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Soil salinity is a major constraint to agriculture. To improve

salinity tolerance of crops, various traits can be incorporated,

including ion exclusion, osmotic tolerance and tissue tolerance.

We review the roles of a range of genes involved in salt tolerance

traits. Different tissues and cells are adapted for specific and

often diverse function, so it is important to express the genes in

specific cell-types and to pyramid a range of traits. Modern

biotechnology (marker-assisted selection or genetic

engineering) needs to be increasingly used to introduce the

correct combination of genes into elite crop cultivars.

Importantly, the effects of introduced genes need to be

evaluated in the field to determine their effect on salinity

tolerance and yield improvement.
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Introduction
Soil salinity is a major environmental constraint to crop

production, affecting an estimated 45 million hectares

of irrigated land, and is expected to increase due to

global climate changes and as a consequence of many

irrigation practices [1,2]. The deleterious effects of salt

stress on agricultural yield are significant, mainly

because crops exhibit slower growth rates, reduced

tillering and, over months, reproductive development

is affected [2]. The ultimate aim of salinity tolerance
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research is to increase the ability of plants to maintain

growth and productivity in saline soils relative to their

growth in non-saline soils — that is, to reduce effects of

salinity on growth and yield. A range of biotechnologies

can facilitate this by speeding gene (and allele) dis-

covery and speeding the delivery of crops with

improved salt tolerance (using both marker-assisted

selection and genetic modification).

Growth is reduced by salinity via several quite distinct

processes, which are related either to the accumulation of

salt in the shoot, or which are independent of shoot salt

accumulation. These can be experimentally distin-

guished by measuring effects immediately (within min-

utes to a few days) upon addition of salt (before there has

been time for salt to accumulate in the shoot) or measured

after much longer times (several days to weeks), after

there has been time for salt to accumulate in the shoot and

affect shoot growth. Within minutes of application of salt

in an experimental system, there are several rapid

responses occurring. Because of their rapid onset, these

effects are clearly independent of the accumulation of

salts in the shoot. The two best-documented effects are

stomatal closure, with concomitant increases in leaf

temperature [3]; and inhibition of shoot elongation

[4,5]. Hence, the primary consequence is the overall

reduction in production of new leaves and a significant

reduction in shoot growth. This was termed the ‘osmotic

phase’ by Munns and Tester [2], but there is evidence

consistent with it not being due just to the effect of salt on

water potential [4]. It is perhaps better described as a

‘shoot salt accumulation independent effect’.

In the second phase of plant responses to salinity, there is

a slower onset inhibition of growth (occurring over several

days to weeks), which is due to accumulation over time of

salt, especially in the older leaves, causing the premature

senescence of those older leaves. This is termed the ‘ionic

phase’ of salt toxicity. This is due to both the accumu-

lation of salts, and the inability of the shoot to tolerate the

salt that has accumulated to toxic concentrations [2].

Mechanisms of salinity tolerance — overview
Just as salinity has many different effects on a plant, so

there are also many mechanisms for plants to tolerate this

stress. These mechanisms can be classified into three

main categories: firstly, osmotic tolerance, which is

regulated by long distance signals that reduce shoot

growth and is triggered before shoot Na+ accumulation;

secondly, ion exclusion, where Na+ and Cl� transport

processes in roots reduce the accumulation of toxic con-

centrations of Na+ and Cl� within leaves; and finally,
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The three main mechanisms of salinity tolerance in a crop plant. Tissue tolerance, where high salt concentrations are found in leaves but are

compartmentalized at the cellular and intracellular level (especially in the vacuole), a process involving ion transporters, proton pumps and synthesis of

compatible solutes. Osmotic tolerance, which is related to minimizing the effects on the reduction of shoot growth, and may be related to as yet

unknown sensing and signaling mechanisms. Ion exclusion, where Na+ and Cl� transport processes, predominantly in roots, prevent the accumulation

of toxic concentrations of Na+ and Cl� within leaves. Mechanisms may include retrieval of Na+ from the xylem, compartmentation of ions in vacuoles of

cortical cells and/or efflux of ions back to the soil.
tissue tolerance, where high salt concentrations are found

in leaves but are compartmentalized at the cellular and

intracellular level (especially in the vacuole) (Figure 1).

Very little, if anything, is known about tolerance to the

‘osmotic phase’. This process must involve rapid, long-

distance signaling, perhaps via processes such as ROS

waves [6�], Ca2+ waves (Simon Gilroy, personal communi-

cation), or even long distance electrical signaling [7].

