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0. Introduction 

A median of a family of vertices in a graph is any vertex whose distance-sum to 
that family is minimum. In the framework of metric spaces the problem of 
minimizing a distance-sum is often referred to as the Fermat problem. On the other 
hand, medians have been studied from a purely order-theoretic or combinatorial 
point of view (for instance, in statistics, or in Jordan’s work [12] on trees). The aim 
of this paper is to investigate the mutual relationship of the metric and the ordinal/ 
combinatorial approaches to the median problem in the class of median graphs. A 
connected graph is a median graph if any three vertices admit a unique median (see 
Avann [l]). Note that trees and the covering graphs of distributive lattices are 
median graphs. Very little is known about medians in arbitrary graphs (cf. Slater 
[20]); so far, only trees (Zelinka [22], and many others) and the covering graphs of 
distributive lattices (Barbut [4]) have been considered. In both cases we get that (i) 
the medians of any family form an interval (a path in a tree, an order-theoretic 
interval in a distributive lattice), and (ii) medians of odd numbered families are 
unique (see Slater [19] for trees, and Barbut [4] for distributive lattices). These 
results point to the fact that (i) and (ii) must be true for any median graph. 

After recalling some basic definitions and facts concerning median graphs and 
median semilattices (for further information, see Bandelt and Hedlikova [3]), we 
establish (i) and (ii) for arbitrary median graphs. Our results are based on theorems 
of Avann, Sholander, and Barbut. In trees medians have nice local properties (cf. 
[7]). Indeed, median sets are related to mass centers (Zelinka [22]) and security 
centers (Slater [18]). In Section 3 this is extended to median graphs. 

The study of medians applies to social choice theory (see Barbut 151, and 
Barthelemy and Monjardet [8]). The median procedure is strongly related to the 
simple majority rule: the median of a family (A,, . . . , Azk+ ,) of subsets of a set X 
may be written as 

U n Ai (Barbut’s formula). 
Ks{1....,2k+l) isK 

K =k+l 
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On the other hand, given any family n of vertices in a graph, one may consider 
vertices x such that for any other vertex y, a majority of vertices in z is nearer to 
x than to y. In general, such vertices .Y (called Condorcet vertices) need not exist, 
that is, we have a paradox of voting. For trees, however, Condorcet vertices of any 
family rt exist and coincide with the medians of n (Wendell and McKelvey [21]). 
Hence in this case the lattice-theoretic (alias set-theoretic) and the metric (alias 
graph-theoretic) interpretations of the majority rule are equivalent. In the final 
section we show that this equivalence in fact extends to cubefree median graphs (and 
characterizes the latter). 

1. Preliminaries 

I. 1. Graphs and posets 

All graphs under consideration are simple, loopless, connected, and are not 
necessarily finite. Let G= (X, E) be a graph with vertex set X and edge set E. A 
shortest path joining two vertices u and u is called a geodesic in G. The (geodesic) 
distance d is defined as usual: 

d(u, IJ) = length of a geodesic joining u and u. 

For any two vertices u and u the following set is called an interval in G: 

In other words, the interval Z(u, u) consists of all vertices on geodesics joining u and 
U. 

Partially ordered sets (or posets, for short) are usually represented by diagrams. 
Recall that in a poset (X, I) an element u is said to cover another element u if u < u 
and u < t < u for no element t. If (X, I) is discrete, that is, there are no infinite 
bounded chains, then the covering graph G = (X, E) of (X, 5) is the graph whose ver- 
tices are the elements of (X, I) and whose edges are those pairs {u, u}, U, u E X, satis- 
fying u covers u or u covers u. Every bipartite graph G occurs as the covering graph 
of some poset: the canonical order I, of G, with respect to a fixed vertex a, is 
defined by 

u I, u if and only if u E Z(a, u); 

then G is the covering graph of (X, -B , -Z ) and for US, u, the order-theoretic interval 
[u, u] coincides with Z(u, u). Note that a is the least element of (X, I,). Moreover, 
(X, I~) is a graded poset, that is, it admits a real-valued function h on X such that 
h(u) = h(u) + 1 whenever u covers U; h is called a rank function. For further informa- 
tion on these matters we refer the reader to Duffus and Rival [9], and hlulder [15]. 
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1.2. Medians 

