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0. INTRODUCTION AND TERMINOLOGY

The process of microlocalization appeared first in a strongly analytic
frame in relation to systems of linear differential equations with
holomorphic coefficients (see, e.g., [137). From the strictly algebraic point
of view, the process of microlocalization gives an answer to the following
universal problem: If R is a filtered ring and S« R is a multiplicatively
closed subset, does there exist a complete filtered ring, denoted by Q%(R),
with a filtered ring homomorphism ¢: R — @%(R) such that the two condi-
tions below are satisfied ?

(i) o(s)is a unit of Q%(R), for every se S.
(i1) If f: R— A is filtered ring homomorphism, where 4 is complete

and f(s) is a unit of 4 for each se S, then there exists a unique filtered ring
homomorphism g: Q%4(R) — A such that g-¢ = f.

The first purely algebraic approach to the matter was carried out by
Springer [14], who solved the problem for the case when R is com-
mutative. The general settlement of the solution was fulfilled by Van den
Essen [ 16] for the case when ¢(S) is a left Ore set of the associated graded
ring G(R) (sec ahead for the definition of ¢(S)). However, a large number
of analytic tools concerning the use of norms and pseudonorms were used
by the author. This still very analytic sediment was completely avoided
by Asensio, Van den Bergh, and Van Oystaeyen [1], who gave an utterly
algebraic description of the process by considering the generalized Rees
ring R associated with the filtered ring R. Since then, microlocalization has
been a subject of study in several papers (see, e.g., [5-8, 17]).

The aim of these notes is to show certain localization-like properties of
the above process. We divide them into three sections, apart from this
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preliminary one. In Section [ we see that the microlocalization with respect
to S < R actually depends on the ring of quotients ¢(.S) ' G(R) and not on
the set § itself (Proposition 1.3). It is also proved in that section that, when
G(R) is left Noetherian and M is a filt-finitely generated left R-module
(R is the completion of R), a surjective order-preserving lattice homo-
morphism may be given between the lattice of R-submodules of M and the
lattice of Q%(R)-submodules of Q%(M) (Theorem 1.5). As a corollary, in
that situation, the dimension of R is an upper bound for the dimension of
Q’%(R), for several dimensions of rings (Corollary 1.6). In Section 2, we
prove that if R is a left and right Zariski ring and N is a filt-finitely
generated R-R-bimodule, then the right R-module Ext’,(M, N) can be
given a good filtration for which Q% (Ext%(M, N)) = Ext},(Q%5(M), Q5(N)),
where Q = Q% (R) (Theorem 2.6). This result is used to give a microlocal
estimation of the global and Krull dimensions of R (Theorem 2.9) and
also to show that Auslander regularity is a microlocal property of R
(Theorem 2.10). The last section is dedicated to apply the foregoing results
to discrete and strongly filtered rings.

All rings considered in the sequel are assumed associative with 1 and,
unless otherwise stated, module means left module. If 4 is a ring 4-Mod
stands for the (Grothendieck) category of A-modules. If A/ is an object of
A-Mod, then £( M) is the lattice of submodules of M.

A filtered ring is a ring R together with a Z-indexed ascending family
{F,R/ne?} of additive subgroups, which is called the filtration, such that
F,R-F,RcF, R for any integers m and n. A filtered R-module is a
module M with a filtration {F,M/neZ} of additive subgroups such that,
for all integers m and n, F,R-F,M<F, ,,M. All filtrations on modules
are considered to be exhaustive (ie., U,z F,M = M). Moreover, the filtra-
tion on the ring R is assumed to be separated (ie, N {F,R/meZ}=0). A
filtration FM on an R-module M is said to be complete (or M is a complere
filtered R-module) if the inverse system provided by the canonical projec-
tions M/F,M — M/F, . M satisfies that M =lim M/F, M. This is equiva-
lent to saying that any Cauchy sequence has a unique limit in M. The
discrete filtrations (i.e., there is a pe Z such that F,M =0, for n< p) arc a
trivial example of complete filtrations. It is always possible to associate
a complete R-module A7 with a given filtered R-module M by defining
M=lim M/F,M and filtration F,M=lim,_, F,M/F,M. This filtered
module is called the completion of M. When M = ;R (i.e., R considered as
left R-module), R is also a filtered ring and M becomes an R-module, for
any R-module M. An R-homomorphism f between filtered R-modules M
and N is said to be a filtered morphism of degree peZ in case
fAF,M)eF,, N for any neZ. If we denote by F, HOMg(M, N) the
additive subgroup of Hom (M, N} consisting of the filtered morphism
of degree p, then we get a filtered Z-module HOM (M, N}=
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Upez F, HOM (M, N). The pre-Abelian category whose objects are
the filtered left (resp. right) R-modules and whose morphisms are the
filtered morphisms of degree zero is denoted by R-filt (resp. filt-R).
If fe F,HOMg(M, N) = Hompg,(M, N), it is called strict when
F,Nnlm f=f(F,M) for each neZ U MeRfilt and peZ, we can
construct a new filtered R-module M(p) as follows: M(p)=4M as
R-modules and F,M(p)=F, . ,M for any ne Z. This is called the p-shifed
filtered module derived from M. If M, NeR-filt and p,qeZ, then
F,HOMg(M(p), N(¢q)) = F,,,., HOM(M, N) for every neZ. A
(finitely generated) filt-free R-module is the direct sum in R-filt of a (finite)
family {R(p,)/ieI} of filtered R-modules, where each R(p,) is the p,-shifted
R-module derived from R. A filt-finitely generated R-module is a filtered
R-module M for which there is a surjective strict morphism n: L — M, from
a finitely generated filt-free R-module L onto #. In that case the filtration
on M is said to be good. If M e Rilt and j: N> M (resp. : M — N) is a
monomorphism (resp. epimorphism) in R-Mod, then the filtration in N
given by F,N=j '(F,M) (resp. F,N=mn{F,M)), for each ne Z, is called
the induced (resp. quotient) filtration from FM. For a more detailed account
of the topics related to filtered rings and modules, the reader is referred to
[9, Chap. D1.

