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Cells in any simple polygon formed by a planar point set
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Abstract

Let P be a finite point set in general position in the plane. We consider empty convex subsets of P such that the union of the
subsets constitute a simple polygon S whose dual graph is a path, and every point in P is on the boundary of S. Denote the minimum
number of the subsets in the simple polygons S’s formed by P by fp(P ), and define the maximum value of fp(P ) by Fp(n) over all
P with n points. We show that �(4n − 17)/15��Fp(n)��n/2�.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout the paper we consider only finite point sets in the plane, which are assumed to be in general position,
that is, no three points on a line. For such a point set P, a subset of P that consists of the vertices of a convex polygon
is called a convex subset of P and it is also said to be in convex position. We usually identify a convex subset with its
convex hull. A convex subset is said to be empty if no point of P lies in the interior. More generally, a convex region
in the plane is empty if its interior contains no points of P. An empty convex subset with size k is also called an empty
convex k-gon in P.

In 1935, the historic paper of Erdős and Szekeres [3] asks for the value of the smallest integer Y (k) such that any
set of Y (k) points contains a convex subset with size k. Subsequently, a similar question is asked by Erdős [2] for
the smallest integer Y0(k) such that any set of Y0(k) points contains an empty convex subset with size k. It is proven
that Y0(3) = 4 and Y0(4) = 5 by Klein in [3], and Harborth [5] shows that Y0(5) = 10. Horton gives a construction
showing that Y0(7) is not finite in [6], that is, there are arbitrarily many points with no empty convex heptagons. For the
remaining case of k=6, Overmars exhibits a set of 29 points, the largest known, with no empty convex hexagons in [9].
And recently, Gerken [4] shows that Y0(6) is finite; Y0(6)�1717. Namely, the current record is for 30�Y0(6)�1717.
Some combinatorial results on partitioning a point set into disjoint empty convex subsets are presented in [8].

A polygon has its successive vertices and edges of line segments, called the closed chain. If the closed chain does
not intersect itself, the polygon with its interior is said to be simple. We considered the variation on the convex partition
theme in [7]: Given any planar point set P in general position, we consider empty convex subsets of P such that the
union of the subsets form a single simple polygon S, and every point in P is on the boundary of S. We now call each
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such empty convex subset a cell in S. Let f (P ) represent the minimum number of cells in the simple polygons S’s
formed by P and let F(n) be defined as the maximum value of f (P ) over all sets P with n points.

Then we showed the following results:

Theorem A.

⌈
n − 1

4

⌉
�F(n)�

⌊
3n − 2

5

⌋
for any integer n�3.

In other words, we investigate the minimum number of cells in any S formed by a given P. Note that Horton sets
show F(n)�n/4 for an infinite sequence of n since they have no empty convex heptagons and that the trivial upper
bound for F(n) is n − 2 if we triangulate any S.

The dual graph on S is defined as follows: The nodes of the graph correspond to the cells in S, and two nodes are
adjacent if and only if the corresponding cells have a common side. Although it is natural that the dual graph of a
simple polygon is a tree, we now deal with a simple polygon whose dual graph is a path. Let fp(P ) and Fp(n) be the
same notations as f (P ) and F(n), respectively, if the dual graphs of the simple polygons are restricted to paths.

Note that f (P )�fp(P ) holds for any set P of n points since a path is also a tree. Hence, F(n)�Fp(n) holds for
any n. In addition, there always exists such a simple polygon S from an n point set P. In fact, let v be any vertex of the
convex hull boundary of P. If we scan any other point of P by the half-line L with center v, L meets p0, p1, . . . , pn−2
with their order and we obtain an empty convex region �i determined by {v, pi−1, pi} for any i, 1� i�n− 2. Since �i

contains exactly one empty triangle �i = �vpi−1pi , we obtain S = �1 ∪ �2 ∪ · · · ∪ �n−2 with the dual graph a path.
In this paper, we present the following results where the upper bound of Theorem A is improved by Theorem 1:

Theorem 1.

F(n)�
⌊n

2

⌋
for any integer n�3.

Theorem 2.

⌈
4n − 17

15

⌉
�Fp(n)�

⌊n

2

⌋
for any integer n�3.

In Section 2, we show that Fp(n)��n/2�. Here, we can prove Theorem 1 by F(n)�Fp(n). For the lower bound for
Fp(n), we find configurations in Section 3 with Fp(n)��(4n− 17)/15� > �(n− 1)/4�, where �(n− 1)/4� is the lower
bound of F(n).

We begin with some notation used throughout the proofs. For any point set Q, we denote the convex hull of Q by
ch(Q) and represent the boundary vertices of ch(Q) by Vch(Q). We denote the vertices of the closed chain in any
simple polygon T by Vsp(T ).

We mainly use the following definitions in the next section: Let a, b and c be any three points in general position,
not necessarily elements of P. We denote the convex cone by �(a; b, c) such that a is the center and b and c are on its
boundary, i.e., �(a; b, c) = {x | −→ax = s

−→
ab + t−→ac for any scalars s, t �0}. For � = b or c of the convex cone �(a; b, c),

let �′ be a point collinear with a and �, so that a lies on the line segment ��′. For instance, we can consider the other
convex cone �(a; b′, c) for �(a; b, c) as shown in Fig. 1(i).