For any set X, let X* denote the set Uneh X” of all finite sequences of elements 
of X. X* is a monoid with respect to concatenation 0. In a graph G = (X, E), the 
distance (alias remoteness) of a vertex u and a family ~=(a,, . . ..a.)~x* is given 

by 

D(u, n) = i d(u, aJ 
i=l 

Any vertex m that minimizes this sum is called a median of rr: 

D(m, n) = min D(u, n). 
UEX 

The set of all medians of TI is called the median set of 71 and is denoted by Med(Tc). 
In general, medians are not unique. Observe that for any pair n=(a,b), the 

median set Med(rr) coincides with the interval 1(a,b). Graphs in which medians of 
triples are unique will be the main subject of this paper: G = (X, E) is a median graph 
if every family of three vertices admits just one median. Examples of median graphs 
are provided by trees and the covering graphs of discrete distributive lattices. Note 
that a graph G is median if and only if for any three vertices u, u, w the intersection 
Z(u, u)nZ(u, w)nZ(w, u) is a singleton, see Avann [ 11. Further references concerning 
median graphs are Mulder and Schrijver [ 161, Mulder [ 151, Bandelt and Hedlikova 
[3], and Bandelt [2]. 

I .3. Median semilattices 

For median graphs the canonical orders so play a crucial role. Recall that a 
median semilattice is a meet semilattice (X, I) such that (i) every principal ideal 
{xlx~a} is a distributive lattice, and (ii) any three elements have an upper bound 
whenever each pair of them does. Note that a median semilattice is discrete if and 
only if all its intervals are finite. 

Proposition 1 (Avann [l]). The covering graph of any discrete median semilattice 
is a median graph, and conversely, every median graph gives a discrete median 
semilattice with respect to any canonical order q,. 

Proposition 2 (Sholander [17]). Every median semilattice (X, I) can be embedded 
in a distributive lattice (L, 5) such that 

(i) X is a lower set of (L, I), i.e. u SXE X implies u E X, and 
(ii) each element of L is the join of finitely many elements of X. 

We refer to the above embedding XGL as the Sholander embedding of X in L. 
Note that if X is discrete, so is L. For a discrete median semilattice, the median m 
of three vertices u, u, w of the covering graph is given by 

m=(uAu)v(uAw)V(uAw). 
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Hence the Sholander embedding Xc;L preserves medians of triples. Therefore in 
view of Propositions 1 and 2 every median graph can be isometrically embedded in 
the covering graph of some discrete distributive lattice. 

1.4. Barbut’s theorems 

In an old (1961), but recently (1980) published paper, Barbut [4] determines the 
median set of any family in a finite distributive lattice (X.0. For a family 
7z=(a,,..., aP) E X* write 

a(n)= v A Qi, 
KS{l.....PJ IEK 

‘K =I(p+Z)/Z] 

P(n)= A V Ui= V A ai. 
KS(l.....p} ieK KS{l....,P} ieK 

K = [(p + 2v21 ,.q=[(p+ 1)/2] 

If p is an odd integer, then &)=/3(n). 

Proposition 3 (Barbut [4], Monjardet [14]). In the covering graph of a finite 
distributive lattice, the median set of any family n of vertices is the (order-theoretic) 
interval [a(n), /?(lr)]. 

Proposition 4 (Barbut [4]). For a finite lattice (X, I) the following conditions are 
equivalent: 

(i) (X, I) is distributive. 
(ii) There exists an odd integer pr3 such that Med(n) is a singleton for all 

HEXP. 
(iii) Each odd numbered family of elements in X admits just one median. 