A ring A is called a Z-graded ring if there exists a Z-indexed family
{A,/meZ} of additive subgroups of A such that A=, 4, and
A4, 4,2 A4, ., for all integers m and ». Although the notion of G-graded
ring (G is a group) can be defined in a similar manner, here we are only
concerned with Z-graded rings so that, in the sequel, graded ring will mean
Z-graded ring. An A-module K for which there exists a family {K,/neZ}
of additive subgroups satisfying that K=& ,_, K, and 4,,-K, <K, ..,
for all integers m and n, is said to be a graded A-module. An
A-homomorphism f between two graded A-modules K=&, ., K, and
H=&, ,H, is a graded morphism of degree peZ in the case where
fIK,)sH,,,, for any neZ. The category whose objects are the graded
A-modules and whose morphisms are the graded morphisms of degree zero
is denoted by 4-gr and is a Grothendieck category. f K=@ ,_- K, s an

(S

object of A-gr, the elements of |J .- K, are called homogeneous and, when
Y is a subset of K, h(Y) denotes the set of homogeneous elements of Y.
#E( ,K) stands for the lattice of subobjects of K in A4-gr {ie., the graded
submodules of K). [9] is also a valid reference for graded rings.

When R is a filtered ring, the additive group G(R) =
®,.-(F,R/F,_|R) has a caponical structure of ring. It is called the
associated graded ring of R. Analogously if M is a filtered R-module, then
GM)y=@ ,.; (F,M/F,_ M) has an obvious structure of graded G{R)-
module. These constructions give rise to a functor G(-): R-filt - G{R)}-gr,
whose main properties may be found, e.g.. in [9, Chap. D]. On the other
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hand, the additive subgroup R=@,_., F,R-X" of R[X,X '] has
a canonical structure of graded ring and, for each M e R-filt,
M=@®,.,F,M-X"is a graded R-module in a natural way. If /= RX is
the (graded) ideal of R generated by the centralizing regular homogeneous
element X, there is a unique torsion theory in R-Mod (see [15, Chap. VI]
for the definition) whose torsion-free objects are those Ve R-Mod such
that Xv#0, for any nonzero element ve V. Those torsion-free R-modules
are referred to as X-torsion-free R-modules in the sequel. The graded
R-modules which are X-torsion-free give a full subcategory &, of R-gr.
The assignment M — #7 yields a functor from R-filt to R-gr that identifies
R-filt with § . We refer the reader to 1, 12] for a more detailed study of
the properties and relations between R, G(R), and R.

The principal symbol map o: R— h(G(R)) is defined as follows: (i) if
r=0, then o(r)=0; (ii) if r#0, then there is a unique neZ such that
refF,R and r¢ F,_ R and a{r) is the class of r in F,R/F,_;R=G(R),.
Analogously, a map ~: R— A(R) is given by writing 0 =0X° and 7= rX",
when re(F,R\F,_;R). If S< R is a multiplicatively closed subset, then
o(S) and § are multiplicatively closed subsets of G(R) and R, respectively,
consisting of homogeneous elements. In fact, when G{R) is identified with
R/I (see [1, Lemma 2.1]), o(S) is identified with §, = {§+1/5e5}. For
each natural number #, we denote by S, the multiplicatively closed subset
of R/I" given by {5+ I"/5e S}. If o(S) is a left Ore set of G(R), then §, is
a left Ore set of R/I", for each ne N. If M e R-filt and we write Q5 (M/I"M)
for the module of quotients of the R/I"-module M/I"}M with respect to S,,,
then we get an inverse system in R-gr, when we take the canonical
homomorphisms Qs (M/I""'M)— QS’I(M/I”M). Its inverse limit in R-gr
is denoted by Q%(M) and turns out to be an X-torsion-free graded
R-module. By the equivalence of categorics R-filt =~ {,, we get a unique

—
(complete) filtered R-module Q%(M) such that Q%(M)= Q% (M), which is
called the microlocalization of M with respect to S. The (graded)
R-homomorphisms A7 — M/I"M — Qg (M/I"M) are compatible with the
inverse system given above, thus yielding a unique morphism in R-gr,
@i M — Q%(M), which comes again from a unique morphism in R-filt,
@ M — Q%(M). When M= R Q%(R) is a complete filtered ring that,
together with the (ring) homomorphism ¢ =@ z: R — Q4(R), solves the
universal problem mentioned at the beginning. Moreover, Q%(M) is a
filtered Q%(R)-module, for every M e R-filt. The assignment M — Q%(M)
gives rise to a functor from R-filt to Q% (R)-filt. The reader wishing to have
a more detailed knowledge of the microlocalization process and, in par-
ticular, of what is written in this paragraph can look up [1}.
One of the most suitable situations to study microlocalizations appears
when R is left Noetherian and, in particular, when F_, R is included in the
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Jacobson radical J(F,R) of FyR. The filtered rings satisfying these two con-
ditions are called left Zariski rings in [4]. Many characterizations of these
rings have been given in the recent literature (see, e.g., [4, Theorem 3.3; &,
Theorem 3.127. We add here another one. Recall that the filtration FR on
R is said to be faithful in the case where if M is any filt-finitely generated
R-module for which G{(M)=0, then M =0. Two filtrations FM and F'M
on the same R-module M are said to be algebraicaily equivalent if there

exists a natural number w such that F,_  McF,McF,, M, for every
nef.

TaeoreM 0.1.  The following assertions are equivalent for the filtered
ring R:
(1) Ris aleft Zariski ring.

(2) R is left Noetherian and, for everv left ideal a of R, we have
a= mmei (C( +FmR)'

Proof. The condition

a= () (a+F,R), (&)

mE L

for every left ideal a of R, is equivalent to saying that any quotient filtra-
tion of FR is separated.

{(1)=(2) Clear since any quotient filtration of FR is good and good
filtrations are separated (see [4, Theorem 3.37).

