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Keywords:

Scheduling

Combinatorial optimization
Emergency response
Disaster management
Dynamic

© 2016 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the period immediately following a mass casualty incident
(MCI), such as the London Bombings of July 7th 2005 (London As-
sembly, 2006), many decisions need to be made in a fast and ef-
fective manner within a high pressure environment (Paton & Flin,
1999). Within emergency response organizations such as the Am-
bulance Service and the Fire and Rescue Service, decision makers
must decide how best to allocate their limited resources amongst
the various sources of demand. This problem environment exhibits
a large amount of structure, with well defined roles and responsi-
bilities and a clear decision making system as defined through the
command and control system (Wallace & de Balogh, 1985). In this
respect, the problem represents a strong candidate for the appli-
cation of mathematical modeling and optimization. However, sig-
nificant challenges remain, particularly with respect to the volatile
nature of the problem environment. That is, the nature of any
decision problem is likely to change over time as the problem
evolves, and the available information upon which a model can be
built will typically be subject to a significant level of uncertainty
(Galindo & Batta, 2013).
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In the modeling of MCI response, as with the design of any op-
timization model, it is necessary to make certain assumptions in
order to ensure the implementation remains feasible. In this paper
we seek to gain a better understanding of several characteristics of
the response problem, their associated assumptions, and the extent
to which they affect the utility of a scheduling-based optimization
model. In order to proceed we first discuss a number of assump-
tions common to optimization models for MCI response. We cover
the modeling of casualty health, their allocation to hospitals for
treatment, the transportation of casualties and responders around
the response environment, and the representation of tasks which
responders must carry out. We go on to focus on how others have
considered the dynamic and uncertain nature of the response en-
vironment in their models. Based on our findings, we identify gaps
that remain uncovered in the literature and we discuss how our
research contributes to fill such gaps.

1.1. Common modeling assumptions

Some common assumptions made in the design of operational
research models for disaster operations management are identified
in Galindo and Batta (2013). Further common assumptions cover-
ing the more general area of disaster planning are listed in Auf der
Heide (2006).

Depending on the general form of the model, the parame-
ters needed to specify its form can include variables such as
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commodity supply and demand levels, resource requirements for
specific tasks, and the number and nature of casualties. As noted
in Galindo and Batta (2013), it is common for models to assume
that

1. the information needed to deduce these parameters is available
and accurate upon initialization of the model, and
2. the parameters are not required to change over time.

The extent to which these assumptions are justified depends on
the specific problem under consideration, but will often be lim-
ited by the intrinsic uncertainty and volatility common to all emer-
gency response problems. Some specific examples follow.

1.1.1. Casualty health

Some authors assume there are no meaningful differences be-
tween the health levels of casualties (Barbarosoglu & Arda, 2004;
Barbarosoglu, Ozdamar, & Cevik, 2002; Mete & Zabinsky, 2010; Rol-
land, Patterson, Ward, & Dodin, 2010; Wex, Schryen, & Neumann,
2011; 2012). Where differences are acknowledged, it is common to
assume all casualties have been partitioned into discrete categories
reflecting the urgency of their treatment (Galindo & Batta, 2013),
as in the work of Chiu and Zheng (2007); Gong and Batta (2007);
Yi and Ozdamar (2007). This is reasonable, as it is normal for an
assessment of the health of each casualty (known as triage) to be
completed before the remainder of the response is enacted (Group,
2011). It is often assumed that individual casualty health will not
change over time, and that assessments of health are always accu-
rate. The attraction of the former assumption is understandable, as
the task of accurately forecasting the changing health of casualties
in these environments is challenging. Some attempts are described
in Cotta (2011); Fiedrich, Gehbauer, and Rickers (2000); Tatomir
and Rothkrantz (2006). These models, however, do not provide
any way to correct errors in prediction, an occurrence which we
can assume to be likely due to the complexity of the underlying
process.

