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ABSTRACT 

We consider maps in the tangent family for which the asymptotic values are eventually mapped 
onto poles. For such functions the Julia set .I@) = a,. We prove that for almost all z E J(f) the limit 
set W(Z) is the post-singular set andf is non-ergodic on /cf). We also prove that for suchf does not 
exist af-invariant measure absolutely continuous with respect to the Lebesgue measure finite on 
compact subsets of C. 

1. INTRODUCTION 

The Futou set 1”(j) of a meromorphic functionf : @ + c is defined in exactly 
the same manner as for rational functions; F(f) is the set of points z E C such 
that all the iterates are defined and form a normal family on a neighborhood 
of z. The Julia set J(f) is the complement of F(f) in a=. Thus, F(f) is open, Jcf) 
is closed, F(j) is completely invariant while f-‘(J(f)) = J(j) \ {CQ} and 

f(JCf) \ {WI) = Jcf). F or a general description of the dynamics of mer- 
omorphic functions see e.g. [I]. We would however like to note that it easily 
follows from Monte12 criterion of normality that iff : C -+ c has at least one 
pole which is not an omitted value then 

(1.1) Jcf) = Uof-w - 

The post-singular set off i.e. the closure in c of the forward orbit of the set of 
singularities off-‘, is denoted by P(j). If z is a point which belongs to the do- 
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main of the definition of each iterate off we denote by W(Z) the set of cluster 
points of the sequence Cfn(~))nEN in a=. Let dist,(z, A) denote the distance of 
the point z to the set A c c with respect to the chordal metric x. In ([3], The- 
orem 6.2) there is proved a very important characterization. 

Theorem 1.1. If f is a rational function of degree 2 2 or a transcendental mer- 
omorphic function then at least one of the following statements holds: 

(i) lim,,, distxCf”(z), Pdf)) = 0 for almost all z E Jcf); 
(ii) J(f) = candfor all A c cofpositive measure the set {n E N : f n(z) E A} 

is infinite for almost all z E a=. 

It may be difficult to decide which of statements (i) or (ii) applies to a given 
meromorphic function. It can also occur that both statements hold for a mer- 
omorphic function. Note that in the case (ii) f is ergodic and recurrent. For 
example if the set of singularities of f-l is finite and each singularity is pre- 
periodic but not periodic then statement (ii) holds for f and W(Z) = c for al- 
most all z E C . The more general results giving sufficient conditions for maps 
to be ergodic is proved in [6] (see Theorem 1, p.133). 

We consider a holomorphic family 

F = cfx(z) = Xtanz, X E UZ*,z E UZ}, 

where (6” := @ - {0}, which is called the tangent family. The singular sets S’, 
contain exactly two asymptotic values, the omitted values &Xi. The pre-image 
of a punctured neighborhood of Xi (resp. -Xi) is an upper (resp. lower) half 
plane. It follows from the symmetry of the tangent function that the forward 
orbits of these asymptotic values are symmetric with respect to origin. 

To simplify notation we write Fx, Jx, WA for objects associated to functions in 
FT. All functions in the family have the same poles; we use the notation 
ok = ; + kr, k > 0 for the poles on the positive axis and -ok for the poles on the 
negative axis. 

The symmetry of the maps with respect to 0 implies that the Fatou set FX and 
the Julia set JX are symmetric with respect to the origin. In [5], the stable be- 
havior of functions in F was completely characterized. We define the sets: 

(14 Co={m}, C,={X:f~(Xi)=03},p>O, C=!C,. 
0 

Points in C, are called virtual centers of order p. The hyperbolic maps form a 
natural and important subset of 3. In this family these maps can be character- 
ized as 

% = {X E @* : fx has an attracting periodic cycle}. 

We denote a connected component of X by R In [5] section 8, the hyperbolic 
components are enumerated in terms of the sets defined in (1.2). We recall the 
following results proved in ([5], Proposition 8.11, Theorem 8.12) 
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Theorem 1.2. The virtual centers cp E C, - 1 are in one to one correspondence with 
pairs of hyperbolic components (Q,, a;). In 0, each function has a pair ofperiodic 
cycles ofperiodp and each attracts the orbit of an asymptotic value whereas in fl; 
each function has a single attracting cycle of period 2p which attracts both 
asymptotic values. The virtual center cp E C, _ 1 is a common boundary point of 
(Q,, 0;). The virtual center CQ is the point at infinity and it corresponds to the un- 
ique pair of components (Gl, Q;); these are the only unbounded components and 
they are linked by hyperbolic components ofperiod 2. 

