Digital Investigation 11 (2014) S18-S26

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

Practical use of Approximate Hash Based Matching in digital
investigations

@ CrossMark

Petter Christian Bjelland*, Katrin Franke, André Arnes '

Norwegian Information Security Laboratory (NISlab), Gjevik University College, Norway

ABSTRACT

Keywords:

Digital forensics
Approximate Matching
Evidence analysis

Data discovery
Malware forensics

Approximate Hash Based Matching (AHBM), also known as Fuzzy Hashing, is used to
identify complex and unstructured data that has a certain amount of byte-level similarity.
Common use cases include the identification of updated versions of documents and
fragments recovered from memory or deleted files. Though several algorithms exist, there
has not yet been an extensive focus on its practical use in digital investigations. The paper
addresses the research question: How can AHBM be applied in digital investigations? It fo-
cuses on common scenarios in which AHBM can be applied, as well as the potential sig-
nificance of its results. First, an assessment of AHBM for digital investigations with respect
to existing algorithms and requirements for efficiency and precision is given. Then follows
a description of scenarios in which it can be applied. The paper presents three modes of
operation for Approximate Matching, namely searching, streaming and clustering. Each of
the modes are tested in practical experiments. The results show that AHBM has great
potential for helping investigators discover information based on data similarity. Three
open source tools were implemented during the research leading up to this paper: Autopsy
AHBM enables AHBM in an existing digital investigation framework, sddiff helps under-
standing AHBM results through visualization, and makecluster improves analysis of graphs
generated from large datasets by storing each disjunct cluster separately.

© 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

The focus of this study has been to assist investigators in
law enforcement to organize and analyze digital evidence
using Approximate Matching. The term Approximate
Matching refers to the technique of detecting data that are
in some way similar. Though tools for performing Approx-
imate Matching of raw data have been known for some
time, they are still not integrated in popular digital inves-
tigation tools. Approximate Matching has been a stand-
alone capability only used under special circumstances and

* Corresponding author.
E-mail addresses: petter.bjelland@hig.no (P.C. Bjelland), katrin.
franke@hig.no (K. Franke), andre.arnes@hig.no (A. Arnes).
! The author A. Arnes is also associated with Telenor Group.

http://dx.doi.org/10.1016/j.diin.2014.03.003

not as part of standard investigation practices. Why AHBM
is not yet in widespread use is difficult to determine,
however, two reasons may be dominant: No integration
with existing digital investigation tools, and limited knowl-
edge of the potential gains of using it.

There are three types of Approximate Matching:
perceptual, content and hash based matching. While the
two latter focus on identifying data that is similar from the
perspective of a computer, perceptual matching identifies
data that is similar from the perspective of a human.
Whereas perceptual matching is well suited for comparing
pictures and videos, content and hash based matching al-
gorithms are designed to match binary data, such as doc-
uments, executables, memory dumps and network traffic.
Hash based matching groups chunks of data and compare
them with chunks in other files. Content based matching

1742-2876/© 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/3.0/).

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:petter.bjelland@hig.no
mailto:katrin.franke@hig.no
mailto:katrin.franke@hig.no
mailto:andre.arnes@hig.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2014.03.003&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2014.03.003
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.diin.2014.03.003

PC. Bjelland et al. / Digital Investigation 11 (2014) S18-526 S19

computes the exact difference between two files, often
using techniques such as Hamming distance (Ham
ming, 1950) and Levenshtein distance (Levenshtein, 1966).
All these types of Approximate Matching may be relevant
for digital investigations.

Related to this study is the work by Vassil Roussev and
Candice Quates on hash based matching using empirical
models for identifying, representing and matching chunks
of data with their tool sdhash (Roussev, 2010, 2011). They
also present an evaluation and comparison of existing
AHBM tools in Roussev (2011). Most other published work
on AHBM techniques focuses on the technical aspects of
how hash based similarity can be measured. An exception
is the forensic investigation of the M57 dataset (DigitalCor
pora.org, 2009) by Roussev and Quates (2012). The authors
describe how sdhash can be used to analyze large amounts
of data, with a particular focus on reducing the amount of
data subjected to human analysis. They present three sce-
narios in which Approximate Matching can be applied:
Detecting the presence of contraband, detecting unautho-
rized copying of internal data, and detecting unauthorized
exfiltration of data. The study focuses on evidence detec-
tion and what questions an analyst may ask using AHBM
techniques. In contrast, this study focuses less on the inner
workings of any particular tool, and instead attempts to
define a general modus operandi for Approximate Match-
ing when applied to digital investigations.

This research also has resemblance to cross-evidence
correlation techniques different from AHBM, such as large
scale data triage (Garfinkel, 2013) and malware identifica-
tion (Flaglien et al., 2011).

