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I formulate several statements demonstrating that the local metric redefinition can be used to reduce 
the UV divergences present in the quantum action for the Einstein gravity in d = 4 dimensions. In its 
most general form, the proposal is that any UV divergences in the quantum action can be removed by an 
appropriate field re-definition and a renormalization of cosmological constant.
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Since the early days of Quantum Field Theory it is known that 
all theories can be divided into two classes: those with dimen-
sionless coupling constants and the theories in which the coupling 
is dimensionful. The theories of the first class have that advan-
tage that they may produce only few possible UV divergent terms 
so that the UV divergences in these theories may be hidden in 
the renormalization of a finite number of physical parameters. The 
theories, such as QED, in which this procedure works are called 
renormalizable. The theories of the second class are obviously non-
renormalizable since a priori there exists an infinite number of 
possible UV divergent terms.

The Einstein gravity is a theory of the second type. Restricting 
to maximum two derivatives of metric in the action

W E = − 1

16πG

∫

Md

√
g(R − 2�) (1)

one finds that there are at most two dimensionful constants: New-
ton’s constant G and cosmological constant �. The quantum the-
ory of gravity has a long history which has started with the works 
of Rosenfeld [1] and Bronstein [2]. The modern part of it was de-
veloped in the works of Arnowitt, Deser and Misner [3], Bryce 
DeWitt [4] and ’t Hooft and Veltman [5]. In [5], the one-loop UV 
divergent term was calculated. In the dimensional regularization 
their result is
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This result indicates that the theory is finite on-shell, Rμν = 0, pro-
vided cosmological constant � = 0. This is due to absence of the 
Riemann tensor term in the one-loop divergence (2). In fact this is 
an accident of four dimensions. The term R2

αβμν , which is a priori 
present in the one-loop divergence, is re-expressed in terms of R2

and R2
μν and the Gauss–Bonnet term, the latter after integration 

produces a topological invariant. In higher dimensions, d ≥ 6, this 
mechanism is no more in place and the Riemann tensor shows 
up already in the one-loop UV divergence, see for instance [6]. 
This example indicates that the appearance of the Riemann tensor 
alone, without any contractions to Ricci tensor or its derivatives, 
is the main obstruction to the renormalizability of the Quantum 
Gravity. Indeed, already in two loops such a term has been de-
tected by Goroff and Sagnotti [7] and later confirmed by van de 
Ven [8],

�(2) ∼ G

(d − 4)

∫

M4

√
g R μν

αβ R σρ
μν R αβ

σρ . (3)

(The double poles in two loops and their vanishing on-shell 
were analyzed in [9].) The appearance of similar terms in higher 
loops is not a priori forbidden by any symmetry so that the is-
sue of the Riemann tensor is indeed the key point in the non-
renormalizability of the Einstein gravity. In the presence of non-
vanishing cosmological constant � the argumentation stays the 
same, see [10–12]. The only difference is that the on-shell condi-
tion Rμν = �gμν does not imply that the one-loop UV divergent 
term is nil. However, the divergence which remains can be ab-
sorbed in the renormalization of the cosmological constant �. The 
presence of the two-loop term (3), however, still prevents the the-
ory from being renormalizable.
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The recent progress in computing the higher loops in super-
gravity did not actually change much this story, as far as the Ein-
stein gravity is concerned. Although, there have been found some 
unexpected cancellations in the higher loop diagrams [13].

The main idea pursued in this paper is to use a field redefini-
tion of the general form

gμν(x, ε) = gμν(x) +
∑

k

αk(ε)g(k)
μν(x) , (4)

where αk(ε) are some functions of ε , a UV cut-off, and try to 
choose functions g(k)

μν(x) properly to remove the UV divergent 
terms in the Quantum Gravity action. The physical meaning is at-
tached to gμν(x).

There have been some inspirations for the present work.