Thus the parameters X E C play a very special role in the family 3. The other 
motivation to study maps corresponding to these parameters follows from [7], 
where it is shown that if X0 E C,,p > 1, then some repelling periodic points of 
period p + 1 of fx tend to a pole for X -+ X0 and for X = As these cycles diss- 
appear. 

In this paper we describe the metric properties of the Julia set JA for these X’s. 
For X E C,,p 2 1, the post-singular set PA = {!A, fx(iXi), . . . ,fXpel(&Xi), 
f{( &Xi) = cc} and JA = c. Set 

It follows from Theorem 1.1 that, if Incf) has positive measure, then (i) holds. 
One can check that for X E C,, p > 1, fx satisfies the assumptions of Proposi- 
tion 8.1 and Theorem 8.2 in [3], so 

meas(1i (,Q) = 0 and meas(lp+ i cfj,)) > 0, 

where meas denotes 2-dimensional Lebesgue measure. Thus by Theorem 1.1 
W(Z) c PA for almost all z E c. We prove that for these maps a stronger prop- 
erty holds, namely, 

Theorem A. Let X E C,, p 2 1. Then w(z) = PA for almost all z E @. 

To prove ergodicity of transcendental function on its Julia set one assumes that 
post-singular set is a compact repeller. If this assumption is not satisfied the 
map does not have to be ergodic. For example, for f (z) = e” the post-singular 
set is unbounded. In [9] it is proved that the post-singular set is a metric at- 
tractor for almost all z E J(j) = C and f is not ergodic. One of the other pos- 
sibility when the post-singular sets is not a compact repeller is the case when 
the singular values are prepoles i.e. some their iterates are equal to cc. The 
considered maps satisfied this property. Our second main result is 

Theorem B. Let X E Cp, p > 1, then fx is not ergodic on Jx. There is a wandering 
set ofpositive measure in J!,. 

Theorem 1 in [8] provide the sufficient conditions for existence of a-finite ergo- 
die conservative f - invariant measure p equivalent with the Lebesgue measure. 
In our case the assumptions of that Theorem are not satisfied. We also show 
that 
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Theorem C. Let X E C,, p 2 1. Then for fx does not exist a f-invariant measure 
absolutely continuous with respect to the Lebesgue measure $nite on compact 
subsets of C. 

2. PRELIMINARIES 

We need the following version of Koebe’s Theorem (compare [4]) 

Theorem 2.1. Let f : B(zo, Q) + @ be a holomorphic univalent map, 0 < q < 1. 
Then for z E S(zo, q~) = {z E C : Iz - zo( = qo} 

(i) !$@$ < 1 f (2) -f(zo)I < !$@$ 

(ii) --+Lpl!< l-1) 1+17 
If bo)l (1 

(iii) b;$&$) I 21n(z) 
i I 

and its straightforward corollaries. 

Lemma 2.2. Let f : B(z0, o) --f C be a holomorphic univalent map, 0 < 7 < 1. 
Then for all A c B C B(zo, rte) holds 

L-2 meas < meas(f(A>) < L2 meas 

meas - measv(B)) - meas ’ 

where L = ~“p~~-Bh,%d If’(‘)1 < 
~%i3(zgJ@) If’H - . 

Lemma 2.3. Letf : B(zo, Q) -+ C be a holomorphic univalent map. Then 

Nf(zo), If’(zo)leP) cf (B(zo, e/2)) c BCf(zo),2lf ‘(zo)le). 