2. General properties of medians in median graphs 

2. I. Convexity 

A subset C of the vertex set X of a graph G is called (geodesically) convex if 
I(u, u) c C for all u, o E C. The convex hull of a set A E X is the least convex subset 
of X containing A. In a median graph, intervals are convex, and the convex hull 
of any finite set is finite. For a discussion of convexity in median graphs and median 
semilattices, see Mulder [ 151, Evans [lo], Bandelt and Hedlikova [3]. 

Lemma 1. Let G = (X, E) be a median graph. Then for any n = (a,, . . . , ap) E X* the 
set Med(n) is contained in the convex hull of al, . . . , ap. 

Proof. Let C be the convex hull of al, . . . ,a,, and let u be any vertex of G. Then 
there exists a unique vertex U’EC whose distance to u is minimal; moreover, 
d(u, a) =d(u, u’) + d(u’, a) for all a E C. Indeed, the element u’= a, ~-.-l\a, of the 
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semilattice (X, 5,) belongs to C and has the required property. Therefore 
D(u, TI) =p* d(u, u’) + D(u’, n), whence Med(n) c C. El 

In view of this lemma, any result concerning median sets in finite median graphs 
extends to the infinite case. 

2.2. Extending Barbut’s theorems 

Using the results of Avann and Sholander we are able to generalize Propositions 
3 and 4 to the case of arbitrary median graphs and discrete median semilattices. First 
we prove two easy lemmas. 

Lemma 2. In a median semilattice (X, s), the join of a finite set A c X exists when- 
ever each pair of elements of A is bounded above. 

Proof. Proceed by induction on n = IAl. If n I 3, then the assertion is true by the 
definition of a median semilattice. So, let n 24. Pick any x, y E A, xfy. By assump- 

tion XVY, V(A - {x}>, and VU - {Y}> exist. Therefore, x, y, and V(A - {x, y]) are 
pairwise bounded above, whence VA exists. El 

Lemma 3. Let G = (X, E) be any graph. Zf n, n’~ X* such that Med(rr) fl Med(n’) + 0, 
then Med(n 0 71’) = Med(n) fl Med(n’). 

Proof. Let u E Med(n 0 rc’) and u E Med(n) fl iMed(n’). Then D(u, n) ID(u, n), 
D(O,7r’)ID(U, n’), and D(u, rc 0 n’) cD(u, rc 3 n’). Hence D(u, 7~) + D(u, n’) = 

D(u, ROT(‘)ID(D, ROTC’)=D(D,~)+D(U,TI’)ID(U,~)+D(U,~’). Therefore u and u 
have equal distance to rr, n’, and rt 0 n’, respectively. Consequently, Med(n 3 n’) = 
Med(n)n Med(n’). cl 

This lemma holds, of course, for medians (and central points) in any metric space 

(Xd), cf. PI. 

Proposition 5. For a graph G = (X, E) the following conditions are equivalent: 
(i) Each odd numbered family of vertices in G admits a unique median. 

(ii) There exists an odd integer p = 2k+ 1 L 3 such that each family n E Xp 
admits a unique median. 

(iii) G is a median graph. 

Proof. (i) implies (ii): Trivial. 
(ii) implies (iii): It suffices to prove that if each member of X2k+1 admits a 

unique median, then so does each n E XZk- ‘. So, let n E XZk- ’ and a, b E ,Med(n). 
Then {a, b} c Med(n 0 (a, b)) by Lemma 3, whence a = b by assumption. 