Earlier work of D. Kazakov. The first and main inspiration is the old 
unpublished work of D. Kazakov [14] in which he has proposed to 
use a field redefinition of the type (4) and then, by an appropriate 
choice of g(k)

μν(x), remove all UV divergences in the Quantum Grav-
ity action. He considered the dimensional regularization so that in 
this case ε = (d − 4) is dimensionless. The concrete mechanism 
consists in mutual cancellation between 1/εn divergent terms, by 
the renormalization group related to the one-loop 1/ε divergence, 
and the higher loop terms Gk/εn+2k . The cancellation condition 
boils down to certain differential equations on functions g(k)

μν(x). 
At least in principle, the appropriate functions g(k)

μν(x) can be found 
although they occur to be non-local functions of the metric gμν(x). 
In the approach developed below the corresponding equations are 
algebraic so that the terms in the expansion (4) are local functions 
of the metric gμν(x).

Similarity to geometric Ricci flow. The other inspiration is geometri-
cal. In many aspects the Ricci flow

∂λgμν(x, λ) = −Rμν (5)

is analogous to the renormalization group equation. Curiously, we 
find that under this flow the volume and the Einstein–Hilbert term 
change as follows

∂λ

∫

Md
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∫
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√
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Md

√
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∫

Md

√
g(Rμν Rμν − 1

2
R2) . (6)

The second equation in (6) is suspiciously similar to the one-loop 
UV divergent term (2). The difference in the relative factors can be 
cured by adding to the Ricci flow (5) a term proportional to gμν R
with appropriate factor. For small λ, equation (5) can be solved as 
gμν(x, λ) = g(0)

μν(x) −λRμν + . . . . Identifying λ with the appropriate 
function of the UV cut-off ε we arrive at a field redefinition of the 
type (4). On the other hand, the both equations in (6) show that 
the higher curvature terms can be obtained by differentiating the 
appropriate number of times the volume with respect to parame-
ter λ. This observation illustrates our main point in the paper that 
the UV divergences, even infinite number of them, can be “hidden” 
into the volume term.

Work of E. Witten on 3d gravity [15]. In d = 3 dimensions the Rie-
mann tensor is expressed in terms of the Ricci tensor and Ricci 
scalar so that the issue of the Riemann tensor in the UV diver-
gent terms does not arise. Although the infinite number of poten-
tial counter terms still exists, and the theory appears to be non-
renormalizable, all of them are constructed in terms of the Ricci 
tensor and its derivatives. So that these terms can be removed by 
a field redefinition of the type (4), gμν → gμν + aRμν + . . . . What 
remains then is to simply renormalize the cosmological constant. 
Therefore, as is pointed out in [15], “any divergences in perturba-
tion theory can be removed by a field redefinition and a renormal-
ization of l2” (1/l2 is the cosmological constant). What we want to 
show in this paper is that exactly this statement is true in d = 4
(and higher) dimensions. For that we have to address properly the 
issue of the Riemann tensor. We shall not assume any field equa-
tions to be satisfied so that our approach is off-shell (the on-shell 
condition, however, can be always imposed as we comment later 
in the note).

Interestingly, the resolution of the problem of the Riemann ten-
sor can not be done if we do not take into account the cosmolog-
ical constant. In order to illustrate our point let us start with a 
particular form (a more general form will be considered below) of 
the UV divergences neglecting, in particular, the divergences in the 
cosmological constant. In d = 4 dimensions we have

�div(ε) = a1

ε2

∫

M4

√
g R + lnε

∑
k≥0

Gk
∫

M4

√
g Z (k)(x) , (7)

where Z(k) are polynomials of degree k + 2, each power of the Rie-
mann tensor or its contraction is counted as degree 1 while the 
degree is 1/2 for each covariant derivative of the Riemann tensor. 
It is important for our construction that we are using a UV regu-
larization with dimensionful cut-off ε and include the power-law 
divergences as well as logarithmic. For the logarithmic term the 
relation to dimensional regularization is as follows: ln ε ∼ 1

d−4 .
Now, let us re-define the metric gμν(ε, x) as follows

gμν(ε, x) = gμν(x) + ε2 lnε
∑
k≥0

h(k)
μν(x) . (8)

We then formulate our first two statements.