We recall lemma stated in [IO] 

Lemma 2.4. For each k E N let Ek be ajinite collection of disjoint compact subsets 
of R’, each of them has positive 2-dimensional measure, and dejine 

&= u E,, E= ; i$ 
FeEk k=l 

density(&+ 1, F) := 
meas(&+ 1 n F) 

meas ’ 

Suppose also that for each F E Ek, there exists F’ E Ek+l, and a unique 
F” E Ek-1 such that F’ c F c F” then 

(1) if for every F E Ek, density(&+ 1, F) 2 AL, then density(E, El) > 
EL0 4 

(2) if for every F E Ek, density(&+ 1, F) 2 A[, then density(E, El) 5 
IIk”,, A,i’ 

We will use the following property of infinite products. 

Lemma2.5. Letat>0,iENandC~oai=s<1/2.Then 
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fi (l-Ui)>(l-2s) 
i=o 

Proof. Define b, := nr=,( 1 - ui). Then 

-lnb, = 2 -ln(l -ai) < 25 a,. 
i=o i=O 

The last inequality is a consequence of the property - ln(1 - X) < 2x which 
holds for x E (0, i). Since the sequence - In b,, y1 E N, is increasing there exists 
b = lim n+oo b, and b < 2s. Consequently ebb > eP2$. To finish the proof it is 
enough to observe that ee2’ > 1 - 2s for s E (0,;). q 

Assume X E C,, p > 1, and for readability omit the subscript X. Then Jcf) = a=. 
We consider a new map S(z) :=fP+l(z) defined on J \ U”,=, fek(m). Set 

g1(z) := -xi =$ ) 
( > 

gz(z) := eziz and q(z) = g2 ofJ’- ’ o gl (2) 

Then ~(0) = -1, since f IJ- ‘(Xi) is a pole pk = $ + kr, and also fP+ 1 (z) = 
gt o cp o gz(z). Let c > 0 be large enough such that S(z) is well defined for z sa- 
tisfying IImz > c and 

(2.1) vk=O,...,p- 1 IIm@f(~i))l < C 

and cp is univalent on the disk B(0, e-2c). Let Q := eP2’, and M := a. Choose 
yo such that 

(2.4 Yo > c, 

(2.3) yo > 1 +$, 

(2.4) y. >~+~IAI+$, 

(2.5) y. > 4~, 

(2.6) y. > 32v”%r3 

and define the sequence of real numbers Yk = e2Yk-l,YPk = -e2yk-1 for k 2 1. 
We also define for k # 0 the families of sets. 

where s = 2 if 

-ImXRecp’(O) f ReXImcp’(0) = 0 and ReXRecp’(0) + ImXImcp’(0) > 0, 
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ors=kif 4 
-ImXRecp’(O) + ReXImcp’(0) = 0 and ReXRecp’(0) + ImAImcp’(0) < 0. 

Otherwise s is chosen such that 

tan(2s) = 
ReXRecp’(0) + ImXImcp’(0) 

-ImXRecp’(O) + ReXImcp’(0) 

and s E (0, r/4) U (37r/4,~) if -ImXRecp’(O) + ReXImcp’(0) > 0, and s E 
(7r/4,37r/4) if -ImXRecp’(O) f ReXImcp’(0) < 0. 

Theorem 2.6. Fork > 0 
(i) ifz E Vz then S(z) E V k+ 1 and if Z E &- th?lZ s(Z) E V-(k+ 1) 

(ii) $2 E vzk then s(z) E V-@+I) and ifz E vIk then s(z) E &+I. 

To prove Theorem 2.6 we need the following Lemmas. 

Lemma 2.7. For z E C such that y = Im(z) > yo the following inequalities are 
satisfied: 

(2.7) 

(2.8) 

Proof. Let 7 = ed2J’/Q then q E (0,l). Since cp is univalent on B(0, Q), we can 
apply Theorem 2.1 to cp. Then for It - 01 = VQ we get 

W(O) he (1 + r1)2 I Ip(O + 11 I lp’(o)‘q;~ 
(1 - rl) 

where ~(0) = -1. Thus 

and if < = gz(z) it follows 

q-“,%‘“‘) 5 IS(z) + Ail 5 M (1 +;l@+q [7 

Lemma 2.8. Let Z = x + iy, z’ = x’ + iy’. suppose IyI > yk, ly’l 2 fyi+ 
2yk-1, k > 1 and 

(2.9) 1 sin(arg(Sz’ + xi))/ > l/yk 

then 

IImSZ’I 1 lImSZl + 2yk+ 1. 
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Proof. We only will consider the case when y, y’ > 0. Otherwise one can use 
property 

IImW = IWs(-z>>I 

which holds as S is an odd function. Using (2.8) and (2.5), we can estimate as 
follows 

IImSzl I ISzl I ISz + Ail + 1x1 I M(e2Y +2/e + l/(e2ti)) + /XI 
I Me2y + 2M/e + l/e” + 1x1. 