If �(a; b, c) is not empty, we define�(a; b, c) as the element of P in the interior of �(a; b, c) such that �(a; b, �(a; b, c))

is empty, called the attack point in �(a; b, c), from the half-line ab to ac. See Fig. 1(ii) where black points are elements
of P. We let the quasi-attack point �̃(a; b, c) in �(a; b, c) be the point c or the attack point �(a; b, c), respectively, if
�(a; b, c) is empty or not.

Moreover, let R be a convex region in the plane and consider a convex cone �(a; b, c) such that {a, b, c} is contained
in R. Let �R(a; b, c) = �(a; b, c) ∩ R denote the restriction of this convex cone to R. We similarly define �R(a; b, c)

as the point of P in the interior of �R(a; b, c) so that �R(a; b, �R(a; b, c)) is empty. Finally, let �̃R(a; b, c) be c or
�R(a; b, c), respectively, if �R(a; b, c) is empty or not.
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Fig. 1. (i) Two convex cones �(a; b, c) and �(a; b′, c). (ii) Attack point �(a; b, c) from ab to ac.

Fig. 2. The growing triangle cl and the grown cell cl ∪ cl+1.

2. Upper bound

We show that Fp(n)��n/2� for any n�3, that is, we construct a simple polygon S from any n point set P whose
dual graph is a path of length at most �n/2�. That means, in particular, that the average size of all the cells in S is at
least 4. Let S = c1 ∪ c2 ∪ · · · ∪ cN such that the cells ci’s are indexed in order of incidence, i.e., ci has a common
side with ci+1 for any i, 1� i < N . We call ci the ith cell of S and we represent it by ci = (v1v2 . . . vt )t if it is a t-gon
consisting of {v1, v2, . . . , vt } with the counterclockwise order.

We present an iterative construction: At the first step we form a simple polygon s1 whose dual graph is a path. At
each ith step for i�2, we form a simple polygon si for the union of simple polygons Si−1 = s1 ∪ · · · ∪ si−1 so that the
dual graph of Si = Si−1 ∪ si is a path. Then we obtain S as SL = s1 ∪ s2 ∪ · · · ∪ sL at the last Lth step.

We call si the ith subpolygon of S, where we define that s1 contains c1. For any si , i�2, we denote the line segment
Si−1 ∩ si by Ji , called the starting joint of si , and we particularly define the starting joint J1 of s1 by any edge on the
boundary of ch(P ). Then si is said to grow from Ji for every i. The construction must proceed so that s1 grows in the
region R1 = ch(P ) and si grows in Ri = ch((P \Vsp(Si−1)) ∪ Ji), satisfying Si−1 ∩ Ri = Ji for i�2. We call Ri the
growing region of si where R1�R2� · · · �RL.

Naturally, a subpolygon consists of cells. If a cell in si has a common side with si−1 or si+1, the cell is called the
first or last cell of si , respectively, where we define the first cell of s1 and the last cell of sL as c1 and cN , respectively.
We now introduce the special cells. Consider the last cell of si , say cl and the growing region of si+1 and suppose that
cl is a triangle and cl ∪ Ri+1 is a convex region. After the construction, we can moreover join cl to the first cell cl+1
of si+1 to form a single bigger cell. We call cl and cl ∪ cl+1 the growing triangle and the grown cell, respectively, as
shown in Fig. 2.

We now consider the possible subpolygons in S which are classified into five types A, B, C, D and L as follows:
Type A: The first cell and the last cell are a triangle and a growing triangle, respectively, and the other cells are

quadrilaterals.
Type B: The first and the last cell are a triangle and a pentagon, respectively, and the others are quadrilaterals.
Type C: All the cells are quadrilaterals.
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Fig. 3. All the types of subpolygons.

Type D: The first and the last cell are a triangle and a quadrilateral, respectively, and the others consist of a single
pentagon and quadrilaterals.

We remark that the intermediate quadrilaterals between the first cell and the last cell may not exist in types except
type C and we also define type A for the last subpolygon sL though the triangle cN is no longer growing. Note that type
D is needed, though it is the union of types B and C, since it will occur that Ri+1 is not defined if si ∪ si+1 = type B ∪
type C.

These types are also candidates of sL. In particular, we define type L as sL such that the first cell is a triangle and
any other cell is a quadrilateral which may not exist.

All the types are illustrated in Fig. 3 where 3, 4 or 5 stands for a triangle, quadrilateral or pentagon, respectively, and
G is a growing triangle. The leftmost cell is the first in each type.

The following proposition holds where we rewrite |T | = |Vsp(T )| for simplicity for any simple polygon T.

Proposition 2.1. If we construct a simple polygon S = s1 ∪ · · · ∪ sL from P so that every subpolygon belongs to some
type, then Fp(n)��n/2�.

Proof. We observe that if sL is in type L, |sL| is odd and if si belongs to any other type for each i, 1� i�L, |si | is
even. Any simple polygon T is said to be good if it consists of at most �|T |/2� cells. We claim that a subpolygon si
consists of exactly |si |/2, (|si |/2) − 1 or �|si |/2� cells, respectively, if it is in type A, type j or type L for j = B, C, D,
from which it follows that every subpolygon is good.