Statement A: For any divergences produced by terms Z (k) in (7)
that contain at least one power of the Ricci tensor, Z(k) = Rμν Y μν

(k)
, 

one can find h(k)
μν(x) such that, after substitution of (8) in (7) the 

corresponding UV divergent terms cancel. The condition for the 
cancellation is

a1 Eμνhμν
(k)

= Gk RμνY μν
(k)

, Eμν = Rμν − 1

2
gμν R . (9)

This can be solved as follows1

h(k)
μν = Gk

a1
(Y (k)

μν − 1

2
gμν Tr Y (k)) , (10)

where the trace is computed with respect to the physical met-
ric gμν .

Clearly, if Z (k) contains the Riemann tensor only and the met-
ric re-definition is in the class of analytic functions then this 
mechanism does not work. However, in a class of more general, 
non-polynomial, functions of curvature the appropriate h(k)

μν can be 
found in more then one way.

Statement B. Any divergences produced by terms Z(k) which con-
tain only the Riemann tensor and its covariant derivatives can be 
removed by the field redefinition (8) with h(k)

μν taking one of the 

1 This solution is up to a tensor ψμν(x) orthogonal to the Einstein tensor, 
Tr (Eψ) = 0. Although such a tensor ψμν may exist we did not manage to find 
an example in the class of local tensors constructed from the curvature.
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following forms:

h(k)
μν = − 1

a1 R
gμνGk Z (k) (11)

or

h(k)
μν = 1

a1 X
(αRμν + βgμν R)Gk Z (k) ,

X = αRμν Rμν + (2β − α

2
)R2 . (12)

This, however, may not be fully satisfactory since the re-definition 
(8) with (11) or (12) is not well-defined near the Ricci flat metrics.

The other point is that we so far ignored the UV divergence of 
cosmological constant. Indeed, in general, the UV divergent action 
includes a term without derivatives of the metric,

�′
div(ε) = a0

ε4

∫

M4

√
g + a1

ε2

∫

M4

√
g R + lnε

∑
k≥0

Gk
∫

M4

√
g Z (k)(x) .

(13)

At first sight the presence of the cosmological constant term spoils 
everything since under the redefinition (8) it produces a new di-
vergent term proportional to ε−2 lnε which can not be removed 
by a modification of (8). However, the presence of the cosmological 
constant offers a new, much more interesting, possibility to cancel 
any UV divergences, including those that depend on the Riemann 
tensor only. This can be seen from the following statement.

Statement C. Any UV divergences, accept the leading one, in (13)
can be removed by field redefinition

gμν(ε, x) = gμν(x) + 2a1

a0
ε2 fμν + 2a−1

0 ε4 lnε
∑
k≥0

Gkh(k)
μν(x) ,

(14)

with the only conditions that

Tr f = −R , Tr h(k) = −Z (k) , k ≥ 0 . (15)

It should be noted that the solution of (15),

fμν = −1

4
gμν(x)R + φμν(x) , h(k)

μν = −1

4
gμν(x)Z (k) + φ

(k)
μν(x) ,

(16)

is not unique, it is determined up to a traceless tensor, φμν ∼
Rμν − 1

4 gμν R and φ(k)
μν(x), k ≥ 0. In the class of tensors, local co-

variant functions of metric, at each order k + 2 there exists a finite 
number of possible structures for φ(k)

μν .