1.1.2. Hospitals

Many models assume that the allocation of casualties to hospi-
tals will be done automatically and appropriately. Limited exam-
ples of including hospital allocation into a wider decision prob-
lem can be found in Jotshi, Gong, and Batta (2009); Mysore et al.
(2005); Wilson, Hawe, Coates, and Crouch (2013a). In Wilson et al.
(2013a) an often ignored aspect of casualty management, self pre-
sentation, is discussed. It is often assumed that all casualties are
transported to hospital by the Ambulance Service only (Auf der
Heide, 2006), with the casualty undergoing triage and treatment
operations prior to this. In reality, it is common for some casu-
alties to remove themselves from the incident site and transport
themselves to a hospital of their choosing. In Wilson et al. (2013a)
it is assumed that this process could be predicted accurately. In
scenarios where this is not possible, a dynamic approach, updat-
ing the model regarding the number of casualties who have left
the incident scene and who have arrived at each hospital, may be
effective.

1.1.3. Transportation

The transport network within the problem environment is of-
ten assumed to be known, both in terms of topology and the travel
times between locations (Yi & Kumar, 2007; Zhang, Li, & Liu, 2012).
As noted in Galindo and Batta (2013), the former assumption is
more justified than the latter. Examples of removing the latter as-
sumption include (Wilson, Hawe, Coates, & Crouch, 2013b). In this
work it is demonstrated that disruption to the network resulting
in uncertainty in travel times can have a significant effect on the
performance of an optimization model. As such, this problem char-
acteristic should not be ignored.

Uncertainty in the disruption of the transport network has been
incorporated to a limited extent using stochastic programming for-
mulations. Examples include (Barbarosoglu & Arda, 2004; Mete &
Zabinsky, 2010; Rawls & Turnquist, 2010), which consider a finite
number of scenarios, each with assigned probability and associ-
ated network parametrization. Uncertainty is also acknowledged
in the work of Jotshi et al. (2009), which extends the ambu-
lance allocation model presented in Gong and Batta (2007) by in-
cluding a data fusion step to estimate the level of damage and
disruption on each road link. A solution methodology for find-
ing optimal paths in a disrupted network following a disaster
is presented in (Zhang, Zhang, Zhang, Wei, & Deng, 2013). The
authors employ the network representation described by Yuan
and Wang (2009), where the travel time associated with each
edge of the transport network is assumed to increase over time
in a manner which reflects its proximity to the disaster. A dy-
namic transport network structure is also modeled in the work of
Fiedrich et al. (2000), with nodes and edges being added or re-
moved to reflect the impact of both the disaster and the response
operation.

1.14. Task durations

Where the modeling methodology involves the allocation of
discrete tasks to available responder units, the times needed to
complete these tasks are necessary problem parameters. Exam-
ples include the scheduling models presented in Rolland et al.
(2010) and Wex et al. (2011). In the former, the authors pro-
pose a specific solution algorithm which, through its fast execu-
tion, is designed to facilitate the solving of their proposed model
in near-real time. The authors argue this will allow decision mak-
ers to re-solve any particular response problem when conditions
change, although this capability is not explicitly tested and evalu-
ated. In Wex et al. (2011) a similar modeling methodology is pro-
posed, where all necessary parameters are assumed to be fixed
and known upon model initialization. This model is extended
in Wex, Schryen, and Neumann (2012), allowing for task dura-
tions to be represented by fuzzy values in an effort to acknowl-
edge the uncertainty inherent in available information. The au-
thors suggest the model should be regularly rebuilt and solved
when the problem environment has evolved by some significant
degree.

