-gene microarray, which was then
used to develop a 70-gene signature that is prognostic for recurrence
of aggressive breast cancer. In the Paik et al. [17] study, investigators
started with a set of known cancer-related genes and then used a
reverse transcriptase–polymerase chain reaction assay to quantify
gene expression. From that initial set of genes, they selected a set of 21
genes that associated significantly with likelihood of distal recurrence.
Using this 21-gene signature they were able to predict patient
recurrence risk as falling into one of three categories (low, medium,
and high). Since the population of patients in the study had no positive
lymph nodes and had ER-positive breast cancer, this 21-gene
signature was hailed as a breakthrough in the management of this
particular patient population.

Both the van’t Veer and the Paik gene signatures were discovered
to be prognostic signatures but are currently being used in clinical
trials to test their utility as predictive markers for determining
treatment in early stage breast cancer populations. Coordinated by the
European Organisation for Research and Treatment of Cancer, the
van’t Veer signature is being tested in a phase III clinical trial entitled
MINDACT (Microarray in Node-Negative Disease May Avoid Chemo-
therapy) [18]. As described in their title, they hope that their 70-gene
signature will identify women who will benefit from chemotherapy
among those with lymph-node-negative disease. Sponsored by the
National Cancer Institute the 21-gene signature of Paik et al. is being
tested in the Trial Assigning Individualized Options for Treatment
(Rx), or TAILORx [19]. Again, they are hoping that their gene signature
will help women with early stage breast cancer to make decisions
about their treatment, specifically chemotherapy.

Although the above-mentioned gene signatures are promising, for
most studies there are issues in the practical use of biomarker profiles
as either prognostic or predictive factors. First, in many of the studies
in which candidate biomarker profiles are generated, samples are
collected as convenience samples rather than through a randomized
protocol. This is often because of limited sample availability for
retrospective study but may result in signatures that simply
recapitulate standard prognostic schemes or may be subject to
complicated confounding patterns [20]. We therefore suggest that
omics biomarker discovery include models that adjust for other
known predictive or prognostic factors as much as possible. For
instance, clinical parameters can be included in univariate ANOVA
models run in place of t tests for per-feature association. Additionally,
candidate biomarkers could be tested with other known prognostic
factors in survival analysis models. In this way we can be assured that
the candidate biomarker will provide information above and beyond
that which is already known by standard prognostic factors. Ransohoff
[21] argues that hidden and hardwired biases in the experiment will
always exist (e.g., sample handling/preparation/processing). Conse-
quently, one should proceed very cautiously when finding associa-
tions in the study.
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Table 2
The Levels of Evidence

Level Experimental evidence

1 (a) Data are from a randomized clinical trial with sufficiently high follow-up or
(b) Data are from a meta-analysis of several randomized clinical trials in which
there is strong evidence of homogeneity across studies

2 (a) Data are from cohort studies (either prospectively collectedwith poor follow-
up or retrospectively collected in untreated subjects) or
(b) Data are from a meta-analysis of such studies in which there is strong
evidence of homogeneity across studies

3 (a) Data are from ecologic studies or
(b) Data are from well-designed case–control studies

4 Data are from poor-quality cohort, case–control, or case–series studies
5 Data are from biologically oriented findings or “wet-lab” experiments
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A second issue is the notion of validating on an independent
dataset. What is typically done is to find a predictive gene expression
signature on a training dataset and then test the classifier on a test
dataset. In initial gene expression experiments, both the test and the
training data were used from the same study. More recently, people
have started using data from one study as the training dataset and
those from a second study as a testing dataset. One example of this is
given in [22], in which the investigators were interested in developing
a gene expression profile that predicted survival in lung cancer
patients. After finding a set of genes that were associated with
survival, the investigators then validated their signature based on a
separate collection of lung adenocarcinomas collected at a different
institution [23].

Most major journals now require that high-throughput data be
made publicly available upon publication of the article. Therefore it
should become increasingly feasible to use publicly available omics
data, generated by other investigators studying a related problem, as a
method of validating biomarker profiles. Results that are reproducible
across multiple studies show stronger evidence of a true association
and thus havemore potential for clinical utility. This is an area that our
group has been fairly active in from both a methodological and a
scientific viewpoint [24,25].