It is important to note that this statement is valid for any in-
variants Z (k) including those which depend on the Riemann tensor 
only. In particular, the 2-loop divergent term (3) can be removed 
by the field redefinition (14)–(15). It should be noted that the re-
definition (14) does not produce any new divergences since any 
variation of the curvature dependent terms in the action produces 
either vanishing or finite in the limit of small ε result. After the 
field redefinition the only UV divergence which remains is the 
leading one, 1/ε4. It can be removed by the subsequent renormal-
ization of the cosmological constant. Thus, our conclusion is that 
in d = 4 any UV divergences in the Quantum Einstein Gravity can 
be removed by a field redefinition and a renormalization of cos-
mological constant.

The above statement may be generalized for a more general 
form of the UV divergences. Indeed, we can not exclude, in the 
presence of a dimensionful cut-off ε , the appearance of extra con-
tributions due to powers of parameter z = Gε−2 to each term 
in (13). Thus, the most general form for the UV divergent part of 
the action,

�′′
div(ε) = a0(z)

ε4

∫

M4

√
g + a1(z)

ε2

∫

M4

√
g R

+
∑

k,l≥0

(lnε)l+1μk,l(z)Gk
∫

M4

√
g Z (k,l)(x) , (17)

includes some functions a0(z), a1(z) and μk,l(z) of variable z =
Gε−2 as well as the higher logarithmic terms, Z (k,l) are local func-
tions of curvature and its covariant derivatives. Our assumption is 
that the UV divergence of cosmological constant is still the domi-
nant one so that

ε2a1(z)a0(z)−1 → 0 , ε4(lnε)l+1 μk,l(z)a−1
0 (z) → 0 , if ε → 0.

(18)

Since we are always free to change our UV cut-off, the re-
parametrization ε → f (ε) can be used to impose a0(ε) = 1 (as-
suming a0(ε) > 0). Without loss of generality we shall assume this 
value for the function a0. Assuming, for purposes of illustration, 
a power law at small ε , the conditions (18) imply that

a1(ε) ∼ ελ−2 , μk,l(ε) ∼ εγk,l−4 , λ > 0 , γk,l > 0 . (19)

In this case we have a more general statement.

Statement D. Any UV divergences, accept the leading one, in (9) can 
be removed by a more general field redefinition

gμν(ε, x) = gμν(x) + gμν,1(x) + gμν,2(x) + . . . , (20)

where the first correction term is

gμν,1 = 2a1(z)ε2 fμν(x) + 2ε4
∑

k,l≥0

(lnε)l+1μk,l(z)Gkh(k,l)
μν (x) ,

(21)

and the only constraints are imposed on the trace, Tr f = −R and 
Tr h(k,l) = −Z (k,l) , k, l ≥ 0. The solution, as before, is up to a trace 
free tensor. Conditions (18) guarantee that the correction term (21)
is small. The redefinition (20) with the first term (21) removes the 
divergences already present in the action (9). These divergences 
are canceled against the variation of first, 

√
g, term in the action. 

There, however, may appear new UV divergences when we expand √
g up to second order in g1 and take into account the variation of √
g R and 

√
g Z (k,l) terms in the first order in g1. These divergences 

are milder than the original ones. They can be removed by adding 
a “second order” term g2 in the redefinition (20). The condition 
for the cancellation of new divergences implies only a constraint 
on the trace of g2,

Tr g2 = −1

4
(Tr g1)

2 + 1

2
Tr g2

1 − 2a1ε
2 Tr (Eg1)

− 2ε4
∑

k,l≥0

(lnε)l+1μk,l(ε)Gk Tr (δZ (k,l)g1) , (22)