We show that S is good by induction. Since the last subpolygon sL is good, we suppose that Si+1=si+1∪· · ·∪sL−1∪sL
is good and show that Si = si ∪ Si+1 is good for any i, 1� i < L. If si is in type A, we join the first cell of si+1 to
the last growing triangle of si to form one grown cell of a quadrilateral or pentagon. Therefore, Si consists of at most
|si |/2+�|Si+1|/2�−1=�|Si |/2� cells with |Si |= |si |+ |Si+1|−2. For otherwise, since si is in type j, Si also consists
of at most {(|si |/2) − 1} + �|Si+1|/2� cells. �

We now prove the upper bound for Fp(n).

Proof of the upper bound. We form a subpolygon si which belongs to some type for each i by Proposition 2.1.
Consider any ith step for i�1. We form such an si for a given Ji and a given Ri and determine the next Ji+1 and Ri+1.
We denote the first cell of si by ck and let p and q be the endpoints of Ji . We first consider an element r of P in Ri such
that the convex cone �Ri

(p; q, r) is empty, where {p, q, r} is in the counterclockwise order.
If �Ri

(r; p, q ′) is not empty, i.e., the attack point a1 = �Ri
(r; p, q ′) exists, we obtain the quadrilateral pqra1 as ck .

Then since we can think of ck itself as the ith subpolygon in type C, we proceed to the next step, that is, consider the
first cell of si+1 such that Ji+1 is the line segment a1r and R2 = ch(P \J1) with J1 = pq and Ri+1 = ch(P \Vsp(Si−1))

for i�2. We remark that if Vsp(Si) = P , our construction ends in the ith step.
For otherwise, since �Ri

(q; p, r) is also empty, we cannot help choosing �pqr as ck , that is, we hereafter form
si in types except type C, starting with this triangle. We consider the set P ′ = P \(Vsp(Si−1) ∪ {r}) for i�2 and
P ′ = P \{p, q, r} for i = 1. Let Vch(P

′) = {1, 2, . . . , m, . . .} with the order counterclockwise such that ch(P ′) is
included in �(r; 1, m) and �1rm contains Q={1, 2, . . . , m} as shown in Fig. 4. We remark that �Ri

(1; p′, r ′) may not
be empty. We now denote �i (a; b, c) = �Ri

(a; b, c) and �i = �Ri
for simplicity.
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Fig. 4. si grows in Ri with the first triangular cell.

If P ′ = ∅, the construction ends in this step since ck itself is the last subpolygon in type L. If |P ′| = 1, ck ∪ ck+1 is
the last subpolygon in type A since we obtain �1pr as ck+1.

For m�2, we present the first assumption.

Assumption 2.1. {1, m, p, r} is in convex position, that is, m is in �i (p; 1, r) for m�2. In particular, {1, 2, p, r} forms
an empty convex quadrilateral.

In fact, we show that {1, m, p, r} or {1, m, q, r} is in convex position. If {1, m, q, r} is not in convex position, the
point m is contained in �1rq, implying that {1, m, p, r} is in convex position. We obtain this assumption by symmetry.

For m = 2, �2pr is empty by Assumption 2.1. Since P ′ is contained in �i (r; 2, p), �2pr ∪ ch(P ′ ∪ {p}) is convex.
Thus we can obtain si = ck ∪ ck+1 in type A such that ck+1 = (2pr)3 is the growing triangle for Ri+1 = ch(P ′ ∪ {p}).
We proceed to the next (i + 1)st step by taking Ji+1 = 2p and Ri+1.

We hereafter consider the case m�3. We propose the next assumption.

Assumption 2.2. Both the points 2 and 3 are in �1rq for m�3.

In fact, if the point 2 is not in �1rq, �1rq is empty and we obtain si = ck ∪ ck+1 in type A such that ck+1 = (1rq)3
is the growing triangle where Ji+1 = 1q and Ri+1 = ch(P ′ ∪ {q}). Suppose that 2 is in �1rq and 3 is not in �1rq.
We remark that 3 is not in �i (1; p′, r ′) since, otherwise, m is also in �i (1; p′, r ′) since m is in �(2; 1, 3), contradicting
Assumption 2.1 and that 3 is in �(r; 2, p′) by the configuration of Q ∪ {r}, i.e., {2, 3, q, r} is in convex position. We
suppose that �123 is not empty since, if it is empty, we obtain si = ck ∪ ck+1 ∪ ck+2 in type A such that ck+1 = (21pr)4
and ck+2 = (123)3 is growing with Ji+1 = 13 and Ri+1 = ch(P ′\{2}).

If 3 is in �i (2; p′, q), we consider a1=�i (3; 2, 1) since �123 is not empty. If a1 is in �(2; 3, r ′), we obtain si=ck∪ck+1
in type B by ck+1=(2rq3a1)5 with Ji+1=3a1 and Ri+1=ch(P ′\{2}). If a1 is in �(2; 1, r ′), we use the quasi-attack point
�̃i = �̃i (a1; 3′, 1) as shown in Fig. 5. Since {2, p, r, a1, �̃i} forms an empty convex pentagon by adding �pa1̃�i to the
convex quadrilateral pr2a1, we also obtain si in type B by ck+1 = (pr2a1̃�i )5 with Ji+1 =a1̃�i and Ri+1 =ch(P ′\{2}).