Differences in osmotic tolerance may be due to differ-

ences in this long-distance signaling, or they may involve

differences in the initial perception of the salt or differ-

ences in the response to the signals. This is still an area of

salinity research with many unknowns, and further

research is required to obtain a better understanding of

osmotic tolerance (Figure 1).

Much more is known about the ‘ionic phase’, which is due

to the accumulation of Na+ and Cl� in the leaf blade (a

trait that is relatively easy to phenotype). Plants can

reduce toxicity during the ionic phase by reducing
Current Opinion in Biotechnology 2014, 26:115–124 
accumulation of toxic ions in the leaf blades (Na+ and

Cl� exclusion), and/or by increasing their ability to tol-

erate the salts that they have failed to exclude from the

shoot, such as by compartmentation into vacuoles (tissue

tolerance) (Figure 1). Both of these processes involve a

range of transporters and their controllers at both plasma

membrane and tonoplast [8,9]. Tissue tolerance, invol-

ving the removal of Na+ from the cytosol and compart-

mentalizing it in the vacuole before the ion has a

detrimental effect on cellular processes, is also likely to

require the synthesis of compatible solutes and higher

level controls to coordinate transport and biochemical

processes, thus having a role in both osmoprotection

and osmotic adjustment [2,10] (Figure 1).

Suffice to say, it is clear from this brief overview that there

are many mechanisms of salinity tolerance, and many of

these can be present in a particular plant. To date, there is

neither evidence that these mechanisms are mutually

exclusive (i.e. that, e.g., ion exclusion prevents tolerance

to the ‘osmotic phase’ of salt toxicity), nor that a particular
www.sciencedirect.com
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plant is committed to only one strategy (e.g. a plant may

have ion exclusion as its primary tolerance mechanism at

moderate salinity, but then has tissue tolerance as its main

tolerance mechanism when the exclusion processes are

‘swamped’ at high salinity). It is possible that some

tolerance mechanisms are more effective in particular

circumstances. For example, Na+ exclusion may be more

effective in conditions of higher salinity (e.g. see [11��]),
whereas ‘osmotic tolerance’ may be more important in

moderately saline conditions. Interactions with other

abiotic stresses, such as low water availability, are also

likely to be important.

As such, it is clear that salinity tolerance can be complex

and involve many genes, as has been pointed out for several

decades — for example, programs designed to specifically

introgress salinity tolerance using traditional breeding

methods appear to have frequently failed (as measured

by the apparent absence of commercial products), which

has usually been attributed to the multigenic nature of

salinity tolerance [12,13]. It is therefore necessary not to

study the molecular genetic basis of salinity tolerance as a

particular trait in itself, but to study the mechanisms of

traits that are hypothesized to contribute to salinity toler-

ance. The most intensively studied of these traits is exclu-

sion of Na+ from leaf blades, mainly because it is relatively

straightforward to phenotype. Focusing on this has led to

significant increases in salinity tolerance, as measured by

yield in the field, at least in durum wheat (which has poor

Na+ exclusion) when grown in highly saline sites where

yield has already been greatly reduced [11��,14].

Differences in traits must then be correlated with differ-

ences in tolerance, as measured by performance in the

field — yield in a saline site relative to yield in a less saline

site. Traits can be measured in any system that enables

the trait to be quantified, using necessary experimental

manipulations, such as described earlier to access the

‘osmotic tolerance’ trait — key is to test the relevance

of the trait being measured with salinity tolerance in field

conditions.

Candidate genes likely to contribute to
tolerance traits in crops
There are numerous candidate genes that might be use-

fully used to transform crops to improve salinity tolerance.

We focus in this review on the three main traits that are

proposed by Munns and Tester [2] to be the primary

mechanisms for salinity tolerance — shoot ion exclusion,

shoot tissue tolerance and ‘osmotic’ tolerance — and

propose genes that might contribute to each of these

traits. A particular gene (or gene family) may well con-

tribute to more than one trait, just as one trait can be

conferred by more than one gene. We discuss a particular

gene family in the section where it is likely to be making a

significant contribution — this does not preclude mem-

bers of this gene family also contributing to other traits,
www.sciencedirect.com 
and we try to acknowledge this in the text below. We

have taken this approach to try to encourage a focus more

on the traits that contribute to salinity tolerance, rather

than on the traditional functional categorizations of gene

families. This is an attempt to come more ‘from the plant’s

perspective’ of functional effects of the genes at the whole

plant level, rather than categorizing genes based on the

immediate activity of their encoded proteins.