For the purpose of the experiments in this paper,
sdhash was used as the approximate hash based matching
tool, rather than ssdeep. This is because sdhash yields the
most robust and accurate results, as shown in Breitinger
et al. (2013) and Roussev (2011). However, as ssdeep is
more efficient when matching files without specialized
hardware (Breitinger et al., 2013) (sdhash comparison ef-
ficiency depends on whether the POPCNT CPU instruction
is available or not), it may be the preferred tool in many
situations.

A system for comparing AHBM algorithms, named
FRASH? was proposed by Breitinger et al. (2013). This work
is important for the introduction of Approximate Matching
as an integrated part of digital investigations, but current
efforts have been limited to reviewing the types of simi-
larities that may be discovered. In order for these tech-
niques to become widely applied in digital forensics, there
is a need to explore when and how to approximately match
available evidence to discover new information.

This paper addresses these issues by describing the
common scenarios where AHBM may add unique infor-
mation to an investigation. Through practical experiments,
the relevance of using the tools in the defined scenarios are
reviewed and discussed.

During the research leading up to this paper, three tools
were implemented and made available in order to help
performing AHBM and analyzing its results. First, a module

2 FRASH: A framework to test algorithms of similarity hashing.

N

Fig. 1. Two semantically and perceptually similar files. The two files are not
syntactically similar. Color to the left and grayscale to the right. (Photog-
raphy captured by Petter Chr. Bjelland, 2013).

for performing AHBM in the digital investigation frame-
work Autopsy (Carrier, 2012) was implemented.’ The
module, called Autopsy AHBM, allows an investigator to
easily perform AHBM searching and streaming during disk
image analysis. Second, a tool called sddiff* was imple-
mented to help understand similarity through visualiza-
tion. Finally, makecluster” was implemented to enable
analysis of individual clusters by storing each connected
cluster in separate files. The tool makes it easier to analyze
graphs generated from large datasets, both in terms of
computational complexity and visualization.

In the following, Section What is similarity? addresses
the philosophical question: What is similarity?
Section Approximate Matching describes in detail the
various types of Approximate Matching. Section Modes of
Approximate Hash Based Matching describes the different
modes in which AHBM can be used, and what knowledge
and insight may be achieved using modes. Then,
Section Practical scenarios with AHBM describes scenarios
for what types of data may be analyzed using these modes.
Finally, the last two sections complete the paper with
subjects for further research and conclusions.

What is similarity?

A word frequently used when discussing Approximate
Matching is similarity. Investigators may use Approximate
Matching to discover the presence of files similar to
something we already know. So what is similarity and how
do we measure it? There are essentially two different ways
in which two files can be similar: syntactic and semantic.
Syntactic similarity is from the perspective of a computer,
and semantic similarity is from the perspective of a
human.

Two documents are semantically identical if they
communicate the same information. For example, a
Microsoft PowerPoint presentation is semantically iden-
tical to an exported PDF document containing the same
pages. Their cryptographic hashes® will not be identical,
though we can still argue that the documents are the same.
A similar concept applies to media, like pictures and videos.

3 https://github.com/pcbje/autopsy-ahbm.

4 https://github.com/pcbje/sddiff.

5 https://github.com/pcbje/makecluster.

6 A cryptographic hash is a digital fingerprint, making it possible to
determine whether to pieces of data are exactly the same.

https://github.com/pcbje/autopsy-ahbm
https://github.com/pcbje/sddiff
https://github.com/pcbje/makecluster

S20 PC. Bjelland et al. / Digital Investigation 11 (2014) S18-526

Most people would consider two pictures to be identical
even though they are stored in two different formats. The
meaning of two documents can also be identical even
though the contents are presented in two different formats,
e.g., the same set of numbers represented as a table or as
list.

Semantically similar documents do not need to be
similarly represented on a hard drive, but when presented
they will appear similar to a human. Syntactically identical
documents are represented identically on a hard drive and
h(A) == h(B), where A and B are the two documents, and h
is a cryptographic hash function.” An example of two
semantically similar pictures that are not syntactically
similar is given in Fig. 1.

Approximate Matching

In order to understand how Approximate Matching can
be applied during digital investigations, there is a need to
review some theory on the types of Approximate Matching.

Perceptual similarity

Perceptual hashing aims at detecting objects that are
similar from the perspective of a human. Typical object
types include media such as pictures and videos. In the
world of perceptual hashing, the process of Approximate
Matching is often referred to as media authentication
(Zauner, 2010). To authenticate an object is to determine
whether or not it is the same as another object. To define
what constitutes two similar, or authenticated, objects,
Zauner (2010) describes two different actions that can be
performed on a media: modification and manipulation.
Modification is an action performed on the object that
should not impact the authentication of the object,
whereas manipulation is another type of action that im-
pacts later authentication.