(2)=1{1) We prove condition 5 of Theorem 3.3 in [4] (iec., G(R) is
left Noetherian, FR is faithful, and, for every left ideal a of R with good
filtration Fa, F,a=(), .;(F,a+ F,R) for all ne Z). By the isomorphism
R/I= G(R), the latter ring is left Noetherian. We prove now that FR is
faithful. Let M be a filt-finitely generated R-module such that G(M)=0
and let x,, .., x, € M and n,, .., n, € Z be elements so that

F,M= Y F,_,R-x, (&&)

l<igk

for all integers neZ (this is the same as giving the strict epimorphism
@D | <i<x R{—n;)—> M, which maps the ith vector of the canonical basis
onto x,, for every i=1, .., k!). We proceed by induction on k. The case
k=1 reduces to the case M = R/a with the quotient filtration from R(p),
for some integer p. It can be trivially checked, by using condition (&). If
M is as (&&), then we get a strict exact sequence in R-filt: 0 — Ry, —
M - M'=M/Rx, -0, when the induced and the quotient filtrations are
taken, respectively, in Rx, and M'. By [9, Theorem D.II1.37], the corre-
sponding sequence 0 — G(Rx;)— G(M)—> G(M')— 0 is exact in G(R}-gr.
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Since G(M)=0, it follows that G(Rx,)=0=G(M’). The induction
hypothesis can be applied to the filtration on A’ so that we get M'=0.
Hence the problem is reduced to the case when FM is a good filtration in
a cyclic module M. But the result is true in this situation due to the fact
that any two good filtrations on M are algebraically equivalent and the
result holds for one of them if, and only if, it also holds for the other one
(a cyclic R-module can be always given a good “cyclic” filtration!). Let
now a be a left ideal of R and consider the induced filtration on it. Since
R is left Noetherian, & is finitely generated and, by [1, Lemma 2.17, that
filtration is good. Since any good filtration on a is equivalent to the latter
one, it is very easy to sce that proving the last condition reduces to the case
of the induced filtration. But, in this case, F,a+ F,R=(an F,R)+ F,R.
When m<n, this equals (a+F,R)nF,R For an arbitrary neZ,
Npez Foa+F,R)=,,<, [(a+F,R)nF,R]. From the hypothesis we
deduce that the latter member of the equality is just an F,R=F,a and we
are done.

A particular case of left Zariski ring is provided by a complete filtered
ring R whose associated graded ring. G(R) is left Noetherian (see [4,
Theorem 3.3; 16, Corollary 6.7, Definition 6.107).

1. SOME PROPERTIES OF MICROLOCALIZATIONS

In the sequel, a multiplicatively closed subset of the filtered ring R will
be referred as one in the standard situation where o(S) is a left Ore set of
G(R). The following lemma was announced without proof in [4, p.6].
Here we include a proof to be used subsequently.

LemMa 1.1. Letr SR be a subset in the standard situation. If
T=06""a(S))={te R/o(t)ea(S)}, then QLi(M)=Q4%(M) for every
M e R-filt.

Proof. We prove that S, and 7, define the same 1-topology (see [15,
VI.6.17) in R/I", for each n> 1. This is the same as provmg that, for any
ie T, there exist 7, € (R) and §,€ § such that 7,7—3, is an homogeneous
element of RX" = I". We proceed by induction on ». The result is clear for
n=1, because §, =7, is identified with ¢(S) by the isomorphism
R/I~G(R). If the result is true for k<n—1, then we can choose
7. _,eh(R)and §, eS8 such that

H—

=5, (=a, X", (&)

Fuo n—

for certain 4, ,€A(R). By applying the second left Ore condition in the
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graded sense (see [9, Lemma L.6.1]) to the subset 5§, =T, of R/I, we get
a pair (sn\l, ,,_l)eth(R) such that § _,d, ,—4a,_,ieh(D). Then
Y _,7+DbX, for some b e h(R). Now we can multiply on the left
by s"‘j,,l in (&) and, after using the fact that X is a centralizing element,
we obtain that (§,_,F,_ ,—d, X" i—5§,_ ,5,_,=bX". By taking
Fo=3,_ F, ,—d,_; X" ' and 3, ,=5,_,8,_y, the induction is fimished.
Since, consequently, Q 5,,(M M) = Q7 ( K/1"M) for each n>1, the result
follows from the algebraic construction of microlocalizations given before.

CoroLLARY 1.2. If S, T<R are in the standard situation and
o(S)=0(T), then Q'(M)= Q% (M) for every M e R-filt.

Note. Bearing in mind the equivalence of categories R-filt > §,, the
above lemma shows that Q% (M) = Q% (M) is an equality in R-filt. In other
words, the equality of the lemma preserves the filtrations. Unless otherwise
remarked, equalities between microlocalizations of modules (resp. rings)
mean equalities in this filtered sense.

The following is an interesting result overlooked in previous papers.

PrROPOSITION 1.3. Let ScT< R be subsets in the standard situation
such that o(SY ' G(R)=0(T) ' G(R). Then Q%(M)=Q4(M) for every
M e R-filt.

Proof. As in Lemma 1.1, it is enough to prove that S, and T, define the
same 1-topology in R/I”, for each n> I. We proceed by induction on # to
see that, for any 7e7, there is a pair (5,,7,)eSxh(R) such that
7,1—3§,e " Due to the identifications of R/ with G(R) and S, (resp. T}
with ¢(S) (resp. ¢(7T)), the case n=1 is just the hypothesis. The truth
of the assertion for n—1 implies the existence of 5, ,€8 and 7, _,.
d,_.eh(R) such that 7, _,i=35, ,+d, ;X" ' This is an element of
WS+ RX)= J*‘(J(S)) Now the proof of Lemma 1.1 gives a pair
(3,, @,) € §x h(R) such that a,7, ,7—-3§,eI", and we are done,

Remark 14, The hypothesis ST can be avoided in the above
theorem because, in any case, we can take o(S), =d(T), =
{xeh(G(R))/G(R)x na(S)# & }. This is not necessarily a left Ore set of
G(R) but defines the same 1-topology in G(R) as o(S) and o(T) and, as
sketched in [1, p. 12], the microlocalization of M with respect to the linear
topology in R generated by {Ru/o(u) € 6(S)s = 0(T)e | exists and equals
QM) or Q% (M).