(iii) implies (i): By Proposition 1, G is the covering graph of some median semi- 
lattice (X, I). This semilattice is embedded in a distributive lattice (L, 5) via 
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Sholander’s embedding (Proposition 2). Let n = (a,, . . . , ap) E Xp where p = 2k+ 1. 
The convex hull of {a,, . . . , up} in the covering graph of (L, 5) is the interval [a, 61 
where CI and b are the meet and the join of all a;, respectively. By Lemma 1, any 
median of n in the covering graph of (L:, 0 is contained in the interval [a, b]. By 
Proposition 3, the median of 71 in the finite distributive lattice [a, 61 is unique and 
given by the join a(n) of the elements ArsK ai where K runs through all (k+ l)- 
subsets of { 1, . . . , p}. Hence o(n) is the unique median of 7c in the covering graph 
of (L, 5). Since this graph contains G as an isometric subgraph, it just remains to 
show that (r(rr) EX. Now, any two (k+ I)-subsets of { 1, . . . , p) intersect, and thus 
the set {AieKaiIK~{l,...,p}, IKI=k+l} is pairwise bounded above in (X.5). 
Hence by Lemma 2, a(n) belongs to X. We conclude that every rr eXzk+’ admits 
a unique median, completing the proof. 0 

By a result in [2], a discrete semilattice is median if and only if its covering graph 
is median. Combining this with Proposition 5, we arrive at the following generaliza- 
tion of Barbut’s theorem (Proposition 4): 

Corollary 1. For a discrete semilattice (X, CE) the following conditions are equi- 
valen t: 

(i) (X, I) is a median semilattice. 
(ii) There exists an odd integer pr3 such that Med(n) is a singleton for ail 

REXP. 
(iii) Each odd numbered family of eiments in X admits just one median. 

From the proof of Proposition 5 we obtain the following result. 

Corollary 2. Let (X, 5) be a discrete median semilattice. Then for any famil_v 
n=(a,,...,ap)EXP, 

m= V A ai 
KE(I....,p,) iEK 

IK =[(p+WZl 

is a median of II in the covering graph of (X, 5). 

In order to obtain the corresponding generalization of Proposition 3, one cannot 
just use an arbitrary canonical order of the given median graph. In fact, /3(n) 
defined as in 1.4 may not exist in a median semilattice (X, I). Nevertheless, we still 
have the following theorem. 

Proposition 6. Let G= (X, E) be a median graph. Then for any family 
n=(a,,..., ap) of vertices the median set Med(lr) is some interval I(a(n), P(n)) in G. 
The elements a(n) and /l(n) are determined in the semilattice (X, sap) by the 
formulas 
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Proof. If PEK, then AreK ai=a, is the least element of (X, +). Hence all the 
joins may be taken over subsets K of { 1, . . . , p-l). Ifpisodd, thena(n)=P(n)and 
Med(Tc) = {o(n)) by Proposition 5. In order to prove the assertion for even integers 
p, use Proposition 3 and proceed similarly as in the proof of Proposition 5. The 
details are left to the reader. 0 

3. Local properties of medians in median graphs 

3.1. Local medians 

Let G = (X, E) be any graph. For a vertex x of G, let N(x) denote the set of all 
vertices y of G adjacent to x. We say that x is a local median of the family n E X* 
if D(x, n) 5 min,,,, D( y, n). The set Med,,,(n) of all local medians of rc is called 
the local median set of 71. Trivially, every median is a local median, but (in general) 
not vice versa. Consider, for instance, the graph of Fig. 1. Then the family z con- 
sisting of the four vertices indicated by “0” in the figure admits a local median 
which is not a median. 

6 

8 

Fig. 1. 

Local medians have been considered in finite trees [7] and the covering graphs of 
finite semimodular semilattices 161. 
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3.2. Local medians in discrete semimodular semilattices 

A discrete (meet) semilattice (X, I) is (lower) semimodular if, for every x, y E X, 
xvy covers x and y implies x and y cover xr\y. If (X, I) is semimodular, then the 
geodesic distance d in the covering graph G = (X, E) of (X, r) is determined by any 
rank function h on (X, 5): 

d(x, Y) =4x, XAY) + d(xAy,y) 

= h(x) + h(y) - 2h(XA y) (cf. Monjardet [13]). 

Given any semilattice (X, I), n = (aI, . . . , ap) E Xp, and x, y E X, we denote by 
n[x, y] the number of indices i= l,...,p such that xAai=yAaj. 