� Ion exclusion

The high affinity potassium transporter (HKT) gene family

[2,15–22] and the salt overly sensitive (SOS) pathway

[23–29] have both been implicated in having an

important role in regulating Na+ transport within a

plant. Manipulation of the expression of these genes has

been frequently reported to alter accumulation of Na+ in

the shoot (Table 1 and Supplementary Table 1).

However, to date the application of this knowledge

into generating successful crop plants in the field has

been limited. Of the two families, the HKT1 group of

HKTs have perhaps the greatest potential for improving

the salinity tolerance of crops, frequently appearing as

the most likely candidate for quantitative trait loci when

phenotyping for salt tolerance and/or Na+ exclusion in

mutant and mapping populations [30–33]. A marker

assisted selection (MAS) approach was used successfully

to incorporate novel HKT alleles from Triticum mono-
coccum to improve the salinity tolerance of durum wheat

[11��,14]. In contrast, transgenic approaches to improve

salinity tolerance using HKT1s have been only moder-

ately successful (Table 1 and Supplementary Table 1).

An HKT2 has been reported to increase salinity

tolerance, although not through Na+ exclusion [34�].
These genes appear to require cell type specific

expression to be effective (Table 1 and Supplementary

Table 1) [35]. If stress inducible and cell type specific

expression of these genes can be realized in an effective

way in crops, the potential for improving crop salinity

tolerance through ion exclusion is possible.

� Shoot tissue tolerance

To date, three main mechanisms contributing to shoot

tissue tolerance have been targeted: accumulation of

Na+ in the vacuole, synthesis of compatible solutes and

production of enzymes catalyzing detoxification of

reactive oxygen species (Table 1 and Supplementary

Table 2). Increasing the abundance of vacuolar Na+/H+

antiporters (NHX), vacuolar H+ pyrophosphatases (e.g.

AVP1), proteins involved in the synthesis of compa-

tible solutes (such as proline and glycinebetaine) and

enzymes responsible for the detoxification of reactive

oxygen species have had differing degrees of success in

improving crop salinity tolerance (Table 1 and

Supplementary Table 2). Although there is still

uncertainty about the primary ions being transported

by NHX proteins in planta [36,37,38�] (and the

potential role of these proteins in K+ transport needs
Current Opinion in Biotechnology 2014, 26:115–124
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Table 1

Genes that have been overexpressed to improve specific salinity tolerance traits in crops

Transgene Gene isolated from Promoters used Transgenic

crop

Reported transgenic plant

performance during salt stress

Ion exclusion (transporters)

Na+/H+ antiporter (SOS1) Arabidopsis Constitutive Tobacco Altered shoot and root accumulation

of Na+ and K+

Na+/H+ antiporter (SOD2) Salicornia brachiata Stress inducible Rice Improved biomass production

Na+ transporter (HKT subfamily 1) Yeast ABA responsive Barley Improved germination

Na+/K+ transporter (HKT subfamily 2) Barley

Na+ ATPase (ENA) Physcomitrella patens

Tissue tolerance (transporters/proton pumps)

Na+/H+ antiporter (NHX) Arabidopsis Constitutive Buckwheat Improved shoot and root biomass

production

Na+/H+ antiporter (nhaA) Atriplex gmelini Cotton Altered Na+ and K+ accumulation

Vacuolar H+ pyrophosphatase Rice Tomato Increased proline content

(vacuolar H+-PPase) Cotton Poplar

Hordeum brevisubulatum Kiwifruit

Pennisetum glaucum Fescue

Aeluropus littoralis Rice

Salicornia brachiata Wheat

Salsola soda Brassica

Malus domestica Bentgrass

E. coli Sugar beet

Alfalfa

Tobacco

Apple

Tissue tolerance (Compatible solutes)

Trehalose-6-phosphate

synthase (TPS)

Yeast Constitutive Alfalfa Increased compatible solute

accumulation

Trehalose-6-phosphate

phosphatase (TPP)

Rice Stress inducible Tomato Improved plant survival

Mannitol-1-phosphate

dehydrogenase (mt1D)

E. coli Shoot expression Rice Increased growth

L-myo-Inositol-1-phosphase

synthase (MIP)

Porteresia coarctata Protein often

targeted to

chloroplast

Tobacco Reduced wilting

Myo-inositol O-methyltransferase Mesembryanthemum

crystallinum

Wheat Maintenance of photosynthetic

efficiency

Betaine aldehyde dehydrogenase

(BADH)