The separability of the filtration in R implies that the canonical ring
homomorphism R — R is injective. Thus we can identify R with its image
and, from now on, assume that R is included in R. If S< R is a subset in
the standard situation, then so is it as a subset of R, because G(R)= G{R)

sat
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(see [9, Proposition D.IIL.17]). Just from the universal properties satisfied
by microlocalizations (see [16, Theorems I and II]), one easily deduces
that Q4 (M) = Qf;(ll;l), for any M e R-filt, where the last filtered module can
be indifferently viewed as an object of R-filt, R-filt, or Q% (R)ilt. This fact
will be profusely used in the sequel. The following result relates the lattices
of submodules of zM and otr) Q% (M} in a particular situation.

THEOREM 1.5. Let R be a filtered ring such that G(R) is left Noetherain,
S < R a subset in the standard situation, and Q = Q(R). If M is a complete
filt-finitely generated left R-module, then the map ®@: 2z M) — 2(pQ%5(M)),
given by L — Qo (L), is a surjective order- preserving map.

Proof. By the above considerations, it is not restrictive to assume that
R=R so that it is a complete left Zariski ring. Let U be a Q-submodule
of Q%(M) and consider the induced filtration in it. Since
G(Q)=0(S) " (G(R)) is left Noetherian and ( is a complete ring, Q is a
Zariski ring and we can assert that Q%(M) and U are filt-finitely generated
Q-modules. Let now u,,_,:Qs(M/I"M)— Qs (M/I""'M) be the
canonical map and p,: Q4(#M)— Qs (i/I"M) the map from the inverse
limit onto the nth component of the inverse system. Then p,(0) is a graded
Os, (R/I")-submodule of Os, (M/I"'#), for each n=1. By well-known
properties of the modules of quotients, there exists a unique graded R/1"-
submoduie U,,/I"M of M/I"M satisfying that p,(U)= Os (T,/I"M) and
(M/I"M)(T,/1"M) = /T, is §,-torsion-free (i.e., no nonzero element of it
is annihilated by an element of S,). This last property and the identity
U, p_1°P,= P, entail that

U, +1"‘mM=0,_,, (&)

for each n>2. In such way, we get a descending chain {0,},., of graded
R-submodules of M. Take N=),.,; U,. We prove that N+ I"M = U,, for
each n= 1. We only have to check the inclusion . Let us fix n=1 and
take a homogeneous element i =, of U,. By repeated use of the formula
(&), we can obtain a sequence {il,},., of homogeneous elements of M
with the same degree as # and with the property that #, el, +p and
i, — 1, e I"**M, for each p>0. It can be seen in a stralghtforward way
that both {@,} and {#—ia,} are Cauchy sequences with respect to the
I-adic topology in #. By [1, Proposition 2.5] and the completeness of M,
they have limits which are denoted by W and 7, respectively. Bearing in mind
that i—~d, =3, <, (@ —f,, )€ I"M, it is clear that its limit & belongs
to I"M. On the other hand, the definition of limit says that, for an arbitrary
p=1, v — i, e I"M for k large enough. Hence we U, , , +1?M. When k> p
the latter R-module is included in T, + "M = U, due to the repeated
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use of (&). The arbitrariness of p implies that we (),., U, = N and thereby
=W+ 7 belongs to N+ ["M, as desired.

We claim that #M/N is an X-torsion-free graded R-module. Let
m+Nel/N be an element annihilated by X (ie, XmeRN) and
G y: M — Q% (M) the canonical R-homomorphism. Since p,:@,, is the
composition M — M/I"M — Qs (M/I"M), p(X® (/1)) ={p.~ ¢, )(XM) is
an element of Qg (N + ["M)/I"#), for each n > 1. The last module is just
O3, U,/ I"#)=p,(U), by the above paragraph. Then X@,(m)e
. (p 0N = U+I”Q§(A7I), for each n> 1. and thus X¢,,{m) belongs to
(\ns1 (U +I"Q4(HT)). But the Zariskian condition of @ and the fact that
Q%(M) is a filt-finitely generated Q%(R)-module tell us that the quotient
filiration on Q%(M)/U is separated, which is equivalent (see {[I.
Lemma 2.1]) to saying that QLM T is I-adically separated. So
U=,s, (U4 "Q%(A1)) and, consequently, X¢,,(ri)e U. But 0%( My T
is X-torsion-free (see, e.g., [12, Theorem 1.27) so that &, (si1)e &, whence
(Pn® @ a0)(#) = i+ I"M is an element of p,(U) = Q5 (U,/I"M). The 5 -tor-
sion freedom of AT, entails that me U,. Since this has been done for an
arbitrary n> 1, it is valid for all of them and thereby me[\,., U,=N,
showing the claim. Now 0 — N — 7 —» M/N -0 is an exact sequence of
X-torsion-free graded R-modules. This means that N is the X-torsion-free
graded R-module assigned to a submodule N of M. considered with its
induced filtration, by means of the equivalence of categories R-filt =%,
(see, €.82., [ 12, Theorem 1.27).

Our goal is to prove that Q¢ ,,(N)= U, which ends the proof. What we
have done above with X@,,(#1) may be done with any element of ¢ ,, (N},
showing that @ ,,(N)< U and hence ¢ ,,(N)< U. Since U is a Q-submodule
of Q¥(M), the inclusion Q¢ (N)cU is clear. On the other hand,
the canonical projection p,: U - p, (f/ Qs(N + I'"BM/I"M) vields
a homomorphlsm B U— 05, (N/I"N) takmg mto account that
(N + I"M)/1"M = Nr(Nr\ I"M) = ’[”N) due to the X-torsion freedom of
M/N. Tt is very easy to see that {5,/n> 1} is a family of homomorplusms
compatibie with the inverse system Ozl (N/I"N), which gives rise to Q% (/ Ny,
Then we get a homomorphism §: U — Q%(N) in the category R-gr. It is left
as an exercise to prove that 7 is injective. When Q4(N) is viewed as a
graded submodule of Q4(A1), § may be seen as an inclusion and hence, by
the equivalence of categories R-filt = F,. U< Q%{N). Thus

Q0 (NYS U< QK(N). (&8

From the Zariskian condition of R we deduce that N is a filt-finitely
generated R—module and, by [16, Proposition 6.22], the canonical map
O ®@x N— QL(N) bijective. Its image is just Q¢ (), thus showing that
we have equality in (&&).
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COROLLARY 1.6. Let R be a filtered ring such thar G(R) is left
Noetherian and S a subset in the standard situation. For any of the dimen-
sions Krull, Gabriel, global, and weak global, the following inequality holds:
I-dim Q%(R)<I-dim R, where the prefix | indicates that they are taken on
the lefi.