If 3 is in �i (2; p′, r ′), we assume that �23p is empty since, if a2 = �i (p; 2, 3) is in �(2; 1, r ′) or not, we obtain
si in type B by ck+1 = (pr2a2̃�i (a2; p, 1))5 or (a22rq�̃i (a2; p′, 3))5 with Ji+1 = a2̃�i and Ri+1 = ch(P ′\{2}) for
�̃i = �̃i (a2; p, 1) or �̃i (a2; p′, 3), respectively. Finally, if a3 = �i (3; p, 1) is in �(2; 1, r ′) or not, we obtain si in type B
by ck+1 = (pr2a3̃�i (a3; 3′, 1))5 or (2rq3a3)5 with Ji+1 = a3̃�i or 3a3 and Ri+1 = ch(P ′\{2}), respectively.

Under Assumption 2.2, if {2, 3, q, r} is not in convex position, {2, 3, p, r} is in convex position since the point 3 is
in �2rq. Therefore, we have the following three cases I, II and III for m�3.

(I) Both {2, 3, p, r} and {2, 3, q, r} are in convex position: The point 3 is in �(p; 2, r) ∩ �12q.
If m = 3, i.e., �i (r; 3, p′) is empty, we obtain si in type A by the growing triangle ck+1 = (3pr)3 with Ji+1 = 3p

and Ri+1 = ch(P ′ ∪ {p}).
For m�4, the point 4 is in �i (3; 2′, r ′). If �234 is empty, we obtain si in type A such that ck+1 = (32pr)4 and

ck+2 = (234)3 is growing with Ji+1 = 24 and Ri+1 = ch(P ′\{3}). If not so, we consider a1 = �i (2; 3, 4). Then if a1 is
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Fig. 5. Pentagonal cell formed by the quasi-attack point.

Fig. 6. Forming three cells in type B.

in �(r; 3, 2) or not, we obtain si in type B by ck+1 = (2pr3a1)5 or (a13rq�̃i (a1; 2′, 4))5 with Ji+1 = 2a1 or a1̃�i and
Ri+1 = ch(P ′\{3}), respectively.

(II) {2, 3, p, r} is not in convex position and {2, 3, q, r} is in convex position: The point 3 is in �(2; p′, r ′) ∩ �12q.
We consider a1 = �i (3; 2, 1) since, if �123 is empty, we obtain si in type A such that ck+1 = (32rq)4 and ck+2 =

(123)3 is growing with Ji+1 = 13 and Ri+1 = ch(P ′\{2}). If a1 is in �(2; 1, r ′), we obtain si in type B by ck+1 =
(pr2a1̃�i (a1; 3′, 1))5 with Ji+1 = a1̃�i and Ri+1 = ch(P ′\{2}).

Suppose that a1 is in �(2; 3, r ′). If a1 is moreover in �(3; 2, q ′), we obtain si in type B by ck+1 = (2rq3a1)5 with
Ji+1=3a1 and Ri+1=ch(P ′\{2}). For a1 ∈ �(3; 1, q ′), we consider a2=�i (q; 3, a1) since, if �3qa1 is empty, we obtain
si in type A such that ck+1 = (32rq)4 and ck+2 = (3qa1)3 is growing with Ji+1 =a1q and Ri+1 =ch((P ′\{2, 3})∪{q}).
If a2 is in �(3; a1, r

′) as shown in Fig. 6, we obtain si in type B by ck+1 = (21pr)4 and ck+2 = (2r3a2̃�i (a2; q ′, a1))5
with Ji+1 = a2̃�i and Ri+1 = ch(P ′\{1, 2, 3}).

Suppose that a2 is in �(3; 2′, r ′). If �i (3; 2′, a2) is empty, i.e., a2 =4, we obtain si in type A such that ck+1 = (32rq)4
and ck+2 = (234)3 is growing with Ji+1 = 24 and Ri+1 = ch(P ′\{3}). If not so, we consider a3 = �i (a2; q, 3′) and
form ck+1 = (a23rqa3)5. Then if we choose ck+2 = (23a2a4)4 for a4 = �̃i (a2; q ′, a1) as shown in Fig. 7, we obtain
si = ck ∪ ck+1 ∪ ck+2 in type D with Ji+1 =a2a4 and Ri+1 = ch(P ′\{2, 3, a3}). We remark that ck ∪ ck+1 is not adopted
as a subpolygon in type B since we cannot determine the growing region of si+1 then.

(III) {2, 3, p, r} is in convex position and {2, 3, q, r} is not in convex position: The point 3 is in �(2; 1′, q).
If m = 3, we obtain si in type A by the growing triangle ck+1 = (3pr)3 with Ji+1 = 3p and Ri+1 = ch(P ′ ∪ {p}).
Suppose that m�4. We have the two subcases (a) and (b) by the position of the point 4.
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Fig. 7. Forming a subpolygon in type D.

Fig. 8. Pentagonal cell formed by a3.

(a) {3, 4, q, r} is in convex position where the point 4 is in �i (3; q, r ′): We consider a1 = �i (3; 2, 1) since, if
�123 is empty, we obtain si in type A such that ck+1 = (21pr)4 and ck+2 = (123)3 is growing with Ji+1 = 13 and
Ri+1=ch(P ′\{2}). Ifa1 is in �(2; 3, p′)or �(2; r ′, 1), we obtain si in type B by ck+1=(2pr3a1)5 or (pr2a1̃�i (a1; 3′, 1))5
with Ji+1 = 3a1 or a1̃�i and Ri+1 = ch(P ′\{2}), respectively.