Spinach Sweet potato

Choline oxidase/dehydrogenase

(codA/betA)

Moth bean Wheat

D1-pyrroline-5-carboxylate

synthetase (P5CS)

Potato

Tissue tolerance (Degradation of reactive oxygen species)

Ascorbate peroxidase (APX) Arabidopsis Constitutive Tobacco Maintenance of photosynthetic

efficiency

Glutathione S-transferase (GST) Tomato Protein often

targeted to

chloroplast or

cytosol

Rice Maintenance of growth

Superoxide dismutase

monodehydroascorbate

reductase (MDR)

Tobacco Improved maintenance of

photosynthesis

Catalase Mangrove Improved germination

Pea Improved growth of seedlings

E. coli Increased antioxidant enzyme

activity

Signaling/regulatory pathways

Calcineurin-B like interacting

protein kinases (CIPK)

Arabidopsis Constitutive Barley Altered Na+, K+ and Cl�

accumulation

Mitogen-activated

protein kinase (MAPK)

Chickpea Tobacco Improved biomass production

Current Opinion in Biotechnology 2014, 26:115–124 www.sciencedirect.com
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Table 1 (Continued )

Transgene Gene isolated from Promoters used Transgenic

crop

Reported transgenic plant

performance during salt stress

Sucrose nonfermenting1-1

type protein kinase

Rice Rice Reduced leaf senescence

Apple Tomato

Cotton

Tomato

Transcription factors

DREB Pennisetum glaucum Constitutive and

inducible

Tobacco Improved germination

AP2/ERF Cotton Wheat Improved biomass

MYB Soybean Tomato Improved chlorophyll retention

NAC Tomato Rice Altered Na+ accumulation

Rice

Chrysanthemum

Wheat
to be kept in mind [38�]), and a new role has recently

been proposed for AVP1 [39�], salinity tolerant plants

appear to have been developed by the overexpression

of NHX and vacuolar pyrophosphatase genes (Table 1

and Supplementary Table 2). While approaches to

improve the tissue tolerance of crops through increas-

ing compatible solutes (Supplementary Table 2) and

enzymes involved in ROS metabolism (Table 1 and

Supplementary Table 2) also appear to have been

successful, there are often reports of low performance

by the transgenic lines in low stress environments [40–
45]. Such negative effects might be avoided by use of

tightly regulated stress-inducible promoters [41,46–
49].

With a large number of papers reporting success in

increasing plant salinity tolerance by improving shoot

tissue tolerance (Table 1 and Supplementary Table 2)

in the greenhouse or growth room, particularly by improv-

ing accumulation of Na+ in vacuoles, it might be tempting

to suggest this is the best mechanism for improving crop

performance. However, there is, as yet, insufficient quan-

titative data and field trial data available to be able to draw

such a conclusion. Exclusion of ions from the shoot has

frequently been shown to be an important salt tolerance

mechanism. MAS for improved salinity tolerance through

improved exclusion has been successful in the field

[11��,14]. The limited success to date of transgenic

manipulations to increase ion exclusion, for example

using the HKT gene family, is more likely to be due to

the inability to express important exclusion genes in a cell

type specific manner rather than a reflection of either the

candidate gene or the effectiveness of the tolerance

mechanism. HKT1 proteins are reported to affect salinity

tolerance by retrieving Na+ from the xylem in roots

[16,17,19–22]. However, it is often the case that genes

encoding transporters involved in the transport of Na+

across the plasma membrane cannot be constitutively

overexpressed, unlike those genes encoding transporters

involved in ion tissue tolerance that transport Na+ across
www.sciencedirect.com 
the vacuole. The cell type in which the transport of Na+

across the plasma membrane occurs has a fundamental

effect on the overall accumulation in the whole plant [9].

To retrieve Na+ from the root xylem, enhanced Na+

influx into stelar cells are required — a phenotype that

is opposite to that desired in root epidermal cells, where

Na+ influx should be minimized. Therefore successful

manipulation of transporter genes involved in ion exclu-

sion processes requires a cell type-specific expression,

which is not yet possible in most crops.