1.2. Modeling uncertainty and dynamicity

All the assumptions mentioned relate to model parameters
which change over time, either because they are estimates of un-
known real values and can therefore be revised as new informa-
tion comes to light, or because the real values themselves are of
a dynamic nature, or both. In the worst cases these assumptions
will render a model unusable in many realistic scenarios. General
strategies to their removal tend to take either a stochastic yet static
approach, applying stochastic (Barbarosoglu & Arda, 2004; Chang,
Tseng, & Chen, 2007; Mete & Zabinsky, 2010) or robust (Bozorgi-
Amiri, Jabalameli, Alinaghian, & Heydari, 2012) programming to
find solutions which will remain valid as the problem evolves over
time, or a dynamic approach, allowing for the model to be updated
at a number of set length intervals to help ensure it remains appli-
cable (see, for example, Lee, Ghosh, & Ettl, 2009; Ozdamar, Ekinci,
& Kucukyazici, 2004; Yi & Kumar, 2007). Only limited steps have
been taken with the latter approach. In the context of manufac-
turer or retailer response to hurricanes, the supply chain models
proposed in Lodree and Taskin (2009); Taskin and Lodree (2011)
employ a Bayesian approach to allow for dynamic information to
be incorporated into future decisions. In Gong and Batta (2007) the
authors note that determining the appropriate length of update in-
terval is crucial to performance, proposing that future work should
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Table 1

Task types and their dependency relations.
Task: Pre-rescue stabilization = — Rescue —
Responder: HART SAR
Condition: Trapped and unstable Trapped

Pre-transportation stabilization =~ —  Transportation
Ambulance /| MERIT | HART Ambulance /| HART
Unstable All

look to develop models which operate in continuous time. This is
echoed in Chiu and Zheng (2007), where the authors state that
“from a real-time implementation standpoint, a cyclic rolling horizon
based updating and re-optimizing framework and scheme need to be
developed to improve accuracy and robustness of the model under the
highly unpredictable environment”. In order to move towards such
a real-time system, the work reported in Engelmann and Fiedrich
(2007); Englemann and Fiedrich (2009); Fiedrich (2006); Jotshi
et al. (2009) link their proposed decision support models to simu-
lations of the actual response environment, allowing for the testing
of the ability of each model to cope with changes in information.
However, in these cases the whole decision problem is decom-
posed into a sequence of single decision points, where tasks are
allocated to responders one at a time as and when the responder
becomes available. This structure does not allow for the potential
benefits of forward planning, as would be available in a scheduling
model, to be explored. There has been no detailed investigation of
the potential for real-time decision support considering the entire
planning horizon. The need for such research is further highlighted
in the review of Jiang, Yuan, Huang, and Zhao (2012).

1.3. Contribution

In this paper we describe such a real-time system, building
upon the static model presented in Wilson et al. (2013a). The
model, coupled with addressing many of the limiting assumptions
discussed above, allowing for information to be updated in a real-
istic manner and for this information to be used to improve future
predictions as well as correct past errors, forms the principal con-
tribution of this paper. In addition to this contribution, the paper
presents a detailed computational analysis of model performance,
identifying a number of potential explanatory parameters and ex-
ploring to what extent they impact upon the utility of the opti-
mization model.

The remainder of this paper is structured as follows. In
Section 2 we briefly describe a previously published decision sup-
port model for casualty processing, given in Wilson et al. (2013a).
Following this, Section 3 details how this model has been extended
to allow for its use in real-time during an MCI characterized by
uncertainty and volatility. The results of extensive computational
experiments are then reported and discussed in Section 4. Finally,
we draw conclusions and identify promising avenues for future
research.

2. A static model of casualty processing

In this work we build upon the multi-objective combinatorial
optimization model described in Wilson et al. (2013a). Originally,
the model was designed for use in a static manner, being initial-
ized at a point where all relevant information was available and
running for the desired length of time before delivering the solu-
tion output, which took the form of a work schedule detailing the
allocation and ordering of response tasks to available responders.
While the model did incorporate a probabilistic approach when de-
scribing the evolution of casualty health, no other parameters were
of a stochastic nature.

As this model is designed to perform a period of pre-
computation before delivering a single solution, we denote it as
model Mp.. In this section we will describe the key components of
this model, with the aim of conveying its nature while minimizing

the technical detail which can instead be found in Wilson et al.
(2013a). In the following section we will discuss its extension for
use in dynamic, evolving problems where many more parameters
are subject to uncertainty.