Suppose that a1 is in �(2; p′, r ′). If �i (3; a1, 1) is empty, we obtain si in type A such that ck+1 = (43rq)4,
ck+2 = (2r3a1)4 and ck+3 = (31a1)3 is growing with Ji+1 = 13 and Ri+1 = ch(P ′\{2, 4, a1}). Thus we consider
a2 = �i (3; a1, 1). If a2 is in �(a1; 3, 2′) or �(a1; 2′, 1), we obtain si in type B by ck+1 = (21pr)4 or (32pr)4 and
ck+2 = (2r3a2a1)5 or (p2a1a2̃�i (a2; 3′, 1))5 with Ji+1 =3a2 or a2̃�i and Ri+1 =ch(P ′\{1, 2, a1})or ch(P ′\{2, 3, a1}),
respectively.

We suppose that a2 is in �(a1; 1, 3′). If a3 = �i (a2; 3′, a′
1) exists as shown in Fig. 8, we obtain si in type B by

ck+1 = (32pr)4 and ck+2 = (p2a1a2a3)5 with Ji+1 = a2a3 and Ri+1 = ch(P ′\{2, 3, a1}). If �i (a2; 3′, a′
1) is empty, we

obtain si in type A such that ck+1 = (21pr)4 and ck+2 = (2r3a1)4 and ck+3 = (3a2a1)3 is growing with Ji+1 = 3a2
and Ri+1 = ch(P ′\{1, 2, a1}).
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Fig. 9. Argument in III-b.

(b) {3, 4, p, r} is in convex position and {3, 4, q, r} is not in convex position where the point 4 is in �i (3; 2′, q):
We first consider a1 = �i (4; 3, 2) since, if �234 is empty, we obtain si in type A such that ck+1 = (32pr)4 and
ck+2 = (234)3 is growing with Ji+1 = 24 and Ri+1 = ch(P ′\{3}). If a1 is in �(3; 4, p′) or �(3; r ′, 2), we obtain si in
type B by ck+1 = (3pr4a1)5 or (pr3a1̃�i (a1; 4′, 2))5 with Ji+1 = 4a1 or a1̃�i and Ri+1 = ch(P ′\{3}), respectively.

If a1 is in �(3; p′, r ′), we can assume that a1 is the only element of P in the interior of �234. In fact, we consider
a2 = �i (4; a1, 2). If a2 is in �(a1; 3′, 4) or �(a1; 3′, 2), we obtain si in type B by ck+1 = (32pr)4 or (43pr)4 and
ck+2 =(3r4a2a1)5 or (p3a1a2̃�i (a2; 4′, 2))5 with Ji+1 =4a2 or a2̃�i and Ri+1 =ch(P ′\{2, 3, a1}) or ch(P ′\{3, 4, a1}),
respectively. For a2 ∈ �(a1; 2, 4′), if �i (a2; 4′, a′

1) is empty, we obtain si in type A such that ck+1 = (32pr)4, ck+2 =
(3r4a1)4 and ck+3 = (4a2a1)3 is growing with Ji+1 = 4a2 and Ri+1 = ch(P ′\{2, 3, a1}). If not so, we obtain si in type
B by ck+1 = (43pr)4 and ck+2 = (p3a1a2�i (a2; 4′, a′

1))5 with Ji+1 = a2�i and Ri+1 = ch(P ′\{3, 4, a1}).
Now, if �12a1 is empty, then �123 is also empty and we obtain si in type A such that ck+1=(21pr)4 and ck+2=(123)3

is growing with Ji+1 = 13 and Ri+1 = ch(P ′\{2}). If not so, we consider a3 = �i (a1; 2, 1). If a3 is in �(2; p′, 4), we
obtain si in type B by ck+1 = (43pr)4 and ck+2 = (2p3a1a3)5 with Ji+1 = a1a3 and Ri+1 = ch(P ′\{2, 3, 4}).

Suppose that a3 is in �(2; p′, 1). If �i (a1; a3, 1) is empty, we obtain si in type A such that ck+1 = (32pr)4, ck+2 =
(23a1a3)4 and ck+3 = (1a3a1)3 is growing with Ji+1 = 1a1 and Ri+1 = ch(P ′\{2, 3, a3}). We finally consider a4 =
�i (a1; a3, 1). If a4 is in �(2; 4, a3) or �(a3; 2′, 1), we obtain si in type B by ck+1 = (32pr)4 and ck+2 = (23a1a4a3)5
or (p2a3a4̃�i (a4; a′

1, 1))5 with Ji+1 = a1a4 or a4̃�i and Ri+1 = ch(P ′\{2, 3, a3}), respectively. For a4 ∈ �(a3; 1, a′
1)

as shown in Fig. 9, if �i (a4; a′
1, a

′
3) is empty, we obtain si in type A such that ck+1 = (32pr)4, ck+2 = (23a1a3)4 and

ck+3 = (a1a4a3)3 is growing with Ji+1 = a1a4 and Ri+1 = ch(P ′\{2, 3, a3}). If not so, we obtain si in type B by
ck+1 = (32pr)4 and ck+2 = (p2a3a4�i (a4; a′

1, a
′
3))5 with Ji+1 = a4�i and Ri+1 = ch(P ′\{2, 3, a3}).

The proof of the upper bound is complete since we have considered all the possible cases. �

3. Lower bound

We show that Fp(n)��(4n − 17)/15�, that is, there exists a configuration P of an n point set such that any simple
polygon S formed by P with the dual graph a path needs �(4n − 17)/15� cells. For 3�n�8, the lower bound trivially
holds since Fp(n)�1 for any n�3.
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Fig. 10. Configuration of each type for m = 6.

For any n�9, we give a configuration P = I ∪ V , satisfied with (a) and (b):

(a) I = {pi}i �1 construct a regular polygon, located in the order of their indices.
Let xi be the point of intersection of the lines pi−1pi and pi+2pi+1.

(b) Each element vi of V = {v2j−1}j �1 is very near to xi and in �(xi; p′
i , p

′
i+1).

We deal with such a configuration by the following three types where 1�j �m for any m�3:
Type A: |I | = 2m and |V | = m.
Type B: |I | = 2m + 1 and |V | = m.
Type C: |I | = 2m + 2 and |V | = m.
Fig. 10 gives configurations of all the types.
Note that in the example of type A, we cannot construct any simple polygons with 4 cells but with 5 cells as shown

in Fig. 11(a). On the other hand, if we admit the dual graph to a tree, we obtain a simple polygon with 4 cells as in
Fig. 11(b).

Observe that each element of V is on the boundary of ch(P ), i.e., Vch(P ) = V , V ∪ {p2m+1} or V ∪ {p2m+1, p2m+2}
for type A, B or C, respectively. A pair of elements in V are called friends if they constitute an edge on the boundary
of ch(P ).

Let S = c1 ∪ c2 ∪ · · · ∪ cN for any simple polygon S from P where the cells ci’s are indexed in order of incidence.
We first present the basic property of a cell in any S.
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Fig. 11. Simple polygons from P and their dual graphs.

Proposition 3.1. No cell in S contains more than two elements of V.

Proof. Suppose that there exists a cell cs with at least three elements of V. We consider any triangle in cs determined
by elements of V and denote it by �vivj vk with i < j < k. See Fig. 10. We consider three disjoint regions Rt ’s such
that ch(P )\�vivj vk =R1 ∪R2 ∪R3 where the boundary of R1, R2 or R3 has {vi, vj }, {vj , vk} or {vk, vi}, respectively.
We show that each Rt contains an element of P which does not belong to cs . Then since the node corresponding to cs

has degree at least three in the dual graph, contradicting that our dual graph is a path.
In fact, we first consider the case for R1. If {vi, vj } are friends, i.e., vj = vi+2, cs contains both pi+1 and pi+2, a

contradiction. If not so, R1 contains an element of P and vi+2 or vj−2 is necessarily in R1. Then cs does not have, say
vi+2 since, otherwise, cs would have friends {vi, vi+2} again. By the same reason, we have only to consider R3 in types
B and C as vi = v1 and vk = v2m−1. Then cs would contain p2m if cs had p2m+1. �

We enumerate the cells in S by assigning elements of V by Proposition 3.1. A subpolygon is a simple polygon
contained in S. Let V (S′) = V ∩ Vsp(S

′) for any subpolygon S′. If |V (ci)| = 0, 1 or 2 for any i, we call ci a 0-, 1- or
2-cell, respectively. A 2-cell is said to be small or big, respectively, if it contains friends or not. For any cell ci , let j+

i

and j−
i be the line segments of ci ∩ ci+1 and ci ∩ ci−1, called the right joint and the left joint of ci , respectively, where

each of c1 and cN has the only joint. A joint is said to be free, single or double, respectively, if it contains 0, 1 or 2
elements of V.

We give the following properties about 2-cells, where (P-1) are by the configurations and (P-2) is derived since a
big cell divides ch(P ) into two disjoint regions, each of which contains an element of P as mentioned in the proof of
Proposition 3.1:

(P-1) No small cell contains more than one free joint.
No pair of small cells have any common joint.

(P-2) A big cell ci has both ci−1 and ci+1 for S = c1 ∪ · · · ∪ cN .

Each small cell trivially has no double joint, and even if a big cell ci has a double joint, say j+
i , we can obtain a new

cell ci ∪ ci+1 without a double joint. Thus we present the following assumption without loss of generality.

Assumption 3.1. S contains no cells with double joints.

Any joint of a cell is free or single by the assumption. We prepare for the following lemmas to show the result where
we choose ci+1 as any next cell to ci without loss of generality.

Lemma 3.1. If ci is small and j+
i is free, then ci+1 is not a 2-cell. In particular, if c1 or cN is small with the joint free,

c2 or cN−1 is a 0-cell, respectively.
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Fig. 12. ci has degree three in the dual graph.

Proof. Let ci be with V (ci)={vk, vk+2}. We remark that ci is a quadrilateral by the free joint pk+1pk+2 and any other
possible joint is single, vkpk+1 or vk+2pk+2 by the configurations.

Since ci+1 is not small by (P-1), we suppose that ci+1 is big with V (ci+1) = {vs, vt } such that {vs, vk, vk+2, vt } are
located by their order on the boundary of ch(P ). We consider three disjoint regions by ch(P )\(ci ∪ci+1)=R1 ∪R2 ∪R3
where vk and vk+2 are on the boundary of R1 and R2, respectively. If R1 contains no elements of P, {vs, vk} are friends
in any type, or vk = v1 and vs = v2m−1 in types B and C since, otherwise, ci+1 would have more elements of V. Then
ci+1 would contain ps+1 for each case. Suppose that each of R1 and R2 contains an element of P by symmetry. Since
ci+2 lies in the opposite side of ci with respect to ci+1 by (P-2), the node corresponding to ci has degree exactly three,
a contradiction. See Fig. 12 where a white point is the node in the dual graph.