� Osmotic tolerance

We are currently not aware of any specific candidate

genes for osmotic tolerance, although some genes

highlighted above may be involved. Differences in

osmotic tolerance are likely to involve long-distance

signaling, control of cell cycle and processes involving

perception of signals from the roots in the shoots. Given

crop plants will usually be exposed to low levels of

salinity throughout the growing season, or levels of

salinity that start low but which build up toward the

end of the growing season, genes encoding for osmotic

tolerance traits have the potential to have a significantly

larger impact on the salinity tolerance of crops than

those involved in ion exclusion. The introgression of

TmHKT1;5-A from T. monococcum into the durum

wheat, Tamaroi, resulted in a significant improvement

in grain yield in salt stressed, field grown durum by

increasing its ion exclusion, but only in plots with

highly saline soils [11��,14]. However, the yield of

Tamaroi with TmHKT1;5-A was similar to that

observed in the Tamaroi cultivar without the intro-

gressed gene, under low and moderate saline con-

ditions [11��,14] suggesting that osmotic stress was

having a greater effect on the end yield of these plants

growing in low to moderate salinity, than ionic stress.

The identification of genes for osmotic tolerance

should therefore be a priority for improving salinity

tolerance of crops growing in low to moderate saline

soils.
Current Opinion in Biotechnology 2014, 26:115–124
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� Signaling/regulatory pathways

An attractive alternative to manipulating specific

salinity stress tolerance mechanisms is to adjust the

detection, signaling and regulatory pathways involved

in global salinity tolerance. Potentially altering one

component of these pathways can have significant

secondary effects for downstream processes, such as ion

exclusion, tissue tolerance and osmotic tolerance. ROS

signaling has recently been shown to be important for

regulating plant responses to many abiotic stresses

[6�,50�], and is involved controlling shoot Na+

accumulation by regulating vasculature Na+ concen-

trations [51�]. Many aspects of plant growth and

development are mediated by Ca2+. Environmental

cues are perceived by receptors on the cell membrane,

activating a Ca2+ signaling cascade, resulting in the

regulation of gene expression and protein activities

[23,24,52–54]. Overexpression of genes encoding

proteins in Ca2+ signaling pathways have been shown

to improve the growth of crop plants, such as rice,

apple, barley, tobacco and tomato during salt stress

(Table 1 and Supplementary Table 3).

Similarly, overexpression of transcription factors as a

viable way of improving crop salinity tolerance has also

been described numerous times in model species, such

as Arabidopsis [55–58], and to a lesser extent in crops,

such as rice, wheat, tomato and alfalfa (Table 1 and

Supplementary Table 3). As key transcription factors

may regulate the induction and/or repression of a range

of salinity tolerance genes and mechanisms, it is

tempting to suggest that manipulation of transcription

factors may result in the greatest effect on crop salinity

tolerance with the least amount of genetic modifi-

cation. However, as for genes encoding compatible

solute synthesis, yield penalties can often be apparent

in low stress environments when transcription factors

are constitutively expressed [59–61], presumably due

to the effects of the transcription factors on a wide

range of processes. Therefore, while these genes

maybe have the potential to have the greatest effect

on improving salinity tolerance, care should be taken in

manipulating the expression levels of transcription

factors. Use of stress inducible promoters may address

many of these issues.

It is important to recognize that different tissues and cells

in a plant are adapted for specific and often very different

purposes. It is therefore not surprising that the expression

levels of genes will be different from tissue to tissue and

cell to cell, depending on the cell’s function — as an

obvious example, genes involved in photosynthesis will

not normally be expressed in cells not exposed to light, for

example roots. Care must therefore be taken in the choice

of promoter used to drive the expression of salinity

tolerance transgenes, so as not to disrupt or negatively

affect the plant phenotype. There exist many examples

where the constitutive expression of genes encoding
Current Opinion in Biotechnology 2014, 26:115–124 
transcription factors, ion transporters or proteins involved

in compatible solute synthesis can lead to undesirable

phenotypes, especially under non-stressed conditions

[35,40–45,47,55,59–62]. However, when these genes are

controlled by a promoter that is either cell type specific

and/or stress inducible or have a tag on the protein that

directs it to the correct cellular organelle, then the

desired salt tolerant phenotype can be observed

[35,40,42,48,49,55,63–68]. It is therefore imperative that

promoters of genes which allow cell type and/or stress

inducible expression are identified for controlling the

expression of genes which can be used to obtain the

desired phenotype. The gene is only half the story.

It is also important to recognize that altering expression of

a gene is only one way to alter the protein function. In

addition to allelic variation of the primary protein

sequence, post-translational modifications that activate

or suppress the protein’s activity along with the location

of the protein within a cell are also important factors that

can be modified to alter a plant’s salinity tolerance

[24,69–71]. The calcium signaling pathways, which

involve protein kinases to phosphorylate key proteins

involved in salinity tolerance (such as SOS1)

[23,24,26,27,52,72,73�], are a good example of where

post-translation modifications can enable a plant to

respond quickly (and reversibly) to environmental

changes.