Two paradigms for assessing the strength of evidence

For biomarkers undergoing validation studies, let us consider the
strength of evidence provided by various study designs. There are two
such paradigms that provide a standard by which to gauge the
strength of evidence supporting a biomarker’s utility. Ultimately,
before its use in a clinical setting, a biomarker must be validated using
a more classical clinical trials-based paradigm. The five phases of
biomarker development set forth by researchers of the Early Detection
Research Network [26] mimic this clinical-trials process. Alternatively,
the Levels of Evidence from the Oxford Centre for Evidence Based
Medicine [27] provides a ranking of experimental types according to
the generalizability of their results.

The paradigm set forth by investigators in the Early Detection
Research Network, funded by the National Cancer Institute [26],
describes a series of five phases for developing biomarkers (see
Table 1), focusing mainly on biomarkers for screening. The five phases
begin with exploratory research (phase 1) and progress through
development of a clinically useful assay (phase 2), timing of optimal
screening period in the disease progression (phase 3), study of
biomarker characteristics (phase 4), and assessment of reduced
disease burden in the population (phase 5).
Table 1
The five phases of biomarker development for use as a screening tool

Phase Goals/aims Experimentation Sample details

1 Exploratory; nominate
and rank candidate
biomarker profiles

Preclinical study comparing
diseased and nondiseased
subjects

Be aware of bias
from convenience
sampling

2 Develop an assay with
clinically reproducible
results

Test a noninvasive clinical
assay developed from a
candidate biomarker profile

Sample population
should represent
the target
population

3 Optimize time interval in
which to screen for
biomarker

Screen for biomarker in
longitudinal study

Collect longitudinal
samples from target
population

4 Determine operating
characteristics of the
biomarker as a screening
device

Prospective study design
testing the screening ability
of the biomarker

Sample population
should be the target
population

5 Assess whether screening
reduces the burden of
disease

Prospective study assessing
survival in the screened vs
the unscreened population

Sample population
should be the target
population
While the five phases are needed for a screening biomarker, a
three-phase period of development, which modifies the original
framework, has been suggested for biomarkers that will serve as
prognostic or diagnostic markers (S. Srivastava, personal communica-
tion). What is key to note here is that many of omics data that are used
for the generation of candidate biomarker profiles come from data
collected in phase 1 of this paradigm. Thus, there is a long road to
travel from the reporting of these initial findings, which have
appeared in high-profile journals such as Science or Nature, to the
development of an assay that will be clinically useful.

The Levels of Evidence [27] paradigm originated from the literature
on clinical trials. They use several criteria for ranking the validity of
evidence about preventive interventions. They were originally applied
to making recommendations about antithrombotic medications but
have been used more generally in evidence-based medicine. The
scoring of levels of evidence is from 1 to 5, 1 being the strongest level
of evidence and 5 the weakest (see Table 2).

If we were to apply the criteria to the studies generating the
genomic profiles, most would rate as evidence of level 3 or weaker
(levels 3, 4, and 5). There are several reasons for this, primarily
resulting from poor clinical annotation and convenience sampling.
Additionally, omics studies are often underpowered for finding
biomarker profiles associated with clinical parameters owing to
limited sample size. These limitations again highlight the need for
extensive experimentation before an omics-based signature can
become a practically useful clinical assay. Again, examples of studies
that would rate favorably in terms of levels of evidence are the
MINDACT and TAILORx trials that are currently in progress.

Conclusion

We approach the future of bioinformatics in clinical studies
designed to identify new biomarkers with both enthusiasm and
caution. The enthusiasm is due to the explosion in new technologies
and assays that will allow for potentially high-throughput measure-
ment of different types of biochemical activity. While microarrays
for gene expression are currently the most common, new micro-
array-based technologies for assessing copy number variation and
single-nucleotide polymorphisms are starting to gain more wide-
spread use in clinical research as well. Also, there is a lot of interest
in using proteomics and metabolomics to define signatures for
predicting disease progression. It is highly likely that there are
emerging and new technologies that will also gain popularity in the
future.

The caution arises from the fact that analysis and interpretation of
the high-dimensional data are subject to many potential pitfalls.
Statistically, the issues that are problematic have been well docu-
mented in the literature; we have touched on them here. More
fundamental are issues of sample collection, study design, and
phenotypical heterogeneity. These pitfalls limit the strength of
evidence demonstrated by most bioinformatic findings currently.
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While attempting to address these issues better, it will also be
important to view signature development as being no different from
any other biomarker. Thus, multiple hurdles will need to be cleared
until the signature will be ready for primetime.
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