where Eμν = Rμν − 1
2 gμν R is the Einstein tensor and 

√
gδg Z (k,l) =

δ(
√

g Z (k,l)/δgμν is the metric variation of the logarithmically di-
vergent terms. If, after the redefinition (20)–(22), there still pro-
duces a new UV divergent term in the action, it can be further 
removed by adding a “third order” term to (20) and so on until 
the action becomes finite (notice, that at each next step the degree 
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of UV divergence decreases since the divergence in the previous 
step gets multiplied by a small factor). Clearly, at each order there 
exists a simple algebraic procedure to construct the appropriate 
gμν,p term in (20), some ambiguity in adding a trace free tensor 
is always present since only the trace of gμν,p is constrained. Each 
such term is a local covariant function of the metric. For any finite 
λ and γk,l in (19) only a finite number of steps is needed to make 
action finite. Any UV divergences lower than that of the cosmolog-
ical constant, thus, can be removed by the proposed mechanism. 
The UV divergence of the cosmological constant then needs to be 
renormalized.

Some remarks are in order:

1. Let us summarize the key points of our proposal. First of 
all, we use any regularization which involves a dimensionful reg-
ularization parameter ε . Second, we assume that the cosmological 
constant is the most UV divergent term in the effective action. This 
is obviously the case in one-loop. That it is still valid in higher 
loops is our assumption, although a very natural one. Then almost 
all UV divergences in the action can be hidden in a metric redef-
inition. What remains is the UV divergence of the cosmological 
constant itself.

2. Statement D can be reformulated in terms of the conformal 
rescaling of the metric,

gμν(x, ε) = σ(x, ε)gμν(x) , (23)

where σ(x, ε) is uniquely determined by the condition of cancel-
lation of the divergences,

σ(x, ε) = 1 + σ1 + σ2 + . . . , σ1 = 1

4
Tr g1 , σ2 = 1

4
Tr g2 . (24)

The ambiguity present in (20) is completely fixed in (23)–(24). We 
stress that the field redefinition (23)–(24) removes UV divergences 
in the action for any, not necessarily conformally flat, physical met-
ric gμν(x). In an asymptotic region, where spacetime is well ap-
proximated by a maximally symmetric metric, the conformal factor 
σ(x, ε) in (23) becomes independent of the coordinates x and the 
metric redefinition (23) is a simple rescaling. This is advantage of 
having a local field redefinition.

3. Removing the UV divergences in front of the Einstein–Hilbert 
term in the action is not absolutely necessary. On the contrary, 
for reproducing a correct form of the Bekenstein–Hawking entropy 
one may need to keep the UV divergence of Newton’s constant 
untouched, see [16]. In this case both Statements C and D give the 
desired solution to the problem provided one imposes Tr f = 0. 
The only required condition on the couplings is the second condi-
tion in (18) saying that the higher curvature terms have a lower 
UV divergence than the cosmological constant. At the end, in this 
scenario, one would have to renormalize two physical parameters: 
cosmological constant and Newton’s constant.

4. The off-shell quantities are known to be gauge dependent. 
Therefore, it might be desirable to use the on-shell conditions for 
which the physical quantities such as S-matrix are gauge inde-
pendent. The proposed mechanism can be easily combined with 
the on-shell condition to be imposed on metric gμν(x). With this 
condition the UV divergent terms that vanish on-shell will not 
contribute to (21) while the variation of the terms linear in the 
on-shell condition will contribute to (22). This goes similarly to 
the discussion, made for instance in [17], that variation of terms, 
vanishing on-shell, does not necessarily vanish.

5. It is interesting to note that the redefined metric gμν(x, ε)

(20)–(22) resembles the Fefferman–Graham expansion for the 
asymptotically AdS metric gμν(x, ρ), ρ here is the radial coor-
dinate and it plays the role of a small parameter in the expansion. 
The metric gμν(x, ρ) satisfies Einstein equations in the space with 
coordinates (x, ρ). The decomposition of this metric in ρ is widely 
used in the AdS/CFT correspondence. In particular, the holographic 
UV divergences are obtained by decomposing the volume term √

det g(x,ρ) in powers of ρ , see [18]. This is similar to our con-
struction. It would be interesting to see whether this is more than 
just a similarity.