It must be made clear that the choice of salinity tolerance

mechanism to manipulate in crops plants will be largely

dependent on the underlying salt tolerance mechanisms

within individual crop species. For example, barley has

greater salinity tolerance than wheat, and a greater ability

to accumulate high concentrations of Na+ in its shoot

(higher tissue tolerance). Barley may therefore benefit

from the addition of, for example, osmotic tolerance

mechanisms, rather than improved ion exclusion. How-

ever, transferring the tissue tolerance mechanisms of

barley into crops such as wheat and rice may significantly

increase salinity tolerance of these crops. Again, incorp-

oration of osmotic tolerance and improved signaling traits

may also benefit these species. Unfortunately, there is not

enough data available to make critical comments on

which salinity tolerance strategy would work best for a

certain crop. Proper field evaluations of crops developed

by MAS or transgenic approaches are now required to

determine the effect of the modification on crop yield and

the best strategy to improve the salinity tolerance of

specific crop species. To date very few studies have been

able to examine the effect of modifying salinity tolerance

traits on the yield of field grown crop plants, and assess

their yield penalty in non-saline soils.

Delivery to crops
Discoveries of mechanisms of salinity tolerance now

need to be applied to crops to improve crop performance
www.sciencedirect.com
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in the field. One way that this can be done is by using

conventional breeding, accelerated by the use of mol-

ecular markers linked to the tolerance trait being intro-

gressed, MAS. The effectiveness of the research outputs

in salinity tolerance can be observed in the newly devel-

oped durum wheat lines with TmHKT1;5-A (a gene

conferring Na+ exclusion) introgressed by MAS, which

showed a yield increase of 25% when compared to control

wheat, at least when grown in saline fields [11��,14].

Several studies evaluated natural allelic variants of

HKT genes in response to salinity in Arabidopsis
[33,74�], rice [32,75�,76,77] and barley [78]. This allelic

variation in the gene of interest can provide both a novel

source of genetic material for MAS, and can also be used

to design an easy, cheap molecular marker, thus provid-

ing a perfect marker for salinity tolerance — or, at least,

for a trait contributing to salinity tolerance. If variation in

a particular gene is insufficient within the relevant germ-

plasm or if the gene is only found in a model plant species

[79�], then alteration of the trait using GM technologies

can be deployed. It is essential that those experiments

involving GM plants have not only greenhouse evalu-

ation of the salinity tolerance of the plant but field

evaluation as well. A plant that shows salinity tolerant

in the greenhouse may not necessarily have improved

grain yield in the field. Only a few studies (e.g. [80��,81])

have evaluated the performance of GM plants for any

abiotic stress tolerance mechanism in the field. It also

must be taken into consideration that a GM approach for

edible crops may not be desirable due to public percep-

tion; therefore the use of biotechnology techniques that

will not generate a GM crop may often be more appro-

priate.

These emerging biotechnologies include ones where

plants go through a GM phase, then have the GM

construct segregated back out. Designer nuclease-

based approaches to alter genetic composition, such

as Transcription Activator-Like Effector Nucleases

(TALEN) [82–85], are reported to increase the muta-

genesis efficiency of endogenous targets by specifying

their binding sites with single nucleotide precision [85].

The potential promise of this strategy was tested in rice

to enhance disease resistance [86]. Another emerging

genome engineering tool is the CRISPR/Cas system

(short for Clustered Regularly Interspersed Short Palin-

dromic Repeats (CRISPR)/CRISPR-associated (Cas))

[87,88]. Several groups are optimizing and exploring

the potential of Cas9 RNA-guided endonuclease sys-

tem in human cells [89,90] and zebra fish [91]. These

approaches are examples of new technologies that give

promise to the future of crop biotechnology, whilst

avoiding the presence of problematic transgenes or

antibiotic markers.

To conclude, salinity tolerance is too complex to be easily

amenable to improvement through selection as a trait in
www.sciencedirect.com 
itself, but traits that are hypothesized to contribute to

salinity tolerance are more genetically tractable and genes

underlying these can be discovered using molecular

genetics tools and genomics. Alterations in crops can then

be made using both marker-assisted selection and genetic

modification, and the relevance of such traits on whole

plant salinity tolerance can then be tested, as measured by

yield maintenance in saline conditions.
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