Analogously, using (2.9) and (2.3) along with (2.4) we get 

IImSz’I > IIm(Sz’ + Xi)1 - 1x1 = I sin(arg(Sz’ + Xi))] . ISz’ + Xi1 - 1x1 

2 L M(e2Yf 
Yk 

- 2/Q + l/(e2eY’)) - /XI > ~Me2(y+2y~-~) - 2&f/~ - 1x1 

2 Me2Yyk - 2M/e - 1x1 2 MezY(l + 3/M) - ~M/Q - 1x1 

~Me2Y+2yk+l+Yo-2M/@-IXI>Me2Y+2M/@+1/e2+IXI+2yk+l 

2 IImSzl +bk+l. 0 

Lemma 2.9. There is a constant b such that for all k > 0 and yo > b it holds: 
(i) ifz E Vz then Im(Sz) > 0 and arg(S(z) + Xi) E (2/yk, T - 2/yk), 
(ii) ifz E v, then Im(&Z) < 0 and arg(S(z) + xi) E (r + 2/yk, 27r - 2/yk). 

Proof. Fix k E N and n E Z . We will show that each point z which belongs to 
the half-line 

Lk={z=(s+Iz~++/yk)+iy; yE[W, y>yO} 

has the property that 

arg(Sz f xi) > 2/yk. 

We also consider a half-line 

L={z=s+nr+iy; yER, y>yo}. 

Then g2(z) = e@z) = e-2J’ei2x maps these straight-lines onto rays starting at 0 
i.e. gz(L) = eC2yei2s and g2(,$) = e-2ye’2(“+$ , y 2 yo. Since Ix - (s + nn)] = $ 
we get 

b&2(L)) - wb2(~k))l = i. 

The function cp : B(0, Q) + @ maps the rays gz(L) and gt(Lk) onto curves 
starting at ~(0) = - 1. Let L’ and Lk be the half-lines tangent respectively to the 
curves cp(gz(L)) and q&Z(&)) at zo = -1. Hence 

(2.10) 
L’ct) = - 1 + teww(w+24, t 2 0 

L;ct) = _ 1 + tei[arg(,‘(o))+2s+6/ykl, t 2 0 
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Since cp is a univalent holomorphic map in B(0, p), the angle between L’ and LL 
is the same as the angle between g2(L) and gz(Lk) and is equal to 6/yk. Fix 
z E Lk and define zi = gz(z). Then 

(2.11) ie cp(zi) = -1 +rle , r > 0. 

Define arg(L’) := arg(cp’(0)) + 28, arg(LL) := arg(cp’(0)) + 2s + 6/yk. We 
claim that there exists b such that if yo > b, then 

(2.12) 10 - arg(LL)/ < 2/y,& 

It implies that 

(2.13) 18 - arg(L’>l > 2/Yk, 

since 

i = (arg(LL) - arg(L’)l = larg(LL) - B + 19 - arg(L’)I. 

The half-line L’ is mapped by gi(z) := -X(3) onto half-line starting from 
-Xi. We choose s such that gi (L’) is parallel to the real axis Iw, i.e. Im(gi (L’)) = 
Im( -Xi). One may check that s = 2 if 

-ImXRecp’(O) + ReXImcp’(0) = 0 and ReXRecp’(0) + ImXImcp’(0) > 0, 

ors=kif 4 
-ImXRecp’(O) + ReXImp’ = 0 and ReXRecp’(0) + ImXImcp’(0) < 0. 

