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0. INTRODUCTION AND TERMINOLOGY 

The process of microlocalization appeared first in a strongly analytic 
frame in relation to systems of linear differential equations with 
holomorphic coefficients (see, e.g., [13]). From the strictly algebraic point 
of view, the process of microlocalization gives an answer to the following 
universal problem: If R is a filtered ring and S c R is a multiplicatively 
closed subset, does there exist a complete filtered ring, denoted by Q:(R), 
with a filtered ring homomorphism 9: R + Q;(R) such that the two condi- 
tions below are satisfied ? 

(,i) q(s) is a unit of Q;(R), for every s E S. 

(ii) If f: R -+ A is filtered ring homomorphism, where A is complete 
and f(s) is a unit of A for each s E: S, then there exists a unique filtered ring 
homomorphism g: Qc( R) + A such that g : CJJ =.f: 

The first purely algebraic approach to the matter was carried out by 
Springer [14], who solved the problem for the case when R is com- 
mutative. The general settlement of the solution was fulfilled by Van den 
Essen [ 161 for the case when C( Sj is a left Ore set of the associated graded 
ring G(R) (see ahead for the definition of o(S)j. However, a large number 
of analytic tools concerning the use of norms and pseudonorms were used 
by the author. This still very analytic sediment was completely avoided 
by Asensio, Van den Bergh, and Van Oystaeyen Cl], who gave an utterly 
algebraic description of the process by considering the genkralized Rees 
ring i? associated with the filtered ring R. Since then, microlocalization has 
been a subject of study in several papers (see, e.g., [5-S, 171). 

The aim of these notes is to show certain localization-like properties of 
the above process. We divide them into three sections, apart from this 
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preliminary one. In Section 1 we see that the microlocalization with respect 
to SC R actually depends on the ring of quotients a(S)-’ G(R) and not on 
the set S itself (Proposition 1.3). It is also proved in that section that, when 
G(R) is left Noetherian and A4 is a tilt-finitely generated left R-module 
(k is the completion of R), a surjective order-preserving lattice homo- 
morphism may be given between the lattice of A-submodules of M and the 
lattice of Q;(R)-submodules of Qz(lk4) (Theorem 1.5). As a corollary, in 
that situation, the dimension of R is an upper bound for the dimension of 
Q;(R), for several dimensions of rings (Corollary 1.6). In Section 2, we 
prove that if R is a left and right Zariski ring and N is a lilt-finitely 
generated R-R-bimodule, then the right R-module Extl(ll4, N) can be 
given a good filtration for which Qg(Ext:(M, N))s ExtG(Qg(Mj, Q~(N)j, 
where Q = Q;(R) (Theorem 2.6). This result is used to give a microlocal 
estimation of the global and Krull dimensions of k (Theorem 2.9) and 
also to show that Auslander regularity is a microlocal property of j 
(Theorem 2.lOj. The last section is dedicated to apply the foregoing results 
to discrete and strongly filtered rings. 

All rings considered in the sequel are assumed associative with 1 and, 
unless otherwise stated, module means left module. If A is a ring A-Mod 
stands for the (Grothendieck) category of A-modules. If M is an object of 
A-Mod, then I?(,dL14) is the lattice of submodules of M. 

A jiltered ring is a ring R together with a Z-indexed ascending family 
(F,,R/IT E Z 1 of additive subgroups, which is called the filtration, such that 
FmR F,R E F,,,,,, R, for any integers m and 11. A filtered R-module is a 
module A4 with a filtration (F’,?M/n E Zl, of additive subgroups such that, 
for all integers m and M, F,,, R . F,M E F,,+.M. All filtrations on modules 
are considered to be exhaustive (i.e., UIIEZ F,M= A4). Moreover. the filtra- 
tion on the ring R is assumed to be separated (i.e., n (Fn R/n E Z> = 0). A 
filtration FM on an R-module M is said to be complete (or M is a complete 
j2tered R-module) if the inverse system provided by the canonical projec- 
tions M/F,, M + M/F,, + I M satisfies that M= I& M/F,M. This is equiva- 
lent to saying that any Cauchy sequence has a unique limit in J4. The 
discrete~filtrations (i.e., there is a PELT such that F,,M =O, for n,< p) are a 
trivial example of complete filtrations. It is always possible to associate 
a complete R-module k with a given filtered R-module A4 by defining 
A?f=l& M/F,,M and filtration F,M=b,., FPM/F,IM. This filtered 
module is called the completion of 121. When M = RR (i.e., R considered as 
left R-module), g is also a filtered ring and &? becomes an d-module, for 
any R-module M. An R-homomorphism f between filtered R-modules M 
and N is said to be a -filtered rmrplukn~ of degree PE Z in case 
f (F,, W E F,, + p N for any n~z. If we denote by FP HOM,jlZ;I, N) the 
additive subgroup of Hom,(M, N) consisting of the filtered morphism 
of degree p, then we get a filtered Z-module HOM,i&& N) = 
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IJ,, Z F, HOM,(M, N). The pre-Abelian category whose objects are 
the filtered left (resp. right) R-modules and whose morphisms are the 
liltered morphisms of degree zero is denoted by R-filt (resp. fiit-R). 
If f E F, HOM,(M, N) = Hom..,,,(M, N), it is called strict when 
F,,N n Im f =f( F,:M) for each II E Z. If ME R-filt and p E Z, we can 
construct a new filtered R-module &Z(p) as follows: M(p) = h/l as 
R-modules and F,, M( p) = F,, + p bf for any iz E Z. This is called the p-sh!fted 
filtered module derived from hf. If M, NE R-filt and p, q E Z, then 
F,,HOM,(,nrl(p),N(q)) = Fn+r,-p HOM,(M, N) for every FEZ. A 
(finitely generated) filt-flee R-module is the direct sum in R-filt of a (finite) 
family (R( p,)/i E 1) of filtered R-modules, where each Rip,) is the pi-shifted 
R-module derived from R. A filt--finitely generated R-module is a filtered 
R-module A4 for which there is a surjective strict morphism rc: L ---t M, from 
a finitely generated filt-free R-module L onto 1l4. In that case the filtration 
on M is said to be good. If ME R-filt and j: N + hl (resp. n: M -+ N) is a 
monomorphism (resp. epimorphismj in R-Mod. then the filtration in N 
given by F,,N=j-‘(F,,M) (resp. F,>N= ~(F,,M)), for each ~ZE Z, is called 
the induced (resp. quotient)filtration from FM. For a more detailed account 
of the topics related to filtered rings and modules, the reader is referred to 
[9, Chap. D]. 