Proof. Since R and Q%(R) are left Noetherian (see [9, Corollary
D.IV.4]), the equalities G-dim R=K-dim R+ 1, gl-dim R = w-gl-dim R
and the corresponding ones for Q = Q% (R) hold (here, and in the rest of
the paper, G-dim, K-dim, gl-dim, and w-gl-dim denote, respectively, the
Gabriel, Krull, global, and weak global dimensions on the left). Conse-
quently, we only have to prove the result for, say, the Krull and the global
dimensions. The Krull case is clear since the Krull dimension of Q is that
of the lattice 0( Q) (see [10, Chaps. 3 and 47) and this is an epimorphic
image of L(zR) by the previous theorem. For the global dimension case,
recall that gl-dim Q = Sup{ p-dim(Q/J)/J is a left ideal of Q}, where p-dim
denotes the projective dimension. By the foregoing theorem, any left ideal
of Q is of the type Q%(a)=Q¢p(a)=Q®a, where a is a left ideal of R
considered, if necessary, with its induced filtration. Then Q/J = Q0 ®; (R/a).
Inasmuch as Q is a flat right R-module (see, e.g., [16, Corollary626])
p-dimy,(Q/J) < p-dimg #(R/a) and, thereby, gl-dim Q < gl-dim R.

2. AUSLANDER REGULARITY AND DIMENSIONS

If R is a left and right Noetherian ring having finite global dimension g,
it is well known that there exists, for any finitely generated R-module M,
a smallest natural number j = j(M) such that Ext/(M, R)#0. This is called
the grade of M and the ring is said to be (Auslander) regular in case the
following so-called Auslander condition holds:

(A) If M is a finitely generated R-module then, for any 0 <k < u and
any nonzero submodule N of Exth(M, R), j(N)=k.

Our aim is to show that being regular is a microlocal property for a left
and right Zariski ring whose associated graded ring is commutative. We
start with a lemma in which 1., denotes the identity functor in R-filt.

LEMMA 2.1. Let R be a filtered ring, S = R a subset in the standard situa-
tion, Q= Q%(R), and U: Q-filt - R-filt the forgetful functor. The canonical
morphisms @, : M — Q%(M), for M € R-filt, define a natural transformation
berween 1 g, and Uec Q%(-).

Proof. Take a morphism in R-filt, f: M — N. Just by definition of
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QL(f) (see [16, p. 993]), we have that U{Q%(f)) =@, = ¢/ This proves
the assertion.

In the proposition below the ring of integers 7 is considered to be
filtered by means of its trivial filtration (ie, F,Z=0, for n<0, and
F.Z7=17,for nz=0).

ProrosiTioON 2.2. Let R, S, and Q be as in the above lemma and
NeRAilt. The 1two contravariant functors HOMg(—, Q%(N)) and
HOM ,(Q%(~), Q%(N)), from R-filt 10 Z-filt, are naturally isomorphic via
the assignment f — Q% (f).

Proof. Let MeR-ilt and feHomg(M, Q%(N)). Then Q%{(f)e
Hom ,(Q% (M), Q5(0%(N))). Since Q4(Q%(N))=Q%(N), we see that

5$(f)is actually an element of Hom ,(Q%{(M), Q% (N)). We claim that the
assignment f — Q%(f) is a morphism in Z-filt. The sum is clearly preserved
so that we only have to check that if feF, Homg(M, Q5(N)) then
Q%5(f)e F, HOMx(Q%(M), Q5(N)). But, from the universal property of
the microlocalization functor (see [16, TheoremII]), one gets that
Q(M(—p))= Q% (M) — p) and, by the properties of the shifted filtered
modules, there is no loss of generality in assuming that f has degree zero.
Then the claim follows from the functoriality of Q%(-). Let us now define
a map HOM (Q%(M), Q%(N)) » HOM 4(M, Q4(N)) by g~ Ulg)- ..
where U: Q-filt — R-filt is the forgetful functor. It can be easily proved that
it is a morphism in Z-filt. We see that it is the inverse of the above one. Let
Se HOM (M, Q%(N)), which can be assumed to be of degree zero. By the
previous lemma, U(Q5(f))> Q=@ on=f, where Q(N) denotes Q%(N).
Since @y, is the identity map of Q%(N) as a consequence of the stabiliza-
tion of the microlocalization functor (i.e., Q%4(Q%(-)) = Q%(-)), we get that
U(Q%(f))> @, = f Conversely, let ge HOM ,(Q% (M), Q% ( N ), which can
be chosen again of degree zero. Then Q4(U(g): ¢ y) = Q4{U(g)) Q% (@ ).
But Q%lga) is the identity map of QO and QL{U(g)i=g So
O%(U(g)-@,) =g, as desired. The naturality is the only thing left to be
proved. This is proposed as an exercise to the reader.

Remark 23. We say that N is a filtered R-R-bimodule if it is a
bimodule with a filtration FN such that F,N.F,RcF, ,N and
F,R-F,NCF, ,N, for all n, peZ If, in the above proposition, N is a
fi ltered R-R-bimodule whose left and right microlocalizations with respact
to § coincide, then the two mentioned functors are actually functors from
Rfilt to filt-Q and the result is still valid in this situation. In particular,

that is the case when N = R.

letnow M: --- - M, _ ,——+ M, —— ol —— M, ,— - be a cochain com-
plex in R-filt (resp. filt-R). Then the cohomology modules H"(M)=
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Kerd,, /Imd, (neZ) can be filtered in a natural manner by taking the
filtration induced in Kerd,,, by M, and providing H*(M) with its
quotient filtration. If R is Noetherian and satisfies the property that any
good filtration induces a good filtration on each submodule, then, in case
each M, is filt-finitely generated, the filtration in H"(M) is good, for every
neZz.