Otherwise s is chosen such that 

tan(2s) = 
ReXRecp’(0) + ImXImcp’(O) 

-ImXRecp’(O) + ReXImcp’(0) 

and s E (0,7r/4) U (37r/4, X) if -ImXRecp’(O) + ReXImcp’(0) > 0, and s E 
(n/4,37r/4) if -ImXRecp’(O) + ReXImp’ < 0. Consequently for S(z) = 
gl (p(z1)) we get S(z) = -Xi + te i@ for some t > 0 and 0 < ?1, < 27r. Then by 
(2.13) 

(2.14) arg(S(Z) + xi) > 2/yk 

and we are done. One can check, using similar arguments, that each point z 
which belongs to the half-line 

L; = 
c ( 

3 
z= s+(n+1/2)a---$ 

> 
-tiy; YEI?, y>yo 

1 
) 

has property 

(2.15) arg(S(z) + Xi) < 7r - 2/yk. 

We choose b such that for yo > b the images s(Lk), S(Li) are above the line 
parallel to the real axis, passing trough -Xi. Also the images of the points be- 
longing to Vz and contained in the strip bounded by lines Lk, Li and the line 
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y = yo have the same property, i.e. Im(S(z) + Xi) > 0. It follows from (2.14) and 
(2.15) that these points satisfy the assumption (2.9) of Lemma 2.8. Since 
yo > IIm(Xi)/ by the assumption (2.1), Lemma 2.8 implies that Im(,S(z)) > 0. 

Now we prove the claim. Choose Y such that 1 /e’ < Q. Set n = A. Then by 
Theorem 2.1 (iii) for E E B(0, l/e’) we obtain 

iarg(z) / 5 21112 = 0(1/r). 

l&J 
where In 2 = o( 1 /r) since lim, + 0 17 ‘-li = 2. Hence, enlarging b if it is necessary, 
for r > b and for all [ E B(0, 1/e2’) we get inequality 

(2.16) /arg($$)i I l/r. 

Set 

/3(t) = Zl t,t E [O, 11, 

where zi was defined above and consider the curve Pz(t) = *, t E [0, I]. 
Since pz(l) = $& and ,6(O) = g& then b(l) - h(O) = $$$$, and 

consequently 

(2.17) arg(P2(1) -/32(O)) = arg(‘~~~)~ ‘> = arg(cp(a) + 1) - w(G), 

where arg(LL) was defined above. By (2.16) 

lwdcp’(Pl Wcp’(W I 5 llyk. 

Using (2.17) and the following inequality 

lwdP2(1) - P2W I ly;;l IwWNL 

we obtain 

tlp;Tl larg(cp’(P1(t))lcp’(O))l 5 VYk, 

This proves (2.12) and finishes the proof of part (i). The proof of part (ii) is 
analogous. q 

From now we will assume that 

(2.18) yo > b. 

Proof of Theorem. 
case (i). Suppose z E Vl U Vi, fork > 0, then ]y] 2 yk+i - 2yk. We must show 
that 

IIm(Sz)( < yk+2 - bk+ 1. 
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Since 

IImSzl 5 ISzl I (Sz + Ail + 1x1, 

and using (2.8) together with (2.5) and (2.4) we get 

IImSzl 5 ~k+2M/bk+ d2 + 2M/e + l/e2 + IAl 
5 Yk+2/2 - Yk+2/4 + 2M/@ + l/Q2 + 1x1 

5 Yk+2/2 5 yk+2 - 2yk+ 1. 

If Z E I”-: U vi, then IyI 2 yk + 2yk- 1. It follows from the proof of Lemma 2.9 
that if yo > b then Property (2.9) holds for S(z). Then the assumption of 
Lemma 2.8 are satisfied. So 

IIm(Sz>I > bk+l > Yk+l f2yk 

and consequently s(z) E vk+ i U I++ 1). The proof of case (ii) follows from (i) 
and the property that S(z) is an odd function. q 

3. PROOF OF THEOREM B 

We define a family G = { Qc~,~J; m, II E Z}, where Qc~,~) is a square bounded by 
straight-lines 

x=s+m, x=s+(n+l)~, y=m7r, y=(m+l)n 

ifm 2 Oor 

x= --s+mr, x=-s+((n+l)n, y=m7r, y=(m+l)r 

if m < 0. Let Q E G be such that Q C v, U v-k for some k E N, k # 0. Let 
P E I-1,1>, 

2”(Q) := {Q’ E B : Q’ c Ints(Q n Vc)}, 

P”(Q) := {z E Q : Sz E U Zp(Q)}. 

For each i 2 1 define 

a= (CT&... ,CT.i-l), OjEZ*,j=O ,..., i-l 

F = (PO,. . . ,pi-l), /Jj E {-l,l},j=O ,..., i- 1, 

G(Q) := {z E Q : Sjz E W(Q,), j = 0,. . . , i - l}, 

Eo(Q) := tQ1, 

Ei(Q) := {e(Q) : p, Y? have a length i}, 

E(Q) := ,go Eio 
where 

4(Q) := U E(Q) 
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E := U {E(Q) : Q E G, % Q C Vi}. 

G := c f(E). 
i=-00 

Lemma 3.1. Let z E @ be such that IImf”(z)I > yk - 2yk- 1, k 2 1. Then 

Icf”)‘(z>I 2 5 87r 

Proof. Let # be a holomorphic branch of the inverse map cf”)-’ mappingfn(z) 
onto z. Then 4 is univalent in a ball BCfE(z), F). By Koebe &Theorem 
$(BCf’(z), 4)) > B(z, j$ I$‘(j-“(z))l). Since 4(BCfn(z),y)) is contained in the 
strip of width 7r we obtain that 3 I+‘Cfn(z))l < 7r/2. It implies that 

(3.1) I#wY4)l<~ 

and consequently Icf”) ‘(z)I 2 g. 0 

Lemma 3.2. For every Q E G contained in Vk 

meas(Q \ P"(Q) U P-(Q))) 5 F 

Proof. It follows directly from the definition that 

(3.2) meas(Q \ (V,’ u Vi)) < 4: = 5 

Since s(Q 0 V,) \ UZp(Q) . is contained in &r-neighborhood of as( Q n V[) 

then (Q n &!‘I \ WQ) is a subset of v&rK-neighbourhood of a(Q II V,“), 
where 

K := max IKw’(z)l 
zE s(Qn v;)\u WQ) 

and S-’ means a holomorphic branch of the inverse function mapping 
S(Q n V,“) onto Q n V[. It together with (3.1) implies that (Q n V,“) \ P(Q) is 
contained in e -neighborhood of a(Q n V,“). Therefore 

Sv’%? 32d%r3 
meas((Q n V,“) \ P(Q)) < 47~~ = ~ 

Yk+l 

Thus by (3.2) and (2.6) we get 

meas(Q \ P’(Q) u p-(Q))) < yk + ____ 
127r 32v%r3 < E q 

Yk+l Yk 
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Lemma 3.3. There exists a constant D1 > 0 such thatfor y. > D1, Q E 4 Q c Vk, 
F E Ei( Q) and i 2 0 holds 

density(&+ 1 (Q), F) := meas@+ 1 (Q) n F) > 1 _ 5 
meas - yjkl+i’ 

Proof. Suppose F E Ei(Q) then Si(F) is a square contained in Vz with sides of 
lenght 7r, where 111 = Ikl + i. By Lemma 3.2 

(3.3) meas(S’(F) \ P(&+i(Q))) 5 z. 
Ylkj fi 

Let 4 be a holomorphic branch of S-’ mapping S’(F) onto F. Let zi be a center 
of S’(F). We consider a ball with center at zi E S”(F) and radius r = “2. Then 

S’(F) C B(Z,,‘?,) C B(Zi, 5). 
2 

Since $ is univalent on B(zi, r) it has a bounded distortion on B(zi, 5). It follows 
from Lemma 2.2 and (3.3) that 

meas($(S”(F) \ S’(R+ I (Q>))) < 
m44(WF;))) 

*meas(S’(F) \ S’(Ei+ i(Q))) 
meas(s(F)) 

where 7 := $. So we can choose D1 such that for yo > D1 thesis holds. q I 

Lemma 3.4. There exists a constant D > D1 such that for y. > D, Q E G, Q c Vk 
holds 

density(E(Q), Q) := mea~~~$,; ‘) >I-‘2 
Ylkl 

Proof. Fix k # 0 and assume that ys > D1. It follows from Lemma 2.4 and 
Lemma 3.3 that 

density(E(Q), Q) > fi 
i=O ( 

1 - 

gFtgy.r bound on IIE o (1 - &) it is enough to find an upper bound on 

1 OYlkl+r’ mce 

there exists D > D1 such that xi”=, & I $ for yo > D. It follows from (2.6) 
that 5 < l/2. Hence by Lemma 2.5 we get 
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JTo (l-j&) >l-$ q 1 

As a consequence of this Lemma we get the following Proposition. 