A ring A is called a Z-graded ring if there exists a Z-indexed family 
{4is/~~ c Z) of additive subgroups of .4 such that A = GllEZ ‘4,, and 

A w, A n E A ,I[ + i, r for all integers m and n. Although the notion of G-graded 
ring (G is a group j can be defined in a similar manner, here we are only 
concerned with Z-graded rings so that, in the sequel. graded ring will mean 
B-graded ring. An A-module K for which there exists a family jK,,,‘?i E Z.1 
of additive subgroups satisfying that K = @ ,I t Z K, and A,, K,, c K,, + ,I, 
for all integers tn and n, is said to be a graded A-module. An 
A-homomorphism f between two graded A-modules K = @ ,IE L’ K:, and 
H = @ nEz H,, is a graded rnorplzisnz of degree p E Z in the case where 

fiK,J c ff,; + .i>> for any n E Z. The category whose objects are the graded 
A-modules and whose morphisms are the graded morphisms of degree zero 
is denoted by ‘4-gr and is a Grothendieck category. If K’= @ ,I t Z ki,, is an 
object of A-gr, the elements of U,,EZ K,, are called homogeneous and, when 
Y is a subset of K2 /r(Y) denotes the set of homogeneous elements of Y. 
JP(,~ K) stands for the lattice of subobjects of K in A-gr (Le., the gmded 
sufvnodufes of K). [9] is also a valid reference for graded rings. 

When R is a filtered ring, the additive group G(R) = 
@ ,,Ed (F,, R/F,,- IR) has a canonical structure of ring. It is called the 
associated graded ring of R. Analogously if M is a filtered R-module, then 
G(M) = @ nEZ (.F,,A{lF+, M) has an obvious structure of graded G( Rb 
module. These constructions give rise to a functor G(-): R-filt 4 G(R)-gr, 
whose main properties may be found, e.g., in [9, Chap. D]. On the other 

48L,lJO,I-IO 
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hand. the additive subgroup K= BrlEZ I;,,R .X” of RCA’, X-‘1 has 
a canonical structure of graded ring and, for each ME R-tilt, 
AT= OnEE F,,M X” is a graded A-module in a natural way. If I= I?X is 
the (graded) ideal of i? generated by the centralizing regular homogeneous 
element A’, there is a unique torsion theory in R-Mod (see [15, Chap. VI] 
for the definition) whose torsion-free objects are those VE8-Mod such 
that Xzl # 0, for any nonzero element v E K Those torsion-free R-modules 
are referred to as X-torsion-free R-modules in the sequel. The graded 
R-modules which are X-torsion-free give a full subcategory s.Y of iT-gr. 
The assignment M+ & yields a functor from R-filt to i?-gr that identifies 
R-filt with $Jx. We refer the reader to [l, 121 for a more detailed study of 
the properties and relations between R, G(R), and 2. 

The prifwipaf symbol map 0: R -+ h(G(R)) is defined as follows: (i) if 
r = 0, then a(r) = 0; (ii) if r #O, then there is a unique n E Z such that 
r E F,, R and r $ F,, _, R and c(r) is the class of r in F, RjF,z _ 1 R = G(R), . 
Analogously, a map m : R --t h(l?) is given by writing fi = OX” and 7= rxi’, 
when r E (F,, R’:>F,,- , R J. If S c R is a multiplicatively closed subset, then 
a(S) and 3 are multiplicatively closed subsets of G(R) and I?, respectively, 
consisting of homogeneous elements. In fact. when G(R) is identified with 
8/Z (see [l, Lemma 2.1]), g(S) is identified with 3, = {S+l/.Y~gj-. For 
each natural number 12, we denote by J,, the multiplicatively closed subset 
of R/Z” given by ($+I”/YESJ. If o(S) is a left Ore set of G(R), then 3, is 
a left Ore set of R/Z”, for each YI E N. If .ME R-filt and we write Qs,,(&/P&) 
for the module of quotients of the &P-module &/Pi@ with respect to s,, 
then we get an inverse system in ii-gr, when we take the canonical 
homomorphisms Qg,t+, (#/Z”+ ’ A7) --f Q~,~(f2/Z”f@). Its inverse limit in r?-gr 

is denoted by @(iii) and turns out to be an X-torsion-free graded 
a-module. By the equivalence of categories R-lilts 3x, we get a unique 

(complete) filtered R-module Q;(Mj such that Q&$6) = Q%(n), which is 
called the microlocalization of M IlYth respect to S. The (graded) 
W-homomorphisms A? + h?/Z”&-+ Qs,(lz?/rlk) are compatible with the 
inverse system given above, thus yielding a unique morphism in a-gr, 
GM: ii2 + @(a), which comes again from a unique morphism in R-lilt, 
qw: M+ Q;(M). When M= RR. Q:(R) is a complete filtered ring that, 
together with the (ring) homomorphism w = v~: R -+ Q;(Rj, solves the 
universal problem mentioned at the beginning. Moreover, Q:(M) is a 
filtered Q;( R)-module, for every hl~ R-filt. The assignment M-t Q;(M) 
gives rise to a functor from R-lilt to Q:(R)-filt. The reader wishing to have 
a more detailed knowledge of the microlocalization process and, in par- 
ticular, of what is written in this paragraph can look up [ l]. 

One of the most suitable situations to study microlocalizations appears 
when R is left Noetherian and, in particular, when F-, R is included in the 
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Jacobson radical J(F,R) of F, R. The filtered rings satisfying these two con- 
ditions are called Zeft Zariski rings in [4]. Many characterizations of these 
rings have been given in the recent literature (see. e.g., [4, Theorem 3.3: 8. 
Theorem 3.121. We add here another one. Recall that the filtration FR on 

R is said to be faitllful in the case where if M is any filt-finitely generated 
R-module for which G(M) =O, then M= 0. Two filtrations FM and FM 
on the same R-module bf are said to be afgebrnica&, equivalent if there 
exists a natural number 12’ such that F, _ II, M E F:, M E F,, + ,~ M, for every 
t7 E z. 

THEOREM 0.1. The jbllotving assertions are equioalent ,for the filtered 
ring R: 

( 1) R is a left Zariski ring. 

(2) R is left Noetherian and, for ever! left ideal Q of R. \re harr 

a=(l,,tt, (a+F,,,R). 

ProoJ The condition 

a= 0 (a+F*,R). 
in E L 

for every left ideal a of R, is equivalent to saying that any quotient filtra- 
tion Gf FR is separated. 

(1) * (2) Clear since any quotient filtration of FR is good and good 
filtrations are separated (see [4, Theorem 3.31). 