6. Any redefinitions of the metric considered above have that 
nice property that they do not affect any classical term in the ef-
fective action since the relevant contributions disappear after one 
takes the limit ε → 0. Moreover, if gravity couples to a renormal-
izable theory the same applies: a variation of the action of this 
theory under any metric redefinition of the sort we discussed pro-
duces a small, negligible in the limit of small ε , contribution. Thus, 
the metric redefinition does not produce any new UV divergences. 
This is so provided the UV divergence of cosmological constant is 
the leading one in the complete theory.2 On the other hand, it is 
known [20] that when the quantum gravity couples to quantum 
matter there may appear new UV divergent terms for the matter 
fields which were otherwise absent. Although we do not see any 
immediate obstacles why those new divergent terms can not be 
removed using same (or similar) mechanism this problem requires 
a more careful analysis.

7. Our proposal, based on the field redefinition (20)–(22), deals 
with the UV divergences in the action. It would be interesting to 
see whether this field redefinition can be used to more practical 
things such as computation of scattering amplitudes for the gravi-
tons. This, possibly, may require to impose extra constraints on 
the metric redefinition thus restricting the ambiguity in adding a 
trace free tensor that we already mentioned. A natural question 
is whether S-matrix can be defined consistently in the present 
approach. Although we shall not attempt to answer in full this 
important question in the present note, we make the following 
observations. First of all, it is known (see [21]) that the notion of 
S-matrix is not that easy to introduce in the presence of a non-
vanishing cosmological constant. It may be therefore more conve-
nient to think in terms of correlation functions rather than scatter-
ing amplitudes. Moreover that even in flat spacetime (cosmological 
constant is zero) the elements of S-matrix can be expressed in 
terms of n-point correlation functions using the standard LSZ con-
struction. The end points in the correlation functions are supposed 
to be taken to the asymptotic region. In the case of gravitons the 
correlation functions are obtained by computing the variations of 
the complete quantum effective action (with the gauge-fixing and 
ghosts terms included) with respect to metric (the 2-point func-
tion, for example, is obtained by inversing the quadratic variation). 
The action expressed in terms of the physical metric gμν(x) has 
only one UV divergent term (cosmological constant) so that in 
a variation with respect to this metric all other UV divergences 
are already hidden in the field redefinition. On the other hand, 
as we have already pointed this out in Remark 2, in asymptotic 
region the two metrics gμν(x, ε) and gμν(x) are related by a sim-
ple, ε-dependent, rescaling. These observations make us to think 
that almost all UV divergences in a correlation function of gravi-
tons (with all end points lying in the asymptotic regions) will be 
removed if it is expressed in terms of the physical metric gμν(x). 
The only UV divergence left is in the cosmological constant. Addi-
tionally, the passage between variations with respect to these two 
metrics produces an extra, regular, ε-dependent factor. It would be 
of course interesting to check these expectations in a concrete cal-
culation.

2 In certain supersymmetric extensions of Einstein gravity a0(ε) may vanish, see 
[19]. The proposed mechanism is not applicable to those theories.
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8. It is natural to ask whether the proposed mechanism may 
be useful in other non-renormalizable theories such as a σ -model 
with a potential. The important condition for this proposal to work 
is the existence of a term in the action whose UV divergence is 
dominating. Additionally, this term should be consistent with the 
symmetries of the theory. The existence of such a term and the 
concrete realization of the mechanism should be considered in 
each particular case.

9. Clearly, the mechanism suggested in this note can be gen-
eralized to any higher dimension d > 4. The only property which 
is required is that the UV divergence of the cosmological constant 
should be the highest in the action. Then the appropriate field re-
definition removes all other divergences in the action. The only 
thing that remains is to renormalize the cosmological constant it-
self.

In conclusion, we have suggested that a (local) metric redefini-
tion can be used to reduce the whole infinite set of UV divergences 
in the quantum action for the Einstein gravity to a single UV di-
vergence of the cosmological constant.
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