ExampPLE 2.4. Let R be a left and right Zariski ring, N a filt-finitely
generated R-R- bimodule and M a filt-finitely generated left R-module. If
L --—>L,—>L, oo L= Ly 0 --- is a strict finitely generated
filt-free )esolmzon of M (ie., it is exact in R-Mod, all the L, are finitely
generated filt-free and all the homomorphisms are strict filtered), then
L*: .-« 50— Homg(Ly, N) > Homg(L,, N)— .- > Homg(L,, N)—
is a cochain complex in filt-R (recall that Hom 4(L,, N)=HOM(L,, M),
for each neZ, in the present situation!). Its cohomology modules are
H'(L*)=ExtyW(M, N), for each n=0. It is an easy exercise to see that the
filtration in Hom g(L,, N)=HOM (L, N) is good so that Ext(M, N) is
provided with a good filtration, for every nel.

PrOPOSITION 2.5. Let R be a left and right Zariski ring, S < R a subset
in the standard situation, and N a filt-finitely generated R—R-bimodule whose
left and right microlocalizations with respect to S coincide. For any finitely
geizeiated Sfilt free left R-module L, the map @,:Homg(L, N)®,Q —
Hom ¢(L, Q% (N)), defined by &,(f® q)(x)=@x(f(x))q, is an isomorphism
in filt- Q, which is natural in the finitely generated filt-free component L.

Proof Let L be filtered by F,L=® <,<s £._,R-e;, for each neZ,
where {e;/1 <i<k} is an R-basis of L. It is not hard to prove that, when
we identify Hom g(L, N) (resp. Hom 4(L, Q%(N))) with N* (resp. Q4(N)* ),
the filtration of the first module is identified with the filtration
Fka: DiciciFpip N (resp. F,O4( Ny =@ 1<ick Fpa nQ5(N)), for
cach peZ. Then Homg(L, N) {resp. Hom (L, Q%(N))) is identified with
the filtered right R-module @, _, ., N(p;) (resp. @ <. Q5(N)(p:))
Thus we only have to prove that N(p)®z Q= Q%(N)(p) in filt-Q, for
any peZ. The first member of the expression is (N®, Q)(p) (see [9,
Lemma D.VIIL.1]) so that the mentioned isomorphism follows in a
straightforward way from the isomorphism N®z Q = Q%(N}) (see, e.g., [1,
Corollary 3.20]), which is an isomorphism in filt-Q. We leave as an exer-
cise to check that the isomorphism Homg(L, N)® r O = Hom 4(L, Q% (N))
provided by the above identifications is the desired one.

As a consequence of all the above lemmas and propositions, we get the
key result of this part.
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THEOREM 2.6. Le! R be a left and right Zariski ring, S< R a subset in
the standard situation, and N a filt-finitely generated R—R-bimodule whose
left and right microlocalizations with respect to S coincide. Then, for each:
filt-finitely generated left R-module M and each n =20, Q%{ExtL(M, N} =
Ext(Q5 (M), Q%(N)) in a natural way.

Proof. Let us note that the statement makes sense due to the fact that
the microlocalization of Ext’,(M, N) does not depend on the good filtration
taken init. Let L: - > L, 5 L, — --~% Ll—di» Ly—»0—- - bea
strict finitely generated filt-free resolution of M (ie., M = Cokerd, with
its quotient filtration). We have now the following cochain complexes in
filt-Q: Hom g(Q4(L), Q4(N)), Homg(L, Q4(N)). Hom (L, N)®4 Q. and
Q%4 Homg(L, N)). By the right Zariskian condition of R and the fact
that Homg(L, N) is a complex in filt-R, Homg(L. N)® .0 and
Q% (Homkx(L, N)) are naturally isomorphic complexes of filt-Q {see [1.
Corollary 3.207). By using now Proposition 2.2 and Proposition 2.5, we get
that the above four complexes of filt-Q are isomorphic. If we take their
cohomology modules with filtrations defined as in Exampie 2.4, we get the
desired result.

Remark 2.7. 1In the above proof, we have actually shown that, when L
is a strict finitely generated filt-free resolution of M e R-filt and the right
R-module Ext(M, N} is given the good filtration coming from it, then
O%(Exti(M, N)) is isomorphic, as filtered right Q-module, to the right
Q-module Ext{,(Q%(M), Q5(N)), which is considered with the filtration
deduced from the strict finitely generated filt-free resolution Q4(L) of
Q4 (M) e O-filt.

The foregoing theorem proves very useful in the study of the behaviour
of the global dimension of R with respect to microlocalizations. Before
tackling that problem, we give the following lemma, which can be easily
deduced from [ 11, Corollary 3.347.

LemMma 2.8. Let A be a left and right Noetherian ring. If A has finite
global dimension, then inj-dim , A = gl-dim A4 {resp. inj-dim 4 , = gl-dim A).
where inj-dim denotes the injective dimension.

If R is a filtered ring whose associated graded ring G{R) is commutative,
then we can take Spec®(G(R)) (resp. Max®(G(R))) to be the set of prime
graded (resp. maximal graded) ideals of G(R). For each p € Spec®(G{R))
(and hence for every p e Max®*(G(R))). H{(G(R})\p= {ueh(G(R))udp; is
an Ore set of G(R). We write Q%(R) for the microlocalization of R with
respect to any multiplicative subset S of R such that ¢(S)=Ah(G{R))-p {see
Corollary 1.2).
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THEOREM 2.9. Let R be a filtered ring such that G(R) is Noetherian
commutative. The following statements hold:

(a) If R has finite global dimension, then gl-dim R=Sup{gl-
dim Q%(R)/p € Spec®(G(R))} = Sup{gl-dim Q¢ (R)/m e Max*¥(G(R)) |

(b) If G(R) is gr-semilocal, i.e., it has only a finite number of maximal
graded ideals, then K-dim R=Sup{K-dim Q4(R)/peSpec*(G(R))} =
Sup{K-dim Q% (R)/m e Max*(G(R))}.