(2) 3 (1 j We prove condition 5 of Theorem 3.3 in [4] (i.e., G(R) is 
left Noetherian, FR is faithful, and, for every left ideal a of R with good 
filtration Fa, F,,a = fl ,11 E z (F,,a + F,,, R) for all 17 E Z). By the isomorphism 
I?/Ir G(R). the latter ring is left Noetherian. We prove now that FR is 
faithful. Let M be a filt-finitely generated R-module such that G(M) 2 0 
and let ,Y~, . . . . .Y~ E M and n,, . . . . nk E Z be elements so that 

for all integers n E B (this is the same as giving the strict epimorphism 
@ L G iG li R( -nj) + M, which maps the ith vector of the canonical basis 
onto I,, for every i = 1. . ..) k ! ). We proceed by induction on k. The case 
k= 1 reduces to the case A4 = R/a with the quotient filtration from R(,p), 
for some integer p. It can be trivially checked, by using condition (&). If 
FM is as (&A), then we get a strict exact sequence in R-Iilt: 0 -+ Rx, -+ 
M -+ M’ = M,iRs, -+ 0, when the induced and the quotient filtrations are 
taken, respectively, in Rx, and M’. By [9, Theorem D.III,3], the corre- 
sponding sequence 0 -+ G( R.u, ) --f G(M) --t G(,M’) + 0 is exact in G( R)-gr. 
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Since G(M) =O, it follows that G(Rx,) =0= G(M’). The induction 
hypothesis can be applied to the filtration on M’ so that we get M’= 0. 
Hence the problem is reduced to the case when FM is a good filtration in 
a cyclic module M. But the result is true in this situation due to the fact 
that any two good filtrations on M are algebraically equivalent and the 
result holds for one of them if, and only if, it also holds for the other one 
(a cyclic R-module can be always given a good “cyclic” filtration !). Let 
now a be a left ideal of R and consider the induced filtration on it. Since 
R is left Noetherian, ii is finitely generated and, by [ 1, Lemma 2.11, that 
filtration is good. Since any good filtration on a is equivalent to the latter 
one, it is very easy to see that proving the last condition reduces to the case 
of the induced filtration. But, in this case, F,, a + F,?, R = (a n F,, R) + F,H R. 

When nz d II, this equals (a + F,, R) n F,, R. For an arbitrary IZ E Z, 

n,,.,(F,,a+F,,,R)=n,,,, [(a + F,,,R) n F,, R]. From the hypothesis we 
deduce that the latter member of the equality is just a n F,, R = F,a and we 
are done. 

A particular case of left Zariski ring is provided by a complete filtered 
ring R whose associated graded ring. G(R) is left Noetherian (see [4, 
Theorem 3.3; 16, Corollary 6.7, Definition 6.10) j. 

1. SOME PROPERTIES OF MICROLOCALIZATIONS 

In the sequel, a multiplicatively closed subset of the liltered ring R will 
be referred as one in the standard situation where a(S) is a left Ore set of 
G(R). The following lemma was announced without proof in [4, p. 61. 
Here we include a proof to be used subsequently. 

LEMMA 1.1. Let S c R be a subset in the standard situation. If  

T=o--‘(a(S))= {TV R/o(t)~c(S)j-, then Q~(M)=Q~(M) for eveq 
Al E R-Mt. 

ProoJ: We prove that 3, and F,T,, define the same l-topology (see [lS, 
VI.6.11) in &‘r”, for each II > 1. This is the same as proving that, for any 
2~ F, there exist i;,, E Il(R j and S,, E 3 such that r;l T- ?>, is an homogeneous 
element of t?X” = I”. We proceed by induction on II. The result is clear for 
n = 1, because 3, = pi is identified with o(S) by the isomorphism 
&I 2 G(R). If the result is true for k < n - 1, then we can choose 

F,I - I E /z(w) and ?,,-, E 3 such that 

u’,,_ 17-5,,p,=ii,-,x”-1, (&) 

for certain d,+ i E/Z(E). By applying the second left Ore condition in the 
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graded sense (see [9, Lemma 1.6.11) to the subset 3, = 7, of &‘Z, we get 
a pair (SL_ I) ii;, _ 1) E 3 x Iz( ii) such that S;, _ iiill _, - 2:: _, iE h(l). Then 
s;, _ in,,- i = ii;-, i+ EX, for some 6 E h(a). Now we can multiply on the left 
by Si,+ I in (&) and, after using the fact that X is a centralizing element: 
we obtain that (S:,-,F,,+, -Z:,-.,Xn-‘) t-S:,.+,S,-, =zxi,. By taking 
^: _ -r r ,, - s,: _ 1 i’,, _ I - ~7; _ r X” - ’ and S, = 51, _, S,, _, ) the induction is finished. 
Since, consequently, Qs,J n?/l”ti) = Q F,~( h?/Z”,@) for each II b 1) the result 
follows from the algebraic construction of microlocalizations given before. 

COROLLARY 1.2. Jf S, Tc R are in the standard situation and 
o(S) = a(T), then Q:(M) = Q’“,(M) for every ME R-lilt. 

il’ote. Bearing in mind the equivalence of categories R-lilt 2 Gx. the 
above lemma shows that Q;(M) = Q’;(M) is an equality in R-filt. In other 
words, the equality of the lemma preserves the filtrations. Unless otherwise 
remarked, equalities between microlocalizations of modules (resp. rings ) 
mean equalities in this filtered sense. 

The following is an interesting result overlooked in previous papers. 

PROPOSITION 1.3. Let SC Tc R be subsets in the standard sitmatim 
suck that o(S)-’ G(R) = CJ(T)-’ G(R). Then Q”,(M) = Q:(M) for euer:k’ 
ME R-Mt. 

ProoJ As in Lemma 1.1, it is enough to prove that c?,, and ?;,, define the 
same l-topology in R,irl, for each IZ > 1. We proceed by induction on n EO 
see that, for any ?E F, there is a pair (S,,, 17,1) E ,!? x /r(R j such that 
?,T- S,, E I”. Due to the identifications of I?/I with G(R) and s’, (resp. ?;1 ‘! 
with o(S) (resp. o(T)), the case n = 1 is just the hypothesis. The truth 
of the assertion for n - 1 implies the existence of S,,- , E 3 and I:?) ~. i . 
d ,I - 1 E/?(R) such that ~,*--Ij=S,2--++,l--1x11-1. This is an element of 
lt(s+ RX)= c’(~(S)). Now the proof of Lemma 1.1 gives a pair 
(s,,, ?i,,)~Sxh(R) such that ir,,r7,_m,i-3,1~I”, and we are done. 

Remark 1.4. The hypothesis SC T can be avoided in the above 
theorem because, in any case, we can take G.(S)~~~ = ai T),,, = 
{x E h(G(R))jG(R).x n o(S) # 01. This is not necessarily a left Ore set of 
G(R) but defines the same l-topology in G(R) as o(S) and o(T) and, as 
sketched in [ 1, p. 121, the microlocalization of M with respect to the linear 
topology in R generated by { R~/a(u) E Gus = CT(T),,, 1. exists and equals 
Q:(M) or Q”,(M). 