Proposition 3.5. meas > 0. 

Further we will assume that 

(3.4) yo > D. 

Theorem B. Let X E C,, p 2 1, then fx is not ergodic on Jx. There is a wandering 
set ofpositive measure in JA. 

Proof. We will show that there exist two sets Qi, Ql contained in E which for- 
ward trajectories are disjoint. Fix k > 0 and choose two squares Qr, Q2 c 
Vk u V-k such that 

(i) meas(Qi n E) > 0, 
(ii) for all zt E (21, z2 E (22 holds IIm(zr)l - IIm(zz)/ > 2Yk- 1. 
Denote Qi := Qi n E, i = 1,2. We will show that for all integers j E N the 

following conditions are satsfied 
(a) SjZi E vk+j U v-(k+j), i = 1,2, 

(b) IIm(Sj(zi))l - b(sj(zz>)l > 2yk+j-1. 

The proof is by induction. For j = 0 the conditions (a) and (b) are just the 
assumptions (i) and (ii). Let now assume that a), b) holds forj = n. Since E is 
forward invariant for S thus ,V(zi) E E and by the assumption S*(zi) E 
Vk+n U I/-(k+n). Theorem 2.6 implies that S”+‘(Z~) E vk+n+lU vp(k+n+l). For 

j = n it follows from (b) that 

IIm(s”(Zl))( - IIm(s”(z2))l > 2Yk+,-l. 

Since s’(zj) E vk+n u I/-(k+n) thus analogously as in the proof of Lemma 2.9 
we can show that 

1 SiIl(avg(Sk+“+‘(Zi) + Xi))1 > --!-- 
Yk+n ’ 

Thus the assumption (2.9) of Lemma 2.8 is satisfied. Therefore 

IIm(s”+‘(Zl))I - IIm(s”+‘(z2))1 > bk+n+l > 2Yk+n 

what gives the condition (b) for j = y1+ 1. Therefore the forward trajectories of 
Q,’ and Qi are disjoint. Their great orbits are also disjoint. So Q[ and Qi are 
wandering subsets of JA of positive measure. Define Q’ := IJIE 1 S’(Qi), 
(2” := uEl Sj(Q;). Th ey are invariant, disjoint sets of positive measure. It 
implies thatfJ, is not ergodic on Jcfx) = a=. 0 

4. PROOF OF THEOREM A 

Lemma 4.1. For almost z E @ there is a sequence of integers nk + 00 such that 
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lImfnk(z)I -+ co. 

Proof. By Theorem 1.1(i) for almost all z E C there is an asymptotic value 
a E {Xi, -Xi} and a sequence of integers ~11 + 1, n2 + 1,. . . , (IE~ + l), . . . such 
that (fnk+l (z) - ol -+ 0 and consequently jImf”k(z)I + oo. 0 

Lemma 4.2. 

meas(C \ G) = 0. 

Proof. Suppose to the contrary that meas(@ \ G) > 0. So there exists a density 
point z of C \ G. By Lemma 4.1 there are two sequences of integers 
Izk E N, ylk + 00 and lk E Z, lk + 00 satisfying 

ylk - 2yr,-1 I lImfnk(41 <YI~+I - ZY~,, 

lk 4 co. Let &, denote the a holomorphic branch of the inverse map f-"k 
sending znk = f nk z ( ) to z. Let K,, be a square with center at znk and sides of lengh 
Sya-1. Then 

meas(K,, n U Vi) > kmeas(K,,), 
iEZ* 

where Z, := Z\(O). It implies that for 

Kik := {z E K,,, : 3Q E 8, z E Q C Knk f- u vi> 
iEZ, 

the following inequality is true 

meas(K$ 2 imeas(K,). 