Lemma 4 ([6]). Let (X, 5) be a discrete semimodular semilattice, and let R E XP. 
Then x is a local median of R in the covering graph G of (X, I) if and only u, for 
each y E N(x), R[X, y] 1 +p whenever y covers x, and n[x, y] 5 +p whenever x covers y. 

Proof (cf. [6]). For adjacent vertices x and y of G we get 

n 

D(.&TT)-D(y,n)=p(h(x)-h(y))-2 2 h(xAaJ-h(yAai) 
i=l 

-p - 2(n[x, y] -p) =p - 2n[x, y] if y covers x, = 
P-2(P-dx,Yl)=27dx,Yl-P if x covers y, 

whence the result. 0 

3.3. Local medians in a median graph 

In the covering graph of a modular lattice there may exist local medians which 
are not medians (cf. Fig. 1). However, in median graphs, this cannot occur: 

Proposition 7. Let G= (X, E) be a median graph. Then for any family 
7r=(al,..., ap) of vertices we get Med(n) = Med,,,(n). 

Proof. Let XE Med,&n), and consider the semilattice (X, 5.J. Suppose that there 
exists a (k+ 1)-subset K of { 1, . . . , p} where k= [i_p] such that xf /\iaK ai in 
(X, I,). For any YE N(X) with ys A\isK ai we get 

D(y,n)sD(x,n)-(k+l)+(p-k-1) 

= D(x, n) +p - 2(k + 1) < D(x, n), 

a contradiction. Therefore x= AipK ai for all (k+ 1)-subsets K of { 1, . . . , P>, 
whence by Corollary 2, xEMed(n). 3 
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Let G = (X, E) be a median graph, and let II = (a,, . . . , ap) E Xp. For x, y E X, put 

Since G is bipartite, we have n(x, y) + n(y, x) =p. If x and y are adjacent, then for 
any vertex a, d(x, a) < d(y, a) if and only if x E I(a, y). The n-branch weight of a 
vertex x is defined by 

W(x, n) = max rr(y, x). 
y E .VV) 

Proposition 8. Let G = (X, E) be a median graph, and let TC = (a,, . . . , ap) be any 
family of vertices of G. For any vertex x the following conditions are equivalent: 

(9 x is a median of n. 
(ii) n(x, y) 2 +p for all y E N(x). 

(iii) W(x, 71) I +p. 

(iv) W(x, n) is minimal. 

Proof. Let x be any vertex of G. Consider the median semilattice (X, I,). Then for 
any acX and YEN(X), we get that x=a~x=a~y if and only if x~l(a, y), whence 
II[X, y] = n(x, y) in (X, I,). Now, median semilattices are semimodular, and 
therefore, by Lemma 4 and Proposition 7, x E Med(n) if and only if n(x, y) > +p for 
all YE N(x). Obviously, W(x, n)~+p if and only if n(x, y)?+p for all _VE N(x). 
Hence (i), (ii), and (iii) are equivalent. If x is not a median of n, then W(x, n)>+p 
by (iii), whence W(x, II) is not minimal. So, if IMed(n)I = 1, we are done. Otherwise, 
for any adjacent vertices x and y in Med(n) we get n(x, y), n(y, x)z+p by (ii), and 
thus n(x, y) = n( y, x) = +p. Consequently, W(x, n) = +p = W( y, n). Since Med(n) is an 
interval and thus induces a connected graph, we infer that W(x, n) = fp for all 
XE Med(rr) whenever IMed(n)l> 1. We conclude that, in any case, the medians of 
n are exactly the vertices with minimal n-branch weight. El 

In the case of trees Proposition 8 summarizes some well-known characterizations 
of the centroid. For instance, Propositions 6 and 8 imply all the results in Section 
2 of Slater’s paper [19]. In particular, if G is a finite tree and rc is the family of all 
vertices of G, then (iii)e(iv) of Proposition 8 gives the classical result of Jordan 
[12], while (i)e(iv) gives the theorem of Zelinka [22]. 