The separability of the filtration in R implies that the canonical ring 
homomorphism R ---f l? is injective. Thus we can identify R with its image 
and, from now on, assume that R is included in d. If S c R is a subset in 
the standard situation, then so is it as a subset of R. because G(R) = G(A) 
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(see [9, Proposition D.III.1)). Just from the universal properties satisfied 
by microlocalizations (see [16, Theorems I and II]), one easily deduces 
that Q:(M) = Qg(A&, for any ME R-filt, where the last filtered module can 
be indifferently viewed as an object of R-lilt, R-lilt, or Q;(R)-lilt. This fact 
will be profusely used in the sequel. The following result relates the lattices 
of submodules of k M and e;cR,Qt(M) in a particular situation. 

THEOREM 1.5. Let R be a filtered ring such that G(R) is left Noetherain, 
S c R a subset in the standard situation, and Q = Q:(R). If M is a complete 
jilt-jTnitely generated left R-module, then the map @: 2( ,q M) + 2( p Qg (M)), 
given ly L -+ Qqiw (I~), is a surjective order-preserving map. 

ProoJ: By the above considerations, it is not restrictive to assume that 
R = ri so that it is a complete left Zariski ring. Let U be a Q-submodule 
of Q”,(M) and consider the induced filtration in it. Since 
G(Q) = o(S)-’ (G(R)) is left Noetherian and Q is a complete ring, Q is a 
Zariski ring and we can assert that Q”,(M) and U are filt-finitely generated 
Q-modules. Let now u,,,_ i : Qsn(fi/I”i@) + Q~-,(~/F’-‘fij be the 
canonical map and pn: Q?(A) -+ Qs(AT/Y&j the map from the inverse 
limit onto the II th component of the inverse system. Then p,(a) is a graded 
Qz,[(&l”)-submodule of Qs;,(A2/l”fi), for each n 3 1. By well-known 
properties of the modules of quotients, there exists a unique graded R/Z”- 
submodule o,,/F’fi of &/Z”ii? satisfying that p,( 0) = Qf,,,( 8,,,iY&j and 
(fi/I”fi)/( 0,,/YA) 2 A?/U,, is S,,-torsion-free (i.e., no nonzero element of it 
is annihilated by an element of 3,). This last property and the identity 
24 II.n _ i ap, = P,~ _ I entail that 

t7,,+111-II@= 8,,-,, i&l 

for each 112 2. In such way, we get a descending chain { 8,, lNaL of graded 
I?-submodules of AT. Take iv= nrr3 i o,,. We prove that #+r”M= D,:,, for 
each n 2 1. We only have to check the inclusion 2. Let us fix 112 1 and 
take a homogeneous element 12 = 2i0 of rJ,*. By repeated use of the formula 
(&), we can obtain a sequence (~2~)~~~ of homogeneous eleme_nts of w  
with the same degree as li and with the property that zi, E U,, p and 
Lip-12p+,Er “+ Pfi, for each p > 0. It can be seen in a straightforward way 
that both (ii,} and (tl- z?,> are Cauchy sequences with respect to the 
I-adic topology in fi. By Cl, Proposition 2.51 and the completeness of M, 
they have limits which are denoted by IF and Li, respectively. Bearing in mind 
that C--Z~~=&~~<~ (z2/,-iik+i ) E ,,,I@, it is clear that its limit L; belongs 
to I”,@. On the other hand, the definition of limit says that, for an arbitrary 
p 3 1, ii; - B, E Ipfi for k large enough. Hence E E or:, + k + Ip@. When k 3 p 
the latter R-module is included in rJp+ 1 + Ip&i = op due to the repeated 
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use of (&). The arbitrariness of p implies that I? E fig 2 1 0, = !? and thereby 
zi = K> f G belongs to fi+ Yf@, as desired. 

We claim that fi/fi is an X-torsion-free graded a-module. Let 
Kz + RE G/n be an element annihilated by X (i.e., XC E Av) and 
@,,,: &i+ Q#?) th e canonical R-homomorphism. Since pn J @If is the 
composition R + &!f/I’& + Qs,,(-fi/I‘*fi), p,,(X@,\,(!%)) = (p,, 9 @,,)(XpE) is 
an element of Q$,,((m+ I”hT)/I’A/r), for each 113 1. The last module is just 
Qs( n,,;‘I”fi) = p,,( o), by the above paragraph. Then X4 ill jr6 ) E 
~,;‘(p,l(~))= ~+Z”Q”,(fi), for each ~12 1. and thus X$,,(S) belongs to 
n,,, 1 (.8+ rQ$(&)). But the Zariskian condition of Q and the fact that 
Q:(M) is a filt-finitely generated Q;(R)-module tell us that the quotienl 
filtration on Q”,(M)/U is separated, which is equivalent (see [I. 
Lemma 2.11) to saying that Q$(A)/o is I-adicaliy separated. So 
D=n,,,, (D+ r’Q5(ti)) and, consequently, X@,,, (I%) E c;. But $I$ ( :@‘); c 
is X-torsion-free (see, e.g., [12, Theorem 1.21) so that @,w(KzjE Ii. whence 
(p,, : @.zi)(Cr) = f752 -I- /“fi is an element of p,( ej = Q~,J~~,,/~“~~). The s,!-tor- 
sion freedom of &f;o,, entails that ri? E 8,,. Since this has been done for an 
arbitrary IZ 3 1, it is valid for all of them and thereby rG E n,, 1 I,, = % 
showing the claim. Now 0 --f fi+ & ---) il?/R-+ 0 is an exact sequence of 
X-torsion-free graded R-modules. This means that ,g is the X-torsion-free 
graded R-module assigned to a submodule N of M. considered wiih its 
induced filtration, by means of the equivalence of categories K&It > z., 
(see, e.g., [12, Theorem 1.21). 

Our goal is to prove that Qp.\,(N) = U, which ends the proof. What we 
have done above with X@,,f(Cl) may be done with any element of $ \[ilv). 
showing that G,,I( N) G u and hence cpjw( N) G U. Since (7 is a Q-submoduie 
of Q!;(M), the inclusion Qcp,(N) G 0 is clear. On the other hand, 
the canonical projection ,v,,: 0 --f p,,(n) = Q,7,,(A%7 + I”h&‘l”hs) yields 
a homomorphism ,I?,,: 0 + Q3,8($iI”fi), taking into account that 
(fl -t K’r~@)jI’zA@ = fi!‘(W n Z”j@) = ,@/I”A@) due to the X-torsion freedom of 
-@iI? It is v’ery easy to see that {J~,,!H a,1 j- is a family of homomorphisms 
compatible with the inverse system Qs,,(,nJ,;Y~), which gives rise to (22(-q). 
Then we get a homomorphism 7: 8-t Q$(,T;) in the category ii-gr. It is left 
as an exercise to prove that 1;1 is injective. When Q$(Ar?) is viewed as a 
graded submodule of Q$(fi), 7 may be seen as an inclusion and hence, by 
the equivalence of categories R-filt r 3.r. CT G Q!;(N). Thus 

From the Zariskian condition of R we deduce that ,V is a filt-fini?cly 
generated R-module and, by [ 16, Proposition 6.221, the canonical map 
Q Oii I\i-t Q:(K) bijective. Its image is just Qcp,,(i\;), thus showing that 
we have equality in (&A). 
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COROLLARY 1.6. Let R be a filtered ring such that G(R) is left 
Noerherian and S a subset in the standard situation. For arzJ> of the dimen- 
sions Krull, Gabriel, global, and weak global, the following inequality holds: 
l-dim Qg( R) < l-dim l?, where the prefix 1 indicates that thell are taken on 
the lej1. 