Suppose that c2 is a 1-cell for small c1 with the common joint free. Let V (c2) = {vs} and V (c1) = {vk, vk+2}.
We consider two disjoint regions by ch(P )\(c1 ∪ c2) = R1 ∪ R2 where vk is on the boundary of R1. Since the
node to c1 has degree one, if each of R1 and R2 contained an element of P, the node to c2 would have degree
at least three. If R1 contained no elements of P by symmetry, c2 would not be empty by the same way as the
above. �

Lemma 3.2. If ci is big and j+
i is free, then ci+1 is a 0-cell.

Proof. We suppose that ci+1 is a 1-cell or big since it is not small by Lemma 3.1. Let V (ci) = {vk, vl} and V (ci+1) =
{vs, vt } such that {vs, vk, vl, vt } are located by their order on the boundary of ch(P ), where let t = s if ci+1 is a 1-cell.
Though ch(P )\(ci ∪ ci+1) has three or four disjoint regions, we consider two regions R1 and R2 for both cases such
that R1 and R2 have {vk, vs} and {vl, vt } on the boundary, respectively. If each of R1 and R2 contains an element of
P, the node to ci+1 has degree at least three since ci−1 is in the opposite side to ci+1 with respect to ci by (P-2), a
contradiction.

Suppose that R1 contains no elements of P by symmetry. We have the two cases (i) and (ii) since, otherwise, |V (ci)|
or |V (ci+1)| would increase. We consider the location of the common free joint j+

i = pxpy .
(i) {vs, vk} are friends in any type.
We have only to consider type A since we are similarly done for any other type. We suppose that l < s < k without loss

of generality and set vs = vk−2. Let I = {l + 1, l + 2, . . . , k − 3, k − 2} where {x, y} ⊂ I ∪
{k − 1, k}.

For j+
i = pk−1pk , ci would contain pk . If x = k − 1 or k for any y ∈ I , ci or ci+1 would contain pk or pk−1,

respectively. Suppose that {x, y} ⊆ I . Then if j+
i �= pk−3pk−2, �pxpyvk overlaps �pxpyvk−2, i.e., ci and ci+1 would

overlap as shown in Fig. 13. For j+
i = pk−3pk−2, ci+1 = �pk−2pk−3vk−2 and ci would contain pk .

(ii) vk = v1 and vs = v2m−1 in types B and C.
We can argue by the same way as (i). Let I={l+1, . . . , 2m−1} and let I ′={1, 2m, 2m+1} or {1, 2m, 2m+1, 2m+2}

for type B or C, respectively. If {x, y} ⊆ I or {x, y} ⊂ I ′, then ci would contain p1 or �pxpyv1 would overlap
�pxpyv2m−1. For x ∈ I and y ∈ I ′, ci or ci+1 would contain p1 or p2m, respectively. �
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Fig. 13. �pxpyvk would overlap �pxpyvk−2.

Fig. 14. The monster mk .

We present the following propositions from which we derive the lower bound. We denote the number of cells in a
subpolygon S′ of S by N(S′) and we use the same notation V (j±

i ) = V ∩ j±
i for any joint j±

i in S.
We consider a subpolygon ci+1∪ci+2∪· · ·∪ci+k ⊆ S for k�3 such that every joint j+

j is free for i+1�j � i+(k−1)

and represent it by �k . We call �k the monster with size k, denoted by mk if both ci+1 and ci+k are 2-cells and any other
cell is a 1-cell. Fig. 14 illustrates the monster where a black or white point is in V or I, respectively, and 1 or 2 stands
for a 1- or 2-cell, respectively. We remark that |V (mk)| = k + 2.

Proposition 3.2. A subpolygon �k is only the monster mk in S for k�3 if |V (�k)|�k + 2.

Proof. We claim that no cj is small in �k for i + 2�j � i + (k − 1) by (P-1). Let tj = ci+1 ∪ ci+2 ∪ · · · ∪ ci+j

for 1�j �k − 1 and we first show that |V (tj )|�j + 1 for any j by induction on j. Suppose that |V (tl)|� l + 1
for any l�j − 1 by |V (t1)|�2. Then ci+j is a 2-cell for j �2 since, otherwise, |V (tj )| = |V (tj−1)| + |V (ci+j )| −
|V (j−

i+j )|�j + 1 − 0 = j + 1 and we are done. Since ci+j is big and ci+(j−1) is a 0-cell by Lemma 3.2, it holds that
|V (tj )| = |V (tj−2)| + |V (ci+(j−1))| + |V (ci+j )|�(j − 1) + 0 + 2 = j + 1 for any j �3 and |V (t2)| = 2.