An example of a modification may be to adjust the color
balance in a picture, and an example of manipulation is
covering large portions of a picture with a filled rectangle,
making it perceptually hard to recognize the original pic-
ture. An example of modification (two perceptually similar
pictures) is given in Fig. 1.

A technology available for doing measuring perceptual
similarity in pictures is Microsoft’'s PhotoDNA. A brief
introduction to the technology is provided in Microsoft
(2009). Facebook is using PhotoDNA to detect unwanted
pictures (Microsoft, 2011).

A common use case for perceptual hashing is content
searching. Detecting copyright infringement by scanning
pictures on the Internet was mentioned as an example by
Meixner and Uhl (2006). Being able to detect semantically
similar pictures may in turn help investigators determine
the source of the original picture, by examining how the
picture has been spreading.

7 Cryptographic hash functions are one-way, non-injective functions
that maps an arbitrary size input to a fixed size output. Given a hash
function h and input x, it is easy to compute h(x) = s and computationally
infeasible to determine x, given s (Buchmann, 2004).

Content similarity

In addition to hash-based matching, there are other
techniques for matching objects that are similar in their
binary representation without the use of cryptographic
hashes. This section reviews two of them: Hamming dis-
tance and Levenshtein distance.

The Hamming distance algorithm (Hamming, 1950)
compares two data streams by computing the minimum
amount of substitutions needed to transform one stream
into the other. The algorithm compares two streams
element by element, where both elements have the same
position in their respective stream. If the two elements
differ, the distance between the two streams is incre-
mented by one. However, if an element is inserted or
removed to either stream, the comparison process will not
be able to recover and their distance will become large. The
Levenshtein distance algorithm (Levenshtein, 1966), also
referred to as Min-Edit distance, measures the minimum
amount of insert/edit/delete operations required to trans-
form one stream into the other. A significant difference
from Hamming distance is that Levenshtein distance is able
to handle inserts and deletions in either stream. The algo-
rithm needs to remember all previously computed dis-
tances and are thus not memory efficient, making it less
suitable for comparing large streams of data.

Both algorithms are important for numerous other al-
gorithms, including AHBM algorithms like sdhash and
ssdeep.

Hash based similarity

Hash based matching measures the syntactical similar-
ity between two files, not by interpreting the perceptual
similarity, but by evaluating byte level commonalities in
data. Due to the fact that two pictures can look identical but
have different encoding and therefore be very different on
byte level, AHBM is not suited for the task of measuring
similarity between pictures. The benefit of measuring
similarity on byte level is that it enables measurement of
unknown content types and therefore allows Approximate
Matching of complex and unstructured data such as doc-
uments, memory images and network packets.

Although encoding makes hash based matching un-
suited for measuring similarity in images and videos, it can
still provide great value when analyzing fragments from
memory or deleted files. A fragment of a picture recovered
from memory or unallocated space may be identical to the
corresponding fragment in a picture found elsewhere. The
same concept applies when looking for traces of known
objects in a memory or disk image. An investigator may for
example suspect that a certain software has been installed
and later deleted from an hard drive. Approximate hash
based algorithms may then be used to create a reference set
from this software and match the disk image against this
reference set. The reference set will usually contain exe-
cutables, libraries and other resource used by the target
software.

The most significant algorithms for computing hash-
based similarity are currently sdhash (Roussev, 2010) and
ssdeep (Kornblum, 2006). Other algorithms have been

PC. Bjelland et al. / Digital Investigation 11 (2014) S18-526 S21

proposed, but none have yet gained as much scrutiny in the
digital forensics community. Comparisons between the
tools are given in Roussev (2011) and Breitinger et al.
(2013). Both algorithms look for statistical improbable
chunks of bytes within the files. These improbable chunks
are called features and are used to compute the similarity
between two files. A highly simplified figure of hash based
matching algorithms are shown in Fig. 2. In this figure, FileA
has five features and FileB has four features. As FileB has the
least features, and three of its four features are identical to
features in FileA, the two files do therefore have similarity
score (3/4)*100 = 75. Common output of Approximate
Matching tools are similarity scores in a range from 1 to
100.

AHBM algorithms may detect any type of byte level
similarity, however it may be useful to put these types into
groups like alternative versions of the same document and
embedded objects. Alternative versions of a file are for
example two revisions of the same Microsoft Word docu-
ment, or a log file captured at two different points in time.
The files communicate the same information, and the dif-
ferences between them may add new knowledge about
their purpose to the investigator. For example is the pos-
sibility to detect attempts of fraud based on suspicious
changes in spreadsheet documents.

The hash based similarity caused by embedded objects
can be elements such as a company logo in PDF documents.
The investigator may also be looking for embedded objects
identical or similar to a flash object extracted from a ma-
licious PDF file.

Modes of Approximate Hash Based Matching

This chapter describes the different modes in which
AHBM can be used. There are three such modes: searching,
streaming and clustering. After describing these modes in
detail, the next chapter will describe scenarios where these
modes are used.

Searching

A common approach to analyzing digital evidence is
searching. With search, the investigator has some lead to
follow up on. Typical types of leads are e-mail addresses,

telephone numbers, credit card numbers and phrases such
as names, organizations and places. When searching with

File B

Fig. 2. A highly simplified approximate hash based matching of two files. A
box represents the position of an extracted feature. Blue fill indicates that
both files contain the exact same feature. Gray fill indicates that the given
feature is only present in one of the files. Every feature is a fixed size chunk
of bytes. The amount of identical features are used to compute the similarity
between the two files. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

AHBM, files are used as leads rather than text phrases. A
conceptual overview of the searching process is illustrated
in Fig. 3.

For this kind of search to be efficient, it is necessary that
N <« M, where N is the number of leads and M is the
number of documents in the search space.

The results from searching can be interpreted as alter-
native locations of the lead. In a large investigation, such
alternative locations may be in network traffic, memory
dumps, shared folders and disk images. Table 1 illustrates
potential results and interpretations of searching with
AHBM with, e.g., a PDF document as lead.

Streaming

A definition of streaming is to pass continuous data to a
function. An example of such functions is intrusion detec-
tion or prevention systems, where the functions match
flowing data against a rule set describing malicious activity.
Streaming matches large number of input documents
against a smaller search space, and may therefore be
considered an opposite of searching. The search space is in
this mode referred to as the reference set. A conceptual
overview of the streaming process with AHBM is illustrated
in Fig. 4.

An AHBM algorithm is a potential streaming function.
The streaming context may be network traffic, monitoring
of new and modified files in an enterprise network, or the
contents of a disk image. If an investigator suspects that
some content may reside on a hard drive, it is easy to
generate approximate hash based signatures for such files
and stream evidence through AHBM.

For such streaming to be efficient, the reference set
should be small compared to the amounts of data flowing
through the streaming function, i.e., N> M.

Clustering

Matching a dataset against itself is called clustering.
Such matching enables detection of direct and indirect
similarities among elements in the data. Clustering is
different from the two other modes in that the input and
the search space is the same. A conceptual overview of the
clustering process with AHBM is illustrated in Fig. 5.

The goal of clustering is to identify groups in data where
the members in each group are more similar to each other

Document 1

Document 2 match found

Document 3 Document 2

Document 5

Document 4

match found

Result

Search input documents

Search space

Fig. 3. Conceptual diagram of searching with AHBM. The search document
is matched against every document in the search space using, e.g., sdhash,
and the results are extracted and presented to the user.

S22 PC. Bjelland et al. / Digital Investigation 11 (2014) S18-526

Table 1
Example results and interpretations from searching with Approximate
Matching and a PDF document as search input.

Match type Similarity

score
Network traffic 100

Possible interpretation

The search input has been
uploaded to the Internet.
The match is an alternative
version of the search input.

File in shared folder 67

Disk image 100 The search input was present
on the employee’s computer.
Disk image 32 Fragments of the search input

may have been discovered in
unallocated space.

The search input was open on
the employee’s computer when
the memory capture was
performed.

Working memory 100

than members in other groups. A clustering function is used
to measure these distances and for digital evidence AHBM
may be used as a such function. The closeness scores are
computed for each document pair and similar files are
added to each others edge list.

Indirect similarity is when A=B and B=C, but A#C,
where = represents an approximate match. Such similar-
ities may represent various types of relations between A
and C. E.g., in malicious PDF samples, A may share objects
with B, but not with C and B may share a different set of
objects with C, potentially indicating that A and C has the
same origin.

Note that clustering is usually far more computationally
expensive than searching and streaming. Both searching
and streaming require N*M comparisons and clustering
requires N*N comparisons. If N == M, then both searching
and streaming are as expensive as clustering, however,
with streaming and searching it is assumed that either
N>M or N <« M, as discussed earlier.

Practical scenarios with AHBM

Although tools like sdhash may provide great value to an
investigation, it may also be necessary to visualize matches
to better understand the results. For the purpose of this
study, a tool called sddiff was implemented and used to

Document N - 2

\ Document N - 1

Reference 2 |« Document N

match found

Reference 1

> Notify

Reference set Continuous stream

Fig. 4. Conceptual diagram of streaming with AHBM. Documents that pass
through the matching function are matched against the reference set and
extracted if a similarity is found.

Document N - 4 match found

Document N - 3
match found

Document N - 2

Document N - 1

Document N Document N - 3 | Document N - 4

Input data set Similarity edge list

Fig. 5. Conceptual diagram of clustering with AHBM. Each input document
is matched against all previous inputs. The results are stored as an edge list.

visualize the position of similarity between two files to
better understand the significance of their similarity. The
tool uses a feature extraction algorithm based on sdhash,
though the identified features are not inserted into Bloom
filters® like sdhash do. Instead, sddiff records the position of
each feature and then compares positions among the two
files. If the same feature is present in both files, a blue,
vertical bar is written to the output. The position of the
vertical bar along the X-axis is determined by the position
of the similar feature in the larger of the two files. The re-
sults of comparing these two files are printed as a picture,
where the leftmost and rightmost pixel represents the
beginning and the end of the largest file, respectively. See
Fig. 7 for an example.

Search - alternative versions detection

The following experiment will describe how AHBM can
be used to search through large datasets. The dataset used
in this experiment consist of 50,000 emails from the Enron
dataset (Klimt and Yang, 2004). These emails were located
on the computers of 17 different users and were organized
into 508 distinct folders. For the purpose of this experi-
ment, eight randomly chosen emails found on the com-
puter of nine different users are selected as leads. These
emails are assumed to be emails found by some other
means, e.g., by keyword search, and are matched against
the other 50,000 emails in the dataset using similarity
threshold 25°. The asked question was do we have any other
similar emails to this one? The majority of the resulting
matches fell into one of these three manually defined
categories:

e Reply: When the number of matches where either email
is a follow up on another email.

e Similar conversation: When emails with different sub-
jects and content, sent to and from the same set of email
addresses.

e Different header: When identical emails found in
different folders.

8 Bloom filters are probabilistic functions to determine whether an
element may belong in a collection (Bloom, 1970).

9 The similarity threshold 25 was chosen because lower thresholds
yielded e-mails having only the header in common, i.e., similar recipient
and folder. This was considered to be a false positive.

PC. Bjelland et al. / Digital Investigation 11 (2014) S18-526 S23

Table 2
Results from searching against the Enron dataset using eight randomly
chosen emails as search input.

Table 3
Results when matching the PCAP-file against a set of re-source files related
to a cryptographic tool.

ID Reply Similar conv. Diff. header Total Role Filetype Similarity score

1 0 0 2 2 Installer Executable 31

2 17 2 0 19 Installed tool Executable 1

3 6 0 0 6 User guide PDF 2

4 0 0 5 5 Tool formatter Executable 2

5 0 0 3 3

6 0 2 2 4

7 5 0 0 5 . .
3 3 1 1 10 stream of data against a small set of references. In this
Total 36 5 13 54 scenario we are trying to determine whether cryptographic

Detailed results from the experiments are listed in
Table 2. The results from analyzing the Enron dataset in this
manner depend on the selected seed. Though only a single
seed was considered in this experiment, the results do
illustrate the concept.

As Table 2 shows, the largest portions of the results were
some sorts of a reply. In many cases, there are multiple
participants spawning new conversations with new partic-
ipants or with a subset of the existing participants. In these
cases, no single email file contains all the available infor-
mation related to the input email, and an analysis of several
files is therefore required. In addition, there are several
duplicate emails in the dataset. It is quite common for the
same email to reside in several folders on a single computers,
causing arelatively large portion of the matches to fall under
the different header category. There were also several cases
where a single reply to the search input was found in several
folders. In these cases the matches were considered to be a
reply. From a search input yielding six matches in the reply-
category, Fig. 6 was manually generated.

The gray boxes in Fig. 6 represent content not present in
the lead document. The ability to easily discover the com-
plete flow of email correspondence in a large, unstructured
dataset is a valuable feature when searching. Such emails
may otherwise be difficult to discover.

Streaming - file transfer detection

This section describes a simple experiment where
AHBM is used as a streaming function for matching a larger

Original message

Reply

i

Forward

Reply |—>|

Reply (Lead)

| Reply |

Reply

Reply

ik

Fig. 6. A figure showing how search with AHBM can discover alternative
follow ups on the same e-mail. The lead was the input to the search query.

software was downloaded by analyzing recorded network
traffic. The downloadable installer, as well as the unpacked
files from the installer is used as a reference, while a
network packet capture file (PCAP) is used as the streamed
input. It is important to note that streaming in this context
does not refer to a continuous flow of bits, but rather a flow
of recorded network traffic sent to the matching function at
some defined interval or threshold.

Such capture and storage of network traffic is an aspect of
organizational forensic readiness that enables post-incident
investigation. A description of how network traffic may be
recorded in a forensic context is presented in Garfinkel (2002).
Finally, large scale network traffic storage and analysis is
gaining attention with big data technologies like packetpig
(PacketLoop, 2013) for, e.g., intrusion detection purposes.

In this experiment, a virtual machine is generating real
network traffic that is captured by a network sniffing tool
running on the host machine. The generated traffic is a mix of
web surfing and a download of the installer for a crypto-
graphic tool. The goal is to determine if the PCAP-files contains
the packets transferring any of the reference files, including
the installer. The used PCAP-file is 15 Megabytes large.

Matching the PCAP-files against the reference set yields
four results, where the type of the matched files and their
similarity score is shown in Table 3 below.

As Table 3 shows, there was a significant match on the
tool installer, indicating that the tool in fact was down-
loaded during the time frame the PCAP-file was generated.
The ability to prove that the installer is in fact present
within the capture network traffic may be sufficient for the
investigation objective. One way to increase the reliability
of the findings is to illustrate where in the network traffic
the matches reside. Fig. 7 below is an sddiff visualization of
the similarity between the PCAP-file and the installer file.

The narrow blue bars to the left and right of the wide bar
in Fig. 7 are false positive similarities, while the wide blue
bar indicates the position of the packets transferring the
cryptographic tool in the PCAP-file. There are two major
benefits of analyzing network traffic in this manner over
using conventional cryptographic hashes like MD5 and
SHA1. First, we do not have to preprocess the data to match
against several simultaneous sessions. Second, we can do

Fig. 7. Position of similarity between PCAP-file and installer file in reference
set indicating that the file was transferred in the middle of the traffic
recording session.

S24 PC. Bjelland et al. / Digital Investigation 11 (2014) S18-526

partial file transfers, i.e., where files are not completely
transferred, or not transferred in a single session.

Clustering - organizing an unknown input set

This final section of the practical scenarios of AHBM
usage will describe the clustering mode. A cluster is in this
context a group of at least two binary files where none of
the members have any similarity score to a member of
another cluster. As part of the research leading up to this
paper, a tool to easily generate these clusters was imple-
mented. The tool, called makecluster, takes a pipe-separated
file where each line is on the format fileA|fileB|similarity
score and generates one GraphML!'? file for each disjunct
cluster of similar files. The input format is compatible with
the standard sdhash output format. Splitting the results
from AHBM clustering like this makes it easier to process
large datasets, as each graph file only contains nodes that
are directly or indirectly connected. As it is easy to label
each cluster with, e.g., node count and edge count, it be-
comes easier for the analyst to sort and navigate the
generated clusters. Using this technique may save sub-
stantial amounts of computational resources when some
kind of measurements on the graph as the number of nodes
are reduced. It is also easier for humans to understand
small, rather than large graphs.

The data source for this experiment is a Contagio'’
malware set containing approximately 10,000 malicious
PDF documents. The dataset is publicly available, but
password protected.

All ten thousand documents were matched against each
other using sdhash and an edge was added between two
documents if they had a similarity score similar to, or above
10'%. The matching yielded 296 clusters. The largest cluster
contained almost 800 documents and 300,000 edges. Most
of the clusters were dense, meaning that most of the doc-
uments has a significant similarity score with each other, as
shown in Fig. 8.

Fig. 9 represents a cluster with more internal differences
than Fig. 8. The clusters are visualized using Gephi."®
Analyzing these clusters, it may be possible to determine
the source of a document, e.g., the adversary behind some
malware. However, a deeper analysis is needed in order to
conclude on these matters.

Clustering - a closer look

Considering the cluster in Fig. 9, a closer look was taken
at the three documents A, B and C. The three documents
were chosen because of their topology and that they
represent outliers within the cluster. Some of their meta-
data are listed in Table 4 and similarity scores are listed in
Table 5.

10 http://graphml.graphdrawing.org.

1 http://contagiodump.blogspot.com.

12 Similarity threshold 10 was chosen to allow for weaker connections
within the clusters than we allowed in the search experiment.

13 http://gephi.org.

\ O
e 0]

Fig. 8. Cluster of similar malicious PDF documents. The thicker the edge, the
higher the similarity score among the two documents.

Running sddiff on the documents gives the similarity
diagrams in Figs. 10-12.

The pictures above suggest that all documents share the
same header and footer. In addition, document A shares
two regions with B and one region with C. A region may
consist of one or more PDF objects. B and C do not share any
objects other than the header and footer. To further analyze
the similarity, we need to extract the relevant regions.
PDFStreamDumper (Zimmer, 2010) is used to decompress
and extract data stream objects from the documents. When
manually comparing objects from the different documents
with each other, a pattern emerges:

e The documents contain identical JavaScript block
headers.

e The documents contain JavaScript code of same format,
but using different variable and function obfuscations.

e The documents contain identical, relatively large, blobs
of repetitive data.

The JavaScript blocks found in these documents are too
small for sdhash to compare individually. However, based

<A
\/

=
7.

\
N\

-
/N
<

¥
g
Do

\
X

NS
v

Fig. 9. Cluster of similar malicious PDF documents. The thicker the edge, the
higher the similarity score among the two documents. The three nodes A, B
and C are selected for further analysis.

http://graphml.graphdrawing.org
http://contagiodump.blogspot.com
http://gephi.org

PC. Bjelland et al. / Digital Investigation 11 (2014) S18-526 S25

Table 4

Excerpt of metadata for PDF documents in A, B and C.
ID shalsum [0:30] Size
A c4d4fc7d8a69f74856d64809f596e3... 7522 bytes
B 0933c9020001624d192a0adcb2615... 7530 bytes
C 65e37c684c47526f4109b6f7ae3982... 7517 bytes

Table 5
Similarity scores among documents A, B and C.

Document 1 Document 2 Similarity score
A B 027
A C 010
B C 001

Fig. 10. sddiff on A and B. Blue bars represent position and size of similar
data streams. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

on the overall similarity and additional analysis of common
structure and PDF stream objects, it is assumed that all
three documents have the same origin.

AHBM tools may, as the results indicate, be able to
detect malware by comparing unknown documents to
known malware. Malware has numerous ways to hide their
nature, e.g., through mutation and packers. A deeper study
on how AHBM can be used to detect and classify malware is
a subject for further research. However, the possibility of
automatically organizing documents into clusters ought to
greatly improve analysis when faced with an unknown
dataset.

Further work

Of the more appealing subjects for further research is a
thorough study of how AHBM can be applied when
analyzing malware. The impact various techniques for
masquerading malware have on Approximate Matching
technique is not reviewed. Such analysis should both
consider malicious documents, such as PDFs and Office
macros, as well as malicious executables. An interesting
research question is whether or not it is possible to deter-
mine the origin of an unknown malware based on its binary
representation.

Fig. 11. sddiff on A and C.

Fig. 12. sddiff on B and C.

Another subject for further research is to extends the
work done by Roussev and Quates (2012), assessing the
possibilities and challenges when applying AHBM on multi-
terabyte, potentially petabyte scale datasets. Further, if
Approximate Matching is to be presented as evidence in a
court of law, there is a need to discuss and evaluate the
necessary confidence of these tools with regards to false
positives and false negatives in a legal context. There has also
been limited focus on how forensic soundness can be ensured
during digital investigations using Approximate Matching.

Finally, as Approximate Matching still is a computa-
tionally expensive operation, and investigators usually are
in a hurry, considerable attention should be given to how
the matching may be distributed across multiple com-
puters. Current approaches involves using graphical pro-
cessing units (GPU), however, existing technologies within
distributed computing should enable lower latency on
matching and thereby also data exploration of large
datasets.

Conclusions

The primary findings in this study have been the defi-
nition of three modes in AHBM: searching, streaming and
clustering. The experiments have shown that the Approxi-
mate Matching technique is well suited for the task to
discover additional information based on syntactical simi-
larity. Tests on the Enron dataset revealed that it is possible
to discover alternative conversations by matching an email
with the dataset. Experiments using sdhash as a streaming
function showed that the technique is also a good fit for
monitoring continuous streams of data, such as network
traffic, for traces of interesting data. Finally, experiments
with clustering a dataset consisting of malicious PDF doc-
uments showed that Approximate Matching techniques
has a potential for organizing and classifying unknown
data. A deeper analysis revealed that sdhash does not detect
similarity among obfuscated JavaScript files, but it may still
detect similarities among malicious documents based on
other parts of the documents.

Regarding the use of AHBM to search for emails in the
Enron dataset, it is in order to question whether the ben-
efits justify the additional computational complexity
compared to using, e.g., string search. Simple string search
may yield the same results as Approximate Matching, but it
also puts a larger cognitive burden on the analyst, who
without Approximate Matching has to determine what
parts of an email to search for. This reduces effectiveness
and also increases the risk of human error during the
investigation.

Finally, the implemented tool sddiff may be helpful to
better evaluate the significance of similarity between two
files, however it does ignore potentially important meta-
data such as timestamps, filenames and sizes. It should
therefore be used in addition to existing file analysis
techniques.

References

Bloom BH. Space/time trade-offs in hash coding with allowable errors.
Commun ACM 1970;13(7):422-6.

http://refhub.elsevier.com/S1742-2876(14)00008-5/sref1
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref1

S26 PC. Bjelland et al. / Digital Investigation 11 (2014) S18-526

Breitinger F, Stivaktakis G, Baier H. Frash: a framework to test algorithms
of similarity hashing. Digit Investig 2013;10:S50-8.

Buchmann J. Introduction to cryptography. Springer; 2004.

Carrier B. Sleuthkit autopsy home page http://www.sleuthkit.org/
autopsy/; 2012 [Accessed 20.02.14].

DigitalCorpora.org. 57 patents scenario disk images http://digitalcorpora.
org/corpora/scenarios/m57-patents-scenario; 2009 [Accessed:
20.02.14].

Flaglien A, Franke K, Arnes A. Identifying malware using cross-evidence
correlation. In: Advances in Digital Forensics VII. Springer; 2011.
pp. 169-82.

Garfinkel S. Network forensics: tapping the internet; 2002.

Garfinkel SL. Digital media triage with bulk data analysis and bulk_
extractor. Comput Secur 2013;32:56-72.

Hamming RW. Error detecting and error correcting codes. Bell Syst Tech]
1950;29(2):147-60.

Klimt B, Yang Y. Introducing the Enron Corpus. In: CEAS; 2004.

Kornblum J. Identifying almost identical files using context triggered
piecewise hashing. Digit Investig 2006;3:91-7.

Levenshtein VI. Binary codes capable of correcting deletions, insertions
and reversals. In: Soviet Physics Doklady, vol. 10; 1966. p. 707.

Meixner A, Uhl A. Robustness and security of a wavelet-based CBIR
hashing algorithm. In: Proceedings of the 8th workshop on Multi-
media and security. ACM; 2006. pp. 140-5.

Microsoft. PhotoDNA fact sheet http://www.microsoft.com/en-us/news/
presskits/photodna/docs/PhotoDNAFS.doc; 2009 [Retrieved 20.02.14].

Microsoft. 500 million friends against child exploitation http://blogs.
technet.com/b/microsoft_blog/archive/2011/05/19/500-million-
friends-against-child-exploitation.aspx; 2011 [Accessed 20.02.14].

PacketLoop. Packetpig project page https://github.com/packetloop/
packetpig; 2013 [Accessed 20.02.14].

Roussev V. Data fingerprinting with similarity digests. In: Advances in
Digital Forensics VI. Springer; 2010. pp. 207-26.

Roussev V. An evaluation of forensic similarity hashes. Digit Investig
2011,;8:534-41.

Roussev V, Quates C. Content triage with similarity digests: the m57 case
study. Digit Investig 2012;9:5S60-8.

Zauner C. Implementation and benchmarking of perceptual image hash
functions [Master’s thesis]. Hagenberg Campus: Upper Austria Uni-
versity of Applied Sciences; 2010. p. 43.

Zimmer D. PDFStreamDumper project page http://sandsprite.com/blogs/
index.php?uid=7&pid=57; 2010 [Accessed 23.11.14].

http://refhub.elsevier.com/S1742-2876(14)00008-5/sref2
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref2
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref3
http://www.sleuthkit.org/autopsy/
http://www.sleuthkit.org/autopsy/
http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref6
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref6
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref6
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref7
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref8
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref8
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref9
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref9
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref10
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref11
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref11
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref12
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref12
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref13
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref13
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref13
http://www.microsoft.com/en-us/news/presskits/photodna/docs/PhotoDNAFS.doc
http://www.microsoft.com/en-us/news/presskits/photodna/docs/PhotoDNAFS.doc
http://blogs.technet.com/b/microsoft_blog/archive/2011/05/19/500-million-friends-against-child-exploitation.aspx
http://blogs.technet.com/b/microsoft_blog/archive/2011/05/19/500-million-friends-against-child-exploitation.aspx
http://blogs.technet.com/b/microsoft_blog/archive/2011/05/19/500-million-friends-against-child-exploitation.aspx
https://github.com/packetloop/packetpig
https://github.com/packetloop/packetpig
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref17
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref17
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref18
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref18
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref19
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref19
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref20
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref20
http://refhub.elsevier.com/S1742-2876(14)00008-5/sref20
http://sandsprite.com/blogs/index.php?uid=7%26pid=57
http://sandsprite.com/blogs/index.php?uid=7%26pid=57
http://sandsprite.com/blogs/index.php?uid=7%26pid=57
http://sandsprite.com/blogs/index.php?uid=7%26pid=57

	Practical use of Approximate Hash Based Matching in digital investigations
	Introduction
	What is similarity?
	Approximate Matching
	Perceptual similarity
	Content similarity
	Hash based similarity

	Modes of Approximate Hash Based Matching
	Searching
	Streaming
	Clustering

	Practical scenarios with AHBM
	Search – alternative versions detection
	Streaming – file transfer detection
	Clustering – organizing an unknown input set
	Clustering – a closer look

	Further work
	Conclusions
	References