ProoJ: Since i? and Qg( R) are left Noetherian (see [g, Corollary 
D.IV.4]), the equalities G-dim 2 = K-dim k + 1, gl-dim ff = w-g&dim k 
and the corresponding ones for Q = Q:(R) hold (here, and in the rest of 
the paper, G-dim, K-dim, gl-dim, and w-gl-dim denote, respectively, the 
Gabriel, Krull, global, and weak global dimensions on the left). Conse- 
quently, we only have to prove the result for, say, the Krull and the global 
dimensions. The Krull case is clear since the Krull dimension of Q is that 
of the lattice 3( ,Q) (see [ 10, Chaps. 3 and 41) and this is an epimorphic 
image of ??(gk) by the previous theorem. For the global dimension case, 
recall that gl-dim Q = Sup(p-dim( Q/J)/J is a left ideal of Q}, where p-dim 
denotes the projective dimension. By the foregoing theorem, any left ideal 
of Q is of the type Q;(a) = Qq(a) z Q OR a, where a is a left ideal ?f l? 
considered, if necessary, with its induced filtration. Then Q/Jz Q 02 (R/a). 
Inasmuch as Q is a flat right R-module (see, e.g., [16, Corollary 6.26]), 
p-dim,( Q/J) < p-dimR(&/u) and, thereby, gl-dim Q < gl-dim ff. 

2. AUSLANDER REGULARITY AND DIMENSIONS 

If R is a left and right Noetherian ring having finite global dimension p, 
it is well known that there exists, for any finitely generated R-module M, 
a smallest natural numberj= j(M) such that Exti,(M, R) # 0. This is called 
the grade c?f M and the ring is said to be (Amlander) regular in case the 
following so-called Amlander condition holds: 

(A) If M is a finitely generated R-module then, for any 0 <k < /A and 
any nonzero submodule N of Ext”,(M, R), j(N) 2 k. 

Our aim is to show that being regular is a microlocal property for a left 
and right Zariski ring whose associated graded ring is commutative. We 
start with a lemma in which l,.fi,t denotes the identity functor in R-filt. 

LEMMA 2.1. Let R be a filtered ring, S c R a subset in the standard situa- 
tion, Q = Q:(R), and Vi: Q-tilt + R-filt the forgetful functor. TlJe carlonical 
n7orphisms q ,,, : 11-1 + Q:(M), for ME R-i%, define a natural transformation 
between 1 R.fi,t and UC Q$ (-). 

ProoJ: Take a morphism in R-filt, f: M---f N. Just by definition of 
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Q:(f) (see [16, p. 99311, we have that U(Q”,(f)j 2 P,~, = q,2. 1.f: This proves 
the assertion. 

In the proposition below the ring of integers Z is considered to be 
filtered by means of its trivial filtration (i.e.. F,,Z = 0, for IZ < 0, and 
F,Z=Z, for 2220). 

PROPOSITION 2.1. Let R, S, and Q be as in tke abore lemma and 
NE R-filt. The two confratlariant fzmctors HOM,&, Q:(N)) and 

HOM,(Qg(-), Q:.(N)), ,frorn R-filt ro Z7fi/r, are naf2wall)7 ison2orphic cia 

the assigwnent J’ --, Q:( f ). 

Proof Let ME R-filt and fE Hom.(Af, Q;(Nj). Then Q;(J-)E 
Hom,JQ”,(iU), Q;(Qg(N))j. Since Q”,(Q;(N))= Q;.(N), we see that 
Qg.(.fj is actually an element of HomB(Q’;.(M), Q:(N)). We claim that the 
assignment ,f -+ Q;(f) is a morphism in Z-filt. The sum is clearly preserved 
so that we only have to check that if fez F, HomJIU, Q:(N)) then 
Q;(f) E Fp HOM,-JQ;(hlj, Q;(N)). But. from the universal property of 
the microlocalization functor (see [16, Theorem II J), one gets that 
Q:(nir( - p)) = Q;(M)( - p) and, by the properties of the shifted filtered 
modules, there is no loss of generality in assuming that .f has de,gree zero. 
Then the claim follows from the functoriality of Q$(-j. Let us now define 
a map HOM,(Q;(M), Q;(N)) + HOMJM, Q’;(N)) by g -+ C:(g),- cp if. 
where U: Q-filt + R-filt is the forgetful functor. It can be easily proved that 
it is a morphism in Z-filt. We see that it is the inverse of the above one. Let 
f~ HOM,(Af, Q:(N)), which can be assumed to be of degree zero. By the 
previous lemma, U(Q:(f )) 2 (pp.+, = ~p~~,~,.:.fr where Q(N) denotes Q;(,Vj. 
Since peclv, is the identity map of Q;(N) as a consequence of the stabiliza- 
tion of the microlocalization functor (i.e., Q?.(Q,i(-)) z QtG(-j), we get that 
U(Q:(f )) 2 qoJI =f Conversely, let g E HOMQ(Q:(h6), Q~(i~)j. which can 

be chosen again of degree zero. Then Q”,(U(g) 5 ‘p.w) = Q;(.U(g)) 6 Qf;.(,~p.,,~j. 

But Q;(v~~,) is the identity map of Q and Qf;(U(g)) = g. So 
Q;(li(g) - ‘P.,~) = g, as desired. The naturality is the only thing left to be 
proved. This is proposed as an exercise to the reader. 

Remark 2.3. We say that N is a ,filtered R-R-bimodule if it is a 
bimodule with a filtration FN such that F,,N. Fp R E F,,,,N and 
F,R . F,,N_c F,,tp A! for all n, ,YE Z. If, in the above proposition. M is a 
filtered R-R-bimodule whose left and right microlocalizations with respect 
to S coincide, then the two mentioned functors are actually functors from 
R-filt to tilt-Q and the result is still valid in this situation. In particular, 
that is the case when N= R. 

Let now &I: . . . -‘Al,,_, -5 M ,, d,, M,,_ 1 --f be a cochain com- 
plex in R-filt jresp. filt-R). Then the cohomologg modules N”j&fj= 
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Ker d ,1+ ,/Im d,, (n E Z) can be filtered in a natural manner by taking the 
filtration induced in ‘Ker d,, + 1 by M,, and providing H”(M) with its 
quotient filtration. If R is Noetherian and satisfies the property that any 
good filtration induces a good filtration on each submodule, then, in case 
each lU,, is filt-finitely generated, the filtration in H”(M) is good, for every 
rl E z. 