Proof. Without loss of generality, we can assume that R is complete so
that R=R and it is a left and right Zariski ring. Let m € Max®(G(R)) and
peSpec®(G(R)) such that p<Sm. Then QL(Q4(R))=Q4R) (see [1,
Corollary 3.18]). By Corollary 1.6, dim Q4(R) <dim Q4 (R) for any of the
two dimensions considered. Hence we only need to check the equalities
concerning Max®(G(R)). On the other hand, the inequality dim R>
Sup{dim Q*(R)/me Max®*(G(R))} is also a direct consequence of
Corollary 1.6. so we only have to prove the converse inequality for both
dimensions.

(a) For the global dimension case, the previous lemma ensures that
we can replace gl-dim R by inj-dim R. Let us put #n=inj-dim R Then
Ext%(M, R) #0 for some finitely generated left R-module M. We give M a
good R-filtration so that Ext,(M, R) gets a good filtration in the manner
explained in Example 24. If Q“(Exti(M, R)) were zero for every
me Max®(G(R)), then its associated graded module G(Ext%{(M, R)),.
would be zero for every m. As in the ungraded case, this implies that
G(Ext’y(M, R)) is zero. The fact that R is Zariski would entail that
Exth(M, R)=0, thus contradicting the hypothesis. Hence we can pick up
an me Max®(G(R)) such that Q(Ext(M, R))#0 and, by Theorem 2.6,

m

Ext}(Q4(M), Q4(R)) #0, which shows that gl-dim Q7 > n.

(b) For the Krull dimension case, let us consider, for a filt-finitely
generated left R-module M, the map (M) II{8(,04(M))/
me Max®(G(R))}, given by N — (@4 (N)),.c saxericir))» Where the induced
filtration is considered on each N. It is an order-preserving lattice
homomorphism when the componentwise order is taken in the product.
Furthermore, it is injective. Then the Krull dimension of the lattice £( M)
is smaller than that of I7{2(, Q% (M)/m e Max*(G(R))}. If Max*(G(R)) is
finite, the Krull dimension of the product is just the supremum of the Krull
dimensions of its components, and we are done.

From the above result we get the microlocal condition of the Auslander
regularity of R.
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THEOREM 2.10. Let R be a filtered ring such that G(R) is Noetherian
commutative. If R has finite global dimension, then the following assertions
are equivalent:

(a) R is Auslander regular.

(b} Q“(R) is Auslander regular, for every subset S < R in the standard
situation.

(c) Q“(R) is Auslander regular, for every meMax¥(G(R)).

Proof. As in the proof of the above theorem, we can assume that R is
complete so that R=R.

(a)=(b) Since gl-dim Q%(R) is finite, we only have to check the
Auslander condition. Let U be a finitely generated left Q%(R)-module.
Then Uz W/V, for some finitely generated free left Q%(R)-module W and
some submodule ¥. When W is made into a finitely generated filt-fres
Q%(R)-module, it is isomorphic to Q%(L) for a certain finitely generated
filt-free left R-module L. Now Theorem 1.5 applies and we can think
of 17 as being of the type Q%(N), for some R-submodule N of L on
which the induced filtration is taken. Thus U= Q%(LY/@L(N)= Q4(L/N)
and it is not restrictive to assume that U= Q% (M), for some filt-finitely
generated left R-module M. If 0<k<us=gl-dim @Q%(R) and O+
Y S Exty o) (Q%(M), Q%(R) = Q4(Exty(M, R)) is a submodule, then
Theorem 1.5 may be used again to see that ¥'= Q%(N}, for some nonzero
R-submodule N of Ext%(M, R). Then 0<k<pus< pu=gl-dim R and the
Auslander condition for R ensures that (N} =k, ie., Exti(N, R)=0 for
i<k—1. Therefore Exty,(Q%(N), Q%(R))= Q%(Ext(N, R))=0, showing
that j(Y,) >k, where Q= Q%(R).

(bY=(¢) Clear.

(c)=(a) Let M be a finitely generated left R-module and give it a
good filtration. If O<k<<py=gl-dimR and N#0 is a submodule of
Ext4(M, R), then the induced filtration on N is good and Q¥(N) is a

“(R)-submodule of Q*(Extx(M, R)‘)zExt’émm(Qf;(M), ®(RY). for
every maximal graded ideal m of G(R). If k> p, = gl-dim Q% (R), then the
latter Q% (R)-module is zero and thereby Q*(N)}=0. This implies that
Q" (Extp(N, R))=0 for every j>0, by Theorem 2.6. If A<y, then the
Auslander condition for Q%(R) yields Exti. . (Q%(N), Q4(R)=0 for
J<k—1. By combining the two possibilities (k< i, and k>p ), we get
that Q4 (Ext/ (N, R))=0 for each m e Max®(G(R)) and each j<k — 1. The
Zariskian condition of R entails that Ext/,(N, R)=0 for j<k -1 and thus
ANR) Z k.
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3. APPLICATIONS AND EXAMPLES

In this part our goal is to apply the previous results to the study of the
global and Krull dimensions of certain filtered rings.

A. Discrete Filtered Rings

Recall that a graded ring A= @, 4, is called left limited when there
exists a pe Z (in fact p<0) such that 4, =0 for any n < p. When p=0 in
this definition, A4 is called a positively graded ring. 1f 4 is an arbitrary
graded ring, then A" =@ {A4,/mn=0} is a positively graded subring of 4.
Analogous terminology 1s used for graded modules and graded ideals.

LemMa 3.1. Let A=@,., A, be a left limited commutative graded
ring. Then any maximal graded ideal m of A is of the type
(D,.0A4,)PMm® (D ,.qA,), where my is a maximal ideal of A,.