Since |V (tk−1)|�k, ci+k is a 2-cell if |V (�k)|�k + 2, following by symmetry that ci+1 is also a 2-cell. If there
exists a big cell ci+b for b �= 1, k, both c(i+b)−1 and c(i+b)+1 are 0-cells by Lemma 3.2 where 3�b�k − 2. Let
tk−b+1 = ci+k ∪ ci+(k−1) ∪· · ·∪ ci+b with N(tk−b+1)=k −b+1. Since |V (tk−b+1)|�(k −b+1)+1 by symmetry, it
holds that |V (�k)|= |V (tb−2)|+ |V (ci+(b−1))|+ |V (tk−b+1)|�{(b−2)+1}+0 + (k −b+2)= k +1. For otherwise,
every cell in �′ is a 1-cell for �′ = ci+2 ∪ · · · ∪ ci+(k−1) since |V (�′)|�(k + 2) − 4 = k − 2 = N(�′) if |V (�k)|�
k + 2. �

Proposition 3.3. If a subpolygon sk = ci+1 ∪ ci+2 ∪ · · · ∪ ci+k ⊆ S does not contain any size of monsters for k�1,
then |V (sk)|�k + 1.

Proof. Let Jsk = {j+
i+1, j

+
i+2, . . . , j

+
i+(k−1)} for k�2 and Js1 = ∅. Recall Assumption 3.1 and we show by induction

on the number of single joints in Jsk , denoted by n(sk). If n(sk) = 0, i.e., every joint in Jsk is free, we are done. In
fact, |V (s1)|�2 and |V (s2)|�3 holds since, otherwise, both ci+1 and ci+2 are 2-cells with the free common joint,
contradicting Lemma 3.1 or 3.2. Since sk =�k for k�3, |V (sk)|�k + 1 holds by the contraposition of Proposition 3.2.

For n(sk)�1, there is a single joint, say j+
i+m in Jsk . Let sk =tm∪tk−m for tm=ci+1∪· · ·∪ci+m and tk−m=ci+(m+1)∪

· · · ∪ ci+k . Since n(tm) < n(sk) and n(tk−m) < n(sk), it holds that |V (sk)| = |V (tm)| + |V (tk−m)| − |V (j+
i+m)|�(m +

1) + (k − m + 1) − 1 = k + 1. �
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Fig. 15. S contains the monster m3 with n = 33.

We finally show that N � l(n) = (4n − 17)/15 for any n�9 with any simple polygon S = c1 ∪ · · · ∪ cN , following
that Fp(n)��(4n − 17)/15� for any n�3.

Proof of the lower bound. If S does not contain any monsters, |V (S)|�N(S) + 1 holds by Proposition 3.3. Then
N � |V | − 1�(n − 2)/3 − 1�l(n) since |V |�(n − 2)/3.

Suppose that S contains a monster mk = ci+1 ∪ ci+2 ∪ · · · ∪ ci+k . We claim that both ci+1 and ci+k are small since,
if big, ci+2 and ci+k−1 would be 0-cells by Lemma 3.2. Thus, no pair of monsters are consecutive in S by (P-1) where
they may have a common point of V. Moreover, ci+1 �= c1 and ci+k �= cN since, otherwise, ci+2 and ci+k−1 would be
also 0-cells by Lemma 3.1, following by (P-1) and Assumption 3.1 that both j−

i+1 and j+
i+k are single.

We now think of S as the union of odd subpolygons by S = s1 ∪ s2 ∪ · · · ∪ s2L+1, indexed in order of incidence such
that s2j is a monster for 1�j �L and s2j−1 contains no monsters for 1�j �L + 1, where |V (s2j )| = N(s2j ) + 2 and
|V (s2j−1)|�N(s2j−1) + 1 and each of s2j−1 ∩ s2j and s2j ∩ s2j+1 has the single joint for any monster s2j .

Let Sj = s2j−1 ∪ s2j for 1�j �L. Since |V (Sj )| = |V (s2j−1)| + |V (s2j )| − |V (s2j−1 ∩ s2j )|�(N(s2j−1) + 1) +
(N(s2j ) + 2) − 1 = N(Sj ) + 2 for any j, the next inequality holds:

|V (S)| = |V (S1 ∪ · · · ∪ SL ∪ s2L+1)|
= |V (S1)| + · · · + |V (SL)| + |V (s2L+1)| − L

�(N(S1) + 2) + · · · + (N(SL) + 2) + (N(s2L+1) + 1) − L = N(S) + 2L + 1 − L.

Hence, we have L� |V |−N − 1(1). On the other hand, since Sj contains a monster mk for k�3, N(Sj )�1 + 3 = 4
for every j and N(s2L+1)�1. We obtain N = N(S1) + · · · + N(SL) + N(s2L+1)�4L + 1(2). It follows from (1) and
(2) that N �4L + 1�4(|V | − N − 1) + 1, that is, N �(4|V | − 3)/5� l(n) holds for |V |�(n − 2)/3. �

We remark that there certainly exists such a monster in S. Fig. 15 illustrates the example S = c1 ∪ · · · ∪ c9 from type
A with |P | = 33 such that m3 = c4 ∪ c5 ∪ c6 and S is symmetric with respect to c5 where s or b stands for a small or
big cell, respectively.

4. Discussion

Although it was conjectured in [7] that F(n) = n/2, we can now expect that F(n) < n/2 by Fp(n)�n/2. On the
other hand, they presented the open problem in [1] whether it is true that F(n)�(n − 2)/3, where the negative answer
of F(n) < (n − 2)/3 also implies the finiteness of Y0(6). We finally present the following conjecture:

Conjecture. F(n) = n/3 and Fp(n) = n/2 for any n�3.
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