EXAMPLE 2.4. Let R be a left and right Zariski ring, N a lilt-finitely 
generated R-R-bimodule, and M a filt-finitely generated left R-module. If 
L: ... +L,+L,i-l+ ... +L,+L,+O-t ... is a strict finitely generated 
jilt-free resolution of M (i.e., it is exact in R-Mod, all the L,, are finitely 
generated lilt-free and all the homomorphisms are strict filtered), then 
L”: . . . +O+Hom,(L,,N)+Hom,(L,,N)+ . . . +Hom,(L,,,N)-+ ... 
is a cochain complex in f&-R (recall that HomJL,,, Nj = HOM,(L,, hl), 
for each PZE& in the present situation!). Its cohomology modules are 
H”(L*) = Exti(hf, N), for each n 3 0. It is an easy exercise to see that the 
filtration in Hom,(L,,, N) = HOM,(L,,, Nj is good so that Ext”,(M. N) is 
provided with a good filtration, for every IIEYJ. 

~ROPOSITlON 2.5. Let R be a I@ and right Zariski ring, S c R a subset 
in the standard situation, and N a filt-finitely gerzerated R-R-bimodule whose 
left and right microlocalizations with respect to S coincide. For any finitely 
generated filt-free left R-moduie L, the map @,: Hom,(L, N) OR Q + 
Hom,(L, Q:(N)), defined by @,(J’@ q)(x) = qIv(f(x)) q, is arz isomorphism 
in lilt-Q> which is natural in the finiteI), generated filt-,ji.ee component L. 

Proof: Let L be filtered by F,,L= @lGiCkFt,-p,R.ei, for each FEZ, 
where (e,/l d id k 1 is an R-basis of L. It is not hard to prove that, when 
we identify Hom,(L, N) (resp. Hom,(L, Q:(N))) with Nk (resp. Q$(N)k), 
the filtration of the first module is identified with the filtration 

FpNk= @mc.&+p iv (rev. F,Q$(N)” = 0 1 Gisk Fp+ ,,Q”,(W, f’or 
each PE Z. Then Ho&,&L, N) (resp. Hom.(L, Q:(N))) is identified with 
the filtered right R-module @ I +c: k N(P,) (rev. 0 lGiGk Qg(N)(pj)). 
Thus we only have to prove that >(p)BR Qz Qg(AJj(p) in lilt-Q, for 
any FEZ. The first member of the expression is (NOR Q)(p) (see [9, 
Lemma D.VIII.11) so that the mentioned isomorphism follows in a 
straightforward way from the isomorphism NOR Q 2 Ql;( N) (see, e.g., [ 1, 
Corollary 3.20]), which is an isomorphism in filt-Q. We leave as an exer- 
cise to check that the isomorphism Hom.(L, N)OR Q r Hom.(L, Q”,(N)) 
provided by the above identifications is the desired one. 

AS a consequence of all the above lemmas and propositions, we get the 
key result of this part. 
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THEOREM 2.6. Let R be a left and right Zariski ring, S c R a subset ir: 
the starzdard situation, and N a fill-finitely generated R-R-himodule whose 
left arid right microlocalizations tvith respect to S coincide. Then, for each 
filt-finitely generated left R-module ill and each II > 0, Q:(Exti(U, N)) 2 
Ext’h(Qz(M), Q;.(N)) in a natural way. 

Proof. Let us note that the statement makes sense due to the fact that 
the microlocalization of Ext:(M, N) does not depend on the good filtration 
takenin it, Let L: ... +L,-% L,,-,-t . ..-% L,$+ L,+O-+ ... be a 
strict finitely generated tilt-free resolution of M (i.e., M = Coker d, with 
its quotient filtration). We have now the following cochain complexes in 
lilt-Q: Homo(Q;(L), Qg.(Njj, Hom,(L, Q’;(N)j$ Hom,(l,, N)OR Q. and 
Q!;(Hom,(L, N)). By the right Zariskian condition of R and the fact 
that Horn&, N) is a complex in tilt-R, Hom.(L. N)OR Q and 
Q;( Hom,( L, N)) are naturally isomorphic complexes of tilt-Q (see [ 1. 
Corollary 3.201). By using now Proposition 2.2 and Proposition 2.5, we get 
that the above four complexes of filt-Q are isomorphic. If we take their 
cohomology modules with filtrations detined as in Example 2.4, we get the 
desired result. 

Remark 2.7. In the above proof. we have actually shown that, when L 
is a strict finitely generated filt-free resolution of IME R-lilt and the right 
R-module Ext;(Ad, N) is given the good filtration coming from it, then 
Q;(Ext’;(itl. NJ) is isomorphic, as filtered right Q-module, to the right 

Q-module Ext&(Q:(M), Q;(N)), which is considered with the filtration 
deduced from the strict finitely generated tilt-free resolution Q!;(L) of 
Q;(M) E Q-filt. 

The foregoing theorem proves very useful in the study of the behaviour 
of the global dimension of R with respect to microlocalizations. Before 
tackling that problem, we give the following lemma, which can be easily 
deduced from I] 11: Corollary 3.341. 

LEMMA 2.8. Let A be a left and right Noetherian ring. rf A has ufiniie 
global dimension, then inj-dim. A = gl-dim .4 (resy. inj-dim A -I = gl-dim A ). 
inhere inj-dim denotes the injectiue dimension. 

If R is a filtered ring whose associated graded ring G(R) is commutative, 
then we can take Spec”‘(G(Rj) (resp. Maxg’(G(R))) to be the set of prime 
graded (resp. maximal graded) ideals of G(R). For each p E Specg’(C( R 1) 
(and hence for every ~EM~~“‘(G(R))), h(G(R)j\p= {u~Iz(G(R))/u$p) is 
an Ore set of G(R). We write Q:(R) for the microlocalization of R with 
respect to any multiplicative subset S of R such that CT(S) = h(G(RI) p (see 

Corollary 2.2). 
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THEOREM 2.9. Let R be a filtered ring such that G(R) is Noetherian 
conmututiL~e. The following statements hold: 

(a) If d has jinite global dimension, then gl-dim 2 = Sup{gl- 
dim Q$(R)/p E Specg’(G(R))3 = Sup(gl-dim Q;,(R)/m E MaP(G(R)jj, 

(b j [f” G(R) is gr-semilocal, i.e., it has only a.fitzite number of maximal 
graded ideals: then K-dim 4 = Sup{ K-dim QE( R)/p E Specg’(G(R)) > = 
Sup(K-dim QE,( R),/rrt E Maxg’(G(R))). 

Proof: Without loss of generality, we can assume that R is complete so 
that R = 8 and it is a left and right Zariski ring. Let M E Maxg’(G(R)) and 
p E Spec”‘(G(R)) such that p s tn. Then QL(Qi(R))=QK(R) (see [l, 
Corollary 3.181). By Corollary 1.6, dim Q;(R) <dim Q”,(R) for any of the 
two dimensions considered. Hence we only need to check the equalities 
concerning Maxg’(G(R)). On the other hand, the inequality dim RB 
Sup(dim Q:(R)@ E Maxg’(G(R))} is also a direct consequence of 
Corollary 1.6. so we only have to prove the converse inequality for both 
dimensions. 

(a) For the global dimension case, the previous lemma ensures that 
we can replace gl-dim R by inj-dim RR. Let us put r? = inj-dim RR. Then 
Exti(M, R) # 0 for some finitely generated left R-module M. We give M a 
good R-filtration so that Exti(b& R) gets a good filtration in the manner 
explained in Example 2.4. If QE,( Ext:(ll/i, R)) were zero for every 
nt E Maxg’(G(R)), then its associated graded module G(Ext”,(M, R)),, 
would be zero for every tn. As in the ungraded case, this implies that 
G(Ext>(A& Rjj is zero. The fact that R is Zariski would entail that 
Exti( Jf, R) = 0, thus contradicting the hypothesis. Hence we can pick up 
an m E Maxg’(G(R)) such that Q”,,(Ext”,(M, R)) # 0 and, by Theorem 2.6, 
Ext;(QL(M), Q”,(R)) # 0, which shows that gl-dim QE1 > n. 

(b) For the Krull dimension case, let us consider, for a filt-finitely 
generated left R-module Al: the map ~( Rn/rj + n{ L3( e Q:,(M))/ 
m E Maxg’(G(R))l, given by N+ (Q~(N)),.~Iare’,G,R,), where the induced 
filtration is considered on each N. It is an order-preserving lattice 
homomorphism when the componentwise order is taken in the product. 
Furthermore, it is injective. Then the Krull dimension of the lattice P( RM) 
is smaller than that of n{f!(,Q~,(ll1j/mEMax@‘(G(R))}. If Max”‘(G(R)) is 
finite, the Krull dimension of the product is just the supremum of the Krull 
dimensions of its components, and we are done. 

From the above result we get the microlocal condition of the Auslander 
regularity of &. 
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THEOREM 2.10. Let R tie a filtered ring sucl~ that G(R) is Noetheriarz 
conmutatice. [f R Itas finite global dimension, then the jollowirzg assertions 
are equil;alent: 

(a) l? is Amlander regular. 

(b) Q;(R) is Adander regallar, for eL;ery subset SC R in the standora? 
situation. 

(c) QX,( R) is Azrslander regular, .for ever?, m E MaxA’(G(R)). 

Prooj: As in the proof of the above theorem, we can assume that R IS 
complete so that R = k 

(a)*(b) Since gl-dim Qg.(Rj is finite, we only have to check the 
Auslander condition. Let ci be a finitely generated left Q;(R)-module. 
Then Lr 2 H’/V, for some finitely generated free left Q;(R)-module Pi’ and 
some submodule I’. When Cf’ is made into a finitely generated filt-free 
Q;(R)-module, it is isomorphic to Q”,(L) for a certain finitely generated 
tilt-free left R-module L. Now Theorem 1.5 applies and we can think 
of T’ as being of the type Q”,(N), for some R-submodule N of L on 
which the induced liltration is taken. Thus &‘z Q$.(Ll/‘Q;(N) z Q~(L/IV: 
and it is not restrictive to assume that U= Q.Y.(n/l), for some flt-finitely 
generated left R-module hf. If 0 d k < pls = gl-dim Q$( R) and 0 P 
YE Extk,$,R,(Q”,(nl), Q;(Rjj 2 Q;(Ext”,(M, R)) is a submodule, then 
Theorem 1.5 may be used again to see that Yz Q<(N), for some nonzero 
R-submodule N of Extk,(hrl, R). Then 0 G k <ps6 p = gl-dim R and the 
Auslander condition for R ensures that j(X, j B k-, i.e., Exti( N, R j = 0 for 
i<k- 1. Therefore Exti(Q$(N). Q;.(Rj)zQ;(Ext’,(N, Rjj=O, showing 
that j(Y,jak, where Q=Q;(R). 

(b j * (c) Clear. 

(c) =S (a) Let M be a finitely generated left R-module and give it a 
good filtration. If 0 <k < p = gl-dim R and N# 0 is a submodule of 
Extk,(itr, Rj, then the induced liltration on N is good and Q::,(Xj is a 
QtX(Rj-submodule of Q;(Ext:(M. R)i z Exti,,,,,(Qtn(J4), Q:(R)). for 
every maximal graded ideal m of G(R). If k > ,u,, = gl-dim Q”,(R), then the 
latter Q,z,( R)-module is zero and thereby Q:,(N) = 0. This implies that 
Qk(ExtlR(N, R)) = 0 for every j>, 0, by Theorem 2.6. If k < p,,, then the 
Auslander condition for Q”,,( Rj yields Ext$,;l,,,(Qk(N). Q~(R) j = 0 for 
j< k - 1. By combining the two possibilities (.lI d p’,,, and k 3 prrr), we _ger 
that Q$(Ext’,(N, R)) = 0 for each m E MaxS’[G(R)) and each j d li - I. The 
Zariskian condition of R entails that Ext’,(N, R j = 0 for j < k - 1 and thus 
.i(NR) > k. 
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3. APPLICATIONS AND EXAMPLES 

In this part our goal is to apply the previous results to the study of the 
global and Krull dimensions of certain filtered rings. 

A. Discrete Filtered Rings 

Recall that a graded ring A = @ ,Ic A,, is called left limited when there 
exists a p E Z (in fact p < 0) such that A,, = 0 for any n < p. When p = 0 in 
this definition, A is called a positively graded ring. If A is an arbitrary 
graded ring, then A + = @ {.4,1/n > 0 ] . is a positively graded subring of A. 
Analogous terminology is used for graded modules and graded ideals. 

LEMMA 3.1. Let A = @,,Cz A,, be a left limited commutative graded 
ring. Then any maximal graded ideal m qf A is qf the type 

(0 ,i<oA,,)OmoOiO.>o A,), #qhere m, is a maximal ideal of A,. 