2.1. Solution space

A solution to the casualty processing problem faced in MCI re-
sponse consists of:

e an allocation of casualties c € C to hospitals h € H,
e an allocation of tasks t € 7 to responders r € R,
 an ordering of the tasks assigned to each responder r.

The types of tasks which can be found in 7 are summarized
in Table 1. Each casualty requires the completion of a transporta-
tion task, to be carried out by an Ambulance responder unit, in
order for them to be taken from the incident site to their allocated
hospital. In addition, if the casualty’s health is unstable they will
also require a pre-transportation stabilizing treatment task to en-
sure their safe transportation. Such tasks may be carried out by
ambulance responder units, a Medical Emergency Response Inci-
dent Team (MERIT), or a Hazardous Area Response Team (HART).
MERIT units are medical teams who attend incident sites to as-
sist the triage and treatment of casualties (London Emergency
Services Liaison Panel, 2015). HART teams are specially trained and
equipped for working within the hazardous inner cordon area. In
some cases, casualties may require extrication from the incident
site by a Search And Rescue (SAR) responder unit, which we shall
refer to as a ‘rescue’ task. Should this be the case, it is possible that
a pre-rescue stabilizing treatment task be required in order to re-
duce the likelihood of the health of the casualty deteriorating dur-
ing the extrication operation. These tasks may only be completed
by HART units.

2.2. Objective functions

Given a solution as defined in Section 2.1, a schedule can be
constructed detailing the work plan for each responder, identifying
the time at which the responder (a) begins traveling to the loca-
tion of their next task, (b) begins work on this task, and (c) finishes
work on this task. In constructing a schedule from a solution, the
spatial nature of the problem is taken into account in estimating
the travel times of responders as they move between sites and/or
hospitals. These estimates are combined with estimates of task du-
ration when constructing the schedule.

For a given (estimated) schedule, a number of measures are
calculated and used to evaluate and compare solutions during
the optimization process, together measuring fatalities and suf-
fering. We will briefly describe these functions here and re-
fer the reader to Wilson et al. (2013a) for further details and
discussion.

2.2.1. Fatalities

In many countries it is standard practice in MCI response for
a full triage of casualties to be carried out before any subsequent
tasks may begin. The result is an assessment of the health of each
casualty, which is classified according to the four possible cate-
gories listed in Table 2.

Our model uses a Markov chain consisting of a state space {T1,
T2, T3, dead} to predict how the health of a casualty will evolve
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Table 2
Triage levels assigned to casualties.
Category  Description  Explanation
T1 Immediate Require immediate life-saving procedure
T2 Urgent Require surgical or medical intervention within 2-4 hours
T3 Delayed Less serious cases whose treatment can safely be delayed beyond 4 hours
Dead

over the course of the response operation. We assume that the
health of casualties will only ever decrease when in an unstable
environment, that is, before they have been extricated and taken
to a safe designated area. For each casualty, the model is used to
calculate the probability that they will have died before they reach
hospital. These probabilities are summed together to produce an
objective of the casualty processing problem,

min f;(s) = Z P(c dead on arrival at hospital), (1)

ceC

where s is a solution to the model.

We note that our model assumes the transition probabilities of
this chain are known. In practice, this may not be possible due
to the inherent low frequency of MCls and the lack of data collec-
tion which occurs during them. However, we have attempted to set
transition probabilities which reflect the qualitative descriptions of
triage states, as given in Table 2. For example, we have ensured
that the probability of death of a T1 casualty who is left untreated
in an unstable environment for thirty minutes approaches 1, while
for a T3 casualty it reaches only 0.1. In selecting these transition
probabilities we aim to consider the most generic MCI scenarios.
Were the model to be applied to more unique and idiosyncratic
scenarios, these parameter values should be adjusted accordingly.
It is noted that due to the inherent low frequency of MCls and
the lack of data collection which occurs during them, estimating
these probabilities presents a significant challenge. However, one
suggested approach to estimate transition probabilities would be to
analyