Biperfect Hopf Algebras

Pavel Etingof ${ }^{1}$
Denartment of Mathematics Rm 2. 165 MIT Cambridos Mascachusetts 02130

JRE

Shlomo Gelakı²

MSRI, 1000 Centennial Drive, Berkeley, California 94720
E-mail: shlomi@msri.org
Robert Guralnick ${ }^{1,2}$
Department of Mathematics, USC, Los Angeles, California 90089-1113
E-mail: guralnic@math.usc.edu
and

Jan Saxl
D.P.M.M.S., Cambridge University, Cambridge CB2 1SB, United Kingdom

E-mail: J.Saxl@dpmms.cam.ac.uk
Communicated by Susan Montgomery
Received December 8, 1999

1. INTRODUCTION

Recall that a finite group is called perfect if it does not have non-trivial one-dimensional representations (over \mathbb{C}). By analogy, let us say that a finite-dimensional Hopf algebra H over \mathbb{C} is perfect if any one-dimensional H-module is trivial. Let us say that H is biperfect if both H and H^{*} are perfect. Note that by $[\mathrm{R}], H$ is biperfect if and only if its quantum double $D(H)$ is biperfect.

[^0]It is not easy to construct a biperfect Hopf algebra of dimension >1. The goal of this note is to describe the simplest such example we know.
The biperfect Hopf algebra H we construct is semisimple. Therefore, it yields a negative answer to [EG, Question 7.5]. Namely, it shows that [EG, Corollary 7.4], stating that a triangular semisimple Hopf algebra over \mathbb{C} has a non-trivial group-like element, fails in the quasitriangular case. The counterexample is the quantum double $D(H)$.

2. BICROSSPRODUCTS

Let G be a finite group. If G_{1} and G_{2} are subgroups of G such that $G=G_{1} G_{2}$ and $G_{1} \cap G_{2}=1$, we say that $G=G_{1} G_{2}$ is an exact factorization. In this case G_{1} can be identified with G / G_{2}, and G_{2} can be identified with G / G_{1} as sets, so G_{1} is a G_{2}-set and G_{2} is a G_{1}-set. Note that if $G=G_{1} G_{2}$ is an exact factorization, then $G=G_{2} G_{1}$ is also an exact factorization by taking the inverse elements.

Following Kac [K] and Takeuchi [T], one can construct a semisimple Hopf algebra from these data as follows. Consider the vector space $H:=\mathbb{C}\left[G_{2}\right]^{*} \otimes \mathbb{C}\left[G_{1}\right]$. Introduce a product on H by

$$
\begin{equation*}
(\varphi \otimes a)(\psi \otimes b)=\varphi(a \cdot \psi) \otimes a b \tag{1}
\end{equation*}
$$

for all $\varphi, \psi \in \mathbb{C}\left[G_{2}\right]^{*}$ and $a, b \in G_{1}$. Here • denotes the associated action of G_{1} on the algebra $\mathbb{C}\left[G_{2}\right]^{*}$, and $\varphi(a \cdot \psi)$ is the multiplication of φ and $a \cdot \psi$ in the algebra $\mathbb{C}\left[G_{2}\right]^{*}$.

Identify the vector spaces

$$
\begin{aligned}
H \otimes H & =\left(\mathbb{C}\left[G_{2}\right] \otimes \mathbb{C}\left[G_{2}\right]\right)^{*} \otimes\left(\mathbb{C}\left[G_{1}\right] \otimes \mathbb{C}\left[G_{1}\right]\right) \\
& =\operatorname{Hom}_{\mathbb{C}}\left(\mathbb{C}\left[G_{2}\right] \otimes \mathbb{C}\left[G_{2}\right], \mathbb{C}\left[G_{1}\right] \otimes \mathbb{C}\left[G_{1}\right]\right)
\end{aligned}
$$

in the usual way, and introduce a coproduct on H by

$$
\begin{equation*}
(\Delta(\varphi \otimes a))(b \otimes c)=\varphi(b c) a \otimes b^{-1} \cdot a \tag{2}
\end{equation*}
$$

for all $\varphi \in \mathbb{C}\left[G_{2}\right]^{*}, a \in G_{1}$, and $b, c \in G_{2}$. Here • denotes the action of G_{2} on G_{1}.

Theorem $2.1[\mathrm{~K}, \mathrm{~T}]$. There exists a unique semisimple Hopf algebra structure on the vector space $H:=\mathbb{C}\left[G_{2}\right]^{*} \otimes \mathbb{C}\left[G_{1}\right]$ with the multiplication and comultiplication described in (1) and (2).

The Hopf algebra H is called the bicrossproduct Hopf algebra associated with G, G_{1}, G_{2} and is denoted by $H\left(G, G_{1}, G_{2}\right)$.

Theorem 2.2 [M]. $H\left(G, G_{2}, G_{1}\right) \cong H\left(G, G_{1}, G_{2}\right)^{*}$ as Hopf algebras.
We are ready now to prove our first result.
Theorem 2.3. $H\left(G, G_{1}, G_{2}\right)$ is biperfect if and only if G_{1}, G_{2} are selfnormalizing perfect subgroups of G.

Proof. It is well known that the category of finite-dimensional representations of $H\left(G, G_{1}, G_{2}\right)$ is equivalent to the category of G_{1}-equivariant vector bundles on G_{2}, and hence that the irreducible representations of $H\left(G, G_{1}, G_{2}\right)$ are indexed by pairs (V, x) where x is a representative of a G_{1}-orbit in G_{2}, and V is an irreducible representation of $\left(G_{1}\right)_{x}$, where $\left(G_{1}\right)_{x}$ is the isotropy subgroup of x. Moreover, the dimension of the corresponding irreducible representation is $\operatorname{dim}(V)\left|G_{1}\right| /\left(G_{1}\right)_{x} \mid$. Thus, the one-dimensional representations of $H\left(G, G_{1}, G_{2}\right)$ are indexed by pairs (V, x) where x is a fixed point of G_{1} on $G_{2}=G / G_{1}$ (i.e., $x \in N_{G}\left(G_{1}\right) / G_{1}$), and V is a one-dimensional representation of G_{1}. The result follows now using Theorem 2.2.

3. THE EXAMPLE

By Theorem 2.3, in order to construct an example of a biperfect semisimple Hopf algebra, it remains to find a finite group G which admits an exact factorization $G=G_{1} G_{2}$, where G_{1}, G_{2} are self-normalizing perfect subgroups of G. Amazingly the Mathieu group $G:=M_{24}$ of degree 24 provides such an example! Once the example is found, it is not hard to verify. Still for the reader's convenience we will give a complete argument below.

We suspect that not only is M_{24} the smallest example but it may be the only finite simple group with a factorization with all the needed properties.

Theorem 3.1. The group G contains a subgroup $G_{1} \cong \operatorname{PSL}(2,23)$, and a subgroup $G_{2} \cong\left(\mathbb{Z}_{2}\right)^{4} \rtimes A_{7}$ where A_{7} acts on $\left(\mathbb{Z}_{2}\right)^{4}$ via the embedding $A_{7} \subset A_{8}=S L(4,2)=\operatorname{Aut}\left(\left(\mathbb{Z}_{2}\right)^{4}\right)$. These subgroups are perfect self-normalizing and G admits an exact factorization $G=G_{1} G_{2}$. In particular, $H\left(G, G_{1}\right.$, G_{2}) is biperfect.

Proof. The order of G is $2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$, and G has a transitive permutation representation of degree 24 with point stabilizer $C:=M_{23}$. It is known (see [AT]) that G contains a maximal subgroup $G_{1} \cong \operatorname{PSL}(2,23)$ (the elements of $\operatorname{PSL}(2,23)$ are regarded as fractional linear transformations on the projective line $\mathbb{P}^{1}\left(F_{23}\right)$) and that G_{1} is transitive in the degree 24 representation. Thus, $G=G_{1} C$.

Lemma 1. G_{1} is perfect and self-normalizing.
Proof. This is clear, since G_{1} is maximal and not normal in the simple group G.

It is known that C contains a maximal subgroup $G_{2} \cong\left(\mathbb{Z}_{2}\right)^{4} \rtimes A_{7}$ (see [AT]).

Lemma 2. G_{2} is perfect.

Proof. Note that $E:=\left(\mathbb{Z}_{2}\right)^{4}$ is the unique minimal normal subgroup of G_{2}, E is noncentral, and G_{2} / E is simple. Thus, G_{2} is perfect.

Lemma 3. G_{2} is self-normalizing.
Proof. We note that G_{2} is a subgroup of $F:=E \rtimes A_{8}$ which is a maximal subgroup of G (see [AT]). Since E is the unique minimal normal subgroup of G_{2}, it follows that $N_{G}\left(G_{2}\right)$ is contained in $N_{G}(E)$. Since F normalizes E and is maximal, $F=N_{G}(E)$. Since G_{2} is a maximal subgroup of F and is not normal in F, G_{2} is self-normalizing.

Lemma 4. $\quad G=G_{1} G_{2}$ is an exact factorization.
Proof. Since $|G|=\left|G_{1}\right|\left|G_{2}\right|$, it suffices to show that $G=G_{1} G_{2}$. Let T be the normalizer of a Sylow 23-subgroup. So T has order $11 \cdot 23$ (T is at least this large since this is the normalizer of a Sylow 23-subgroup of G_{1}; on the other hand, this is also the normalizer of a Sylow 23 -subgroup in A_{24} which contains G). The subgroup of order 23 has a unique fixed point which must be T-invariant in the degree 24 permutation representation of G. Moreover, T is also contained in some conjugate of G_{1} (since the normalizer of a Sylow 23-subgroup of G_{1} has the same form and all Sylow 23 -subgroups are conjugate). So replacing G_{1} and C by conjugates, we may assume that $T \leq G_{1} \cap C$.

Since T and G_{2} have relatively prime orders and $|C|=|T|\left|G_{2}\right|$, it follows that $C=T G_{2}$. Thus, $G=G_{1} C=G_{1} T G_{2}=G_{1} G_{2}$, as required.

Finally, by Theorem 2.3, $H\left(G, G_{1}, G_{2}\right)$ is biperfect. -
Remark 3.2. One characterization of the Mathieu group is that it is the automorphism group of a certain Steiner system. The group G_{2} is the stabilizer of a flag in the Steiner system.

Remark 3.3. Given an example of a biperfect Hopf algebra H, one has also an example of a self-dual biperfect Hopf algebra. Indeed, $H \otimes H^{*}$ is such a Hopf algebra.
Question 3.4. (1) Does there exist a biperfect Hopf algebra which is not semisimple? Which has odd dimension?
(2) Do there exist biperfect Hopf algebras of dimension less than $\left|M_{24}\right|$?
(3) Does there exist a nonzero finite-dimensional biperfect Lie bialgebra (see, e.g., [ES, Sects. 2, 3] for the theory of Lie bialgebras), i.e., a Lie bialgebra \mathbf{g} such that both \mathbf{g} and \mathbf{g}^{*} are perfect Lie algebras?
(4) Does there exist a nonzero quasitriangular Lie bialgebra for which the cocommutator is injective?

Remark 3.5. (1) A non-semisimple biperfect Hopf algebra H must have even dimension, since $S^{4}=I$ and $\operatorname{tr}\left(S^{2}\right)=0$. Note that an odd-dimensional biperfect Hopf algebra cannot be of the form $H\left(G, G_{1}, G_{2}\right)$ since groups of odd order are solvable.
(2) A positive answer to question (3) implies a positive answer to question (4) by the double construction.
(3) Questions (3) and (4) are equivalent to the same questions about QUE algebras, by the results of [EK].

REFERENCES

[AT] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, "Atlas of Finite Groups," Clarendon, Oxford, 1985.
[EG] P. Etingof and S. Gelaki, The classification of triangular semisimple and cosemisimple Hopf algebras over an algebraically closed field, Internat. Math. Res. Notices 5 (2000), 223-234.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie bialgebras, II, Selecta Math. 4 (1998), 213-231.
[ES] P. Etingof and O. Schiffmann, "Lectures on Quantum Groups, Lectures in Mathematical Physics," International Press, Boston, MA, 1998.
[K] G. I. Kac, Extensions of groups to ring groups, Math. USSR. Sb. 5, No. 3 (1968).
[M] S. Majid, Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, J. Algebra 130 (1990), 17-64.
[R] D. E. Radford, Minimal quasitriangular Hopf algebras, J. Algebra 158 (1993), 285-315.
[T] M. Takeuchi, Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra 9, No. 8 (1981), 841-882.

[^0]: ${ }^{1}$ Partially supported by the NSF.
 ${ }^{2}$ The authors thank MSRI for its support.