ProoJ: Let rn=@,,, M,, and put S= h(A)\m. Since S is a multi- 
plicatively closed subset and any element of ellc,, A,, is nilpotent, S can- 
not have elements of negative degree. Hence m, =.4, for any n ~0. Let 
now { y,/i E 1> be a set of homogeneous elements that generate @ ,r<O A, 
as A,-module. Then m = mf + xiE1 .4yi, where tnf = @ (m,/fr 3 O}. We 
prove that m + is a maximal graded ideal of A + = @ {.4,,+7 3 0 > and the 
problem is reduced to the case of a positively graded ring. Suppose that 
m+ is not so and let m+ cn+ c A+ be strict inclusions, where n+ is a 
graded ideal of A +. This entails that n+ is not contained in m, whence m 
is strictly contained in rt+ + xjE I Ay,. We can use the fact that (yi/iEZ) 
generates @ {A,,/n ~0) as cl,-module to see that n+ +CIEI Ayi is a 
graded ideal of ,4 (it is generated by homogeneous elements !). From the 
maximality of m we get that n+ +xiE,A~i=A so that 1 =n+ +Cielaiyi, 
for certain 12 + E II + and some finite family (a,/iEZ) (i.e., aj= 0 for all ieZ 
except for a finite number of them). By taking the zeroth homogeneous 
component of that equality, we can assume that n+ and each aiyi have 
degree zero. But then xi= ( aiyi is a homogeneous element of degree zero 
of nr and hence of m + c n +. This implies that 1 E n +, which contradicts the 
choice of n+. If now everything is assumed positively graded, then 
mcnroO(O,,., A,) and the latter is clearly a graded ideal of A. There- 
fore nr = m0 @ (0 ,I 2 I A,), as desired. 

COROLLARY 3.2. Let .4 = @,,cz A,, be a left limited commutative graded 
ring. The folloGng assertions hold. 

(a) Elvery maximal graded ideal of A is a maximal ideal in the 
ungraded sense. 
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(b) A, . A -k E J(A,) for an). lc # 0, where J(A,j deenotes the Jacobsor; 
radical of A,. 

If R is a discrete filtered ring whose associated graded ring G(R) is 
Noetherian commutative, then Lemma 3.1 tells us that, for any maximal 
graded ideal n of G(R), hjG(R))‘\,,n= G(R),‘;,n,, where no is a maximal 
ideal of G(R),, = FOR/F- 1 R. Since n, must be of the type m/F_ ,(R1, for 
some (left and right) maximal ideal m of F,,R: we get that S,,, = F, R ‘, m is 
a multiplicatively closed subset such that o(S,,,) = h(G(R)) i,,n. We can use 
the Zariskian condition of R and Proposition 17 of [ 171 to see that S,, is 
actually a (left and right) Ore subset of R and thus of FOR. We write Rril 
for S,;’ R, hoping that no confusion will arise with the localization at 
maximal ideals (,m is not an ideal of R!). The following result is now a 
direct consequence of Lemma 3.1 and Theorem 2.7, bearing in mind that 
Q:,(R) = R,, in this case. 

THEOREM 3.3. Let R be a discrete ,filtered ring suck that G(R) is 
Noetherian commrtati~~e. The following sentences are true: 

(a) [f R has finite global dimension, thell gl-dim R is the mppremmz of 
the set (gl-dim R m,‘mE Max(F,R)). 

(b) [f’ FOR is semilocal, i.e., has onlv a finite number- qf maximal 
ideals, then the above equalit) holds for Krull dimension. 

EXAMPLE 3.4 (Rings of differential operators). Let .4 be a Noetherian 
commutative ring containing a field K of characteristic zero. A K-derivation 
of il is a K-linear map 6: .4 -+ A such that &ah) = 6(a)b t ah(b). If 6,. ...I S,, 
are II A-algebraically independent K-derivations of A, the ring D,,,., B,,(dzL ). 
or D(A) if the 6;s have been previously fixed, is the subring of the ring 
End,(A) of K-endomorphisms of A generated by the multiplications by 
elements of ;1 and the ais. The ring D(A) admits a canonical filtration: 
C,~W= c&,,,p a, da/ax E A for each a E hi” \ for p >, 0 and x-,T D(A) = 0 
for p < 0 (here 6” = 6;‘. ... .6: and (#xX( = m,+ ... ix,, when 
a= (u,, . ..) a,,j). Under certain conditions of regularity in A (see, e.g.. [3. 
Theorem 3.1.2]), the associated graded ring G,(R) is (Noetherian) com- 
mutative with 4 as zeroth homogeneous component. The above theorem 
tells us that gl-dim D(A) = Sup(gl-dim D(A,)/~E Max(A)), provided that 
the first member of the equality is finite. This is just Lemma 3.1.7 of [3]. 
The corresponding equality for Krull dimension also holds when A is 
assumed to be semilocal. 
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B. Strongly Filtered Rings 

If R is a strong/.)’ filtered ring (i.e.% F, R . F,, R = F,,, t n R for all nz, n E Z) 
whose associated graded ring is commutative, then G(R) is strongly graded 
and, consequently, there is an equivalence of categories G(R)-gr z G(R jo- 
Mod under which G(R) and G(R), are corresponding objects (see [9, 
Theorem A.I.3.41). This implies that any maximal graded ideal n of G(R) 
is of the type n = G(R j~l, where 1Tr is a maximal ideal of G(R),. Since the 
latter ring is just FOR/F-, R, ti = m/F-, R for some (left and right) maxi- 
mal ideal m of F, R containing F- 1 R. If we consider the multiplicatively 
closed subsets U= h(G(R))\n and V= G(R),‘@ of G(R), one easily gets 
that W’G(Rj = I;‘-‘G(R). Now S, = F,R\m is a multiplicative subset of 
R such that a(S,,) = V. By Theorem 1.3, Q;(R) = QLJR). Furthermore, S, 
is strongly multiplicatively closed in the terminology of [17] and, when 
considered as a subset of A, the conditions of Proposition 17 of [17] are 
satisfied, because ri is a Zariski ring. So S,,, is a (left and rightj Ore subset 
of k and @JR) is the completion (S,, - ‘8) ‘I of S, -‘l?. This proves the 
following result. 

THEOREM 3.5. Let R he a strong/~~ filtered ring bthose associuted graded 
ring is Noetherian cornmutative. Therl g&dim i? = Sup(gl-dim( S,,, - ‘A) ” / 
mEMax(FOR) and F-,Rsmj, p rovided that the first member of the 
equczlity is finite. 

ilf‘the set of iefr (or right) nlaximal ideal of F, R containing F- , R is finite, 
then the corresponding equalit?, holds for the Krull dimension. 

Remark 3.6. If in the above theorem R is also assumed to be Zariski, 
then we can substitute R for i? so that R, =S,, --‘R appears instead of ^ 
S, -‘R. This is d ue to the fact that the conditions of Proposition 17 in 
[ 171 are satisfied by S,, and R. In particular, this is the case when R is 
complete. We have not obtained an answer for the general problem and the 
following question remains open: 

Let R be a strongly filtered ring whose associated graded ring is 
Noetherian commutative and let m be a left (or right) ideal of F,,R con- 
taining F- I R. Is S,,, = F,R’\m a left (resp. right) Ore subset of, say, FOR? 
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