From Lemma 3.4 we have that for Q c UjEE, Vi 

meas(Q n E) > imeas(Q). 

Hence 

meas(Kik n E) 2 imeas(K.,). 

The map & is univalent on the disc B(z,,, 2r,,) where rk = i diam(Knk) = 
4fiyr, _ 1. Also the distortion of $nk on disc B(z ,,k, yak) is universally bounded. 
By Lemma 2.3 

where pnk = I&k(znk)l~nk. Then, using Lemma 2.2, 
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meas(B(z, 4pnk) n G) > meas(B(z, 4pnk) n G) > meas ( $(%Q, y ))nG) TI,, 

meas(W, 4h.A) - 162meaS(B(z~@nk/4)) - 162meas(d(B(z,,,r,))) 

meas (B(z,, , ynk) n G) meas(I$ n E) 1 > 
- 812162meas(B(z,,,u,)) ’ 81216+r/2) meas ’ 8. 812162(r/2) > ” 

Moreover by Lemma 3.1 we get 

Since z is a density point of C \ F this leads to a contradiction. 0 

Theorem A. Let X E C,,p 2 1. Then w(z) = PJ, for almost all z E 6. 

Proof. We will show that 

meas({z E E : WS(Z) f; PA}) = 0. 

Let Q be a square in 6 such that Q C vk. Denote: 

E, = {Ql, 
E+ = {P,“(Q) : ,~,a, h avelengthi, pj=l,j=l,... ;i-l}, 

E; = {P;(Q) : ,%,a, h avelengthi; //j=-l,j=l,..., i-l}, 

Analogously as in Lemma 3.3 we can control distortion of SF. Since for every 
Q’c KandeachpE{-l,l} 

meas(Q’n Vr) 1 
meas ‘2 

we obtain for every F E Er 

density(Ef+r i F) I Lsdensity(Q’ n Vy, Q’) 5 + 

for some L3 > 0 and III = Ikl + i. We can assume that the constant L3 is less 
then 1.5. So 

density(Er+ 1, F) < 3/4. 

Consequently by Lemma 2.4 

(4.1) density( 5 .i?P, i?i) = 0. 
i=O 

Set 2 := {z E G : w(z) f PA}, W(Q) := nE,’ U 0 EL. Then 

ZclJ c ~-“(PF’(Q)):QEG, QC Vkforsomek 
C iE-00 

Since meas( W( Q)) = 0 by (4.1) then also meas = 0. 0 
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5. PROOF OF THEOREM C 

Suppose there exists an invariant measure p absolutely continuous with respect 
to the Lebesgue measure. It follows from Lemma 4.2 that meas(C \ G) = 0. 
Thus also p(C \ G) = 0, so p(G) # 0. Since G = lJkELfk(E), then 
b(UkEZfk(E)) # 0. It implies that p(E) f 0. Suppose to the contrary that 
p(E) = 0. Since ,Y isf-invariant, then pLCfk(E)) = p(E) = 0 for all k < 0. For 
k 2.0 we have S(E) =fbfljk(E) c E, so p(f@+‘lk(E)) = 0. Now we consider 
f(J”)k-q(E) cf-qCfbP+l)k((E)) =f-4(,!?(E)) for q = 1,. . . ,p. Again since p 
is f invariant, ~Lcf b+‘jk-q(E)) = 0. Thus p(UkEzfk(E)) = 0 and we get a 
contradiction. 

Denote Ak = {z : IIm(z)I > yk}, k > 1. Then E c Ai and Si(E) c Aj for 
j E N. Note that Fk(,Sk(E)) 3 E so p(Ak) > p(E). Sincef(Ak) is contained in a 
union of two balls B(XI’, pk) u B( -Xi, pk), where pt > pt > . . . and ok + 0 for 
k + 00, then {Xi, -Xi} = nkZ1 B(XI’, pk) U B(-XI’, pk) and p({Xi, -Xi}) = 
limk,, p(B(XI’, pk) u B( --Xi, pk)) > p(E). It leads to a contradiction with the 
definition of absolutely continouos measure with respect to the Lebesgue mea- 
sure. 
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