4. Medians vs. Condorcet vertices 

4.1. Condorcet vertices 

Let G = (X, E) be a graph, and let II = (at, . . . , ap) E Xp. Then a vertex x of G is 
called a Condorcet vertex of II if n(x, y) L n( y, x) for all y E X. A related concept, the 
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security center of a finite graph, was studied by Slater [lS]. The security center of 
n consists of all vertices x of G for which 

S(x, n) = min (n(x, v) - 7r(r, x)) 
Yex 

X#Y 

is maximal. Clearly, x is a Condorcet vertex of n if and only if S(x, n)?O. Hence, 
if there exists a Condorcet vertex of 71, then the security center of n coincides with 
the Condorcet set of rr (i.e. the set of all Condorcet vertices of n). 

4.2. Cubefree median graphs 

The Condorcet set of a finite tree is just the median set, see [21]. For a related 
result, see [l 11. Hence the security center and the median set of a finite tree coincide, 
see [18]. On the other hand, by (i) d (ii) of Proposition 8, medians of any family in 
a median graph are ‘local’ Condorcet vertices, and vice versa. All this may suggest 
that for median graphs Condorcet sets and median sets are the same. However, this 
is not so: consider the cube with n= (a, b, c, m, m) as indicated in Fig. 2. Then m is 
the unique median of R, while S(x, n) = - 1 if x#a, b, c and = -3 otherwise. Hence 
the security center of 7c properly contains lMed(n), and there 
vertex of II. As our final result shows this ‘Effet Condorcet’ 
cannot occur in a cubefree median graph, i.e. a median graph 
tain the graph of Fig. 2 as a subgraph. 

exists no Condorcet 
(paradox of voting) 
which does not con- 

First we need a lemma. 

a 

m 
Fig. 2. 

Lemma 5. Let (X, 5) be a discrete median semilattice. Then the covering graph G 
of (X, 5) is cubefree if and only if every subset A of X with IAl L 3 contains two 
elements u and v such that A A = u AU. 

Proof. If G contains a cube, then (X,5) contains a three-dimensional Boolean 
lattice, which violates the condition of the lemma. Conversely, assume that there 
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exist three elements u, u, w of X whose pairwise meets are different from UA u A w. 
Then choose any elements XI u A o, y I u A w, and I I u A w, which cover u A u A w. 

These elements are pairwise bounded above, and thus xvyvz exists. It is clear that 
I(UAUA w, XVYAZ) induces a cube in G. a 

Proposition 9. For a median graph G = (X, E), the following conditions are equi- 
valen t: 

(i) G is cubefree. 
(ii) Med(n) is the security center of n for all R E X*. 

(iii) Med(rr) is the Condorcet set of II for aN n EX*. 

Proof. As was mentioned in 4.1, (iii) implies (ii). If G contains some cube, then for 
rc, choosen as in Fig. 2, we get that S(x, rr) I - 1 for all vertices x of G. Indeed, if 
x does not belong to the cube, then (since G does not contain K,,J) x is adjacent 
to at most one of the vertices a, b, c, whence S(x, n) (: X(X, m) - n(m, x) I 1 - 2 = - 1. 
Therefore (ii) implies (i). Now assume that G is cubefree. Let x be any median of 
a family 7r=(a,,..., aP)EXP. Suppose by way of contradiction that there exists a 
vertex y such that rc(x, y)<rr(y,x). Then the set K of all indices i with 
d(y, a;)<d(x, a;) contains more than +p elements. Hence by Propositions 5 and 6 
we must have x= AK in the semilattice (X, 5,). By Lemma 5 there exist i, je K 
such that x=a;Aa,, whence d(a;, a,) = d(x, a,) + d(x, a;). Then d(y, a,) + d(y, ai> C 

d(a;,aj) by the choice of K, which is absurd. We conclude that x is a Condorcet 
vertex of rr. On the other hand, every Condorcet vertex of rc is a median of rc by 
Proposition 8, completing the proof. El 
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