Proof. Let m=@,.,m, and put S=Ah(4)\m. Since S is a multi-
plicatively closed subset and any element of @ ,_, 4, is nilpotent, S can-
not have elements of negative degree. Hence m, =4, for any n<0. Let
now {y,/iel} be a set of homogeneous elements that generate @, _, 4,
as Ag-module. Then m=m* +3,_, Ay;, where m* =@ {m,/n=0}. We
prove that m™ is a maximal graded ideal of A" =@ {4,/n>0} and the
problem is reduced to the case of a positively graded ring. Suppose that
m™ is not so and let mYcnt <A™ be strict inclusions, where n* is a
graded ideal of 4*. This entails that n* is not contained in m, whence m
is strictly contained in n™* + Y ,., 4y, We can use the fact that {y,/iel}
generates @ {A4,/n<0} as A,module to see that n* +3,_, 4y, is a
graded ideal of A (it is generated by homogeneous elements!). From the
maximality of m we get that n™ + X, _, Ay, =Asothat l=n"+3 . ,a,y,
for certain n* en* and some finite family {a,/ie} (ie, a,=0 for all iel
except for a finite number of them). By taking the zeroth homogeneous
component of that equality, we can assume that #* and each a,y, have
degree zero. But then ¥, ,a,;y, is a homogeneous element of degree zero
of m and hence of m ™ < n™. This implies that 1 € n ™, which contradicts the
choice of n*. If now everything is assumed positively graded, then
menm,® (@D, 4,) and the latter is clearly a graded ideal of A. There-
fore m=m,® (P ,., 4,), as desired.

COROLLARY 3.2, Ler A=@P, .,
ring, The following assertions hold:

A, be a left limited commutative graded

(a) Every maximal graded ideal of A is a maximal ideal in the
ungraded sense.



MICRO-PROPERTIES OF FILTERED RINGS 157

(b) A.-A_,c=J(Ay) for any k #0, where J(Ay) denotes the Jacobsorn
radical of A,.

If R is a discrete filtered ring whose associated graded ring G(R) is
Noetherian commutative, then Lemma 3.1 tells us that, for any maximal
graded ideal n of G(R), A(G(R))\n=G{R) 1y, Where n, is a maximal
ideal of G(R)y= F,R/F_,R. Since n, must be of the type m/F _,(R), for
some (left and right) maximal ideal m of Fy R, we get that S, = F,R"m is
a multiplicatively closed subset such that (S, )= A{G(R))\n. We can use
the Zariskian condition of R and Proposition 17 of [177 to see that S is
actually a (left and right) Ore subset of R and thus of F,R. We write R
for §,.' R, hoping that no confusion will arise with the localization at
maximal ideals (m is not an ideal of R!). The following result is now a
direct consequence of Lemma 3.1 and Theorem 2.7, bearing in mind that

#(R)=R,, in this case.

THEOREM 3.3. Ler R be a discrete filtered ring such that G(R) is
Noetherian commutative. The following sentences are true:

{a) If R has finire global dimension, then gl-dim R is the supremum of
the set {gl-dim R, /me Max(FyR)]}.

(b) If FyR is semilocal, ie., has only a finite number of maximal
ideals, then the above equality holds for Krull dimension.

ExampLE 3.4 (Rings of differential operators). Let 4 be a Noetherian
commutative ring containing a field K of characteristic zero. A K-derivation
of A is a K-linear map d: 4 — A4 such that §(ab) =(a)b + ad(b). 1t ;. .... 3,
arc n A-algebraically independent K-derivations of A4, the ring Dj, s {),
or D(A) if the ;s have been previously fixed, is the subring of the ring
End(4) of K-endomorphisms of A generated by the multiplications by
elements of 4 and the 8/s. The ring D(A) admits a canonical filtration:
2, DA)={Y, <, a,0%a,e A for each aeN"} for p>>0 and Y, D(A)=0
for p <O (here 6* =63 --- -6 and |« = x,+ --- +a, when
a=(ty, .., %,)). Under certain conditions of regularity in 4 (see, e.g.. [3.
Theorem 3.1.27), the associated graded ring G, (R) is (Noetherian) com-
mutative with 4 as zeroth homogeneous component. The above theorem
tells us that gl-dim D(4) = Sup{gl-dim D(4 ,)/me Max(A4)}, provided that
the first member of the equality is finite. This is just Lemma 3.1.7 of {37.
The corresponding equality for Krull dimension also holds when 4 is
assumed to be semilocal.
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B. Strongly Filtered Rings

If R is a strongly filtered ring (ie., F,R-F,R=F, R forall m neZ)
whose associated graded ring is commutative, then G(R) is strongly graded
and, consequently, there is an equivalence of categories G(R)-gr = G(R),-
Mod under which G(R) and G(R), are corresponding objects (see [9,
Theorem A.L.3.41). This implies that any maximal graded ideal n of G(R)
is of the type n= G(R)m, where m is a maximal ideal of G(R),. Since the
latter ring is just FoR/F | R, m=m/F_, R for some (left and right) maxi-
mal ideal m of FyR containing F_, R. If we consider the multiplicatively
closed subsets U= h{G(R))\n and V= G(R), \m of G(R), one easily gets
that U ~'G(R) =V ~'G(R). Now S, =FyR\m is a multiplicative subset of
R such that ¢(S,,) = V. By Theorem 1.3, Q4(R) = Q% (R). Furthermore, S,
is strongly multiplicatively closed in the terminology of [17] and, when
considered as a subset of R, the conditions of Proposition 17 of [17] are
satisfied, because R is a Zariski ring. So S, is a (left and right) Ore subset
of R and Q% (R) is the completion (S, ~'R)”~ of S, ~'R. This proves the
following resuit.

THEOREM 3.5. Let R be a strongly filtered ring whose associated graded
ring is Noetherian commuiative. Then gl-dim R = Sup{gl-dim(S, IR~/
meMax(FyR) and F_ R<m}, provided that the first member of the
equality is finite.

if the ser of left (or right)y maximal ideal of Fy R containing F_ | R is finite,
then the corresponding equality holds for the Krull dimension.

Remark 3.6. 1If in the above theorem R is also assumed to be Zariski,
then we can substitute R for R so that R, =S, ~'R appears instead of
S ~'R. This is due to the fact that the conditions of Proposition 17 in
[17] are satisfied by S,, and R. In particular, this is the case when R is
complete. We have not obtained an answer for the general problem and the
following question remains open:

Let R be a strongly filtered ring whose associated graded ring is
Noetherian commutative and let m be a left (or right) ideal of FyR con-
taining F'_(R. Is S, =FyR\m a left (resp. right) Ore subset of, say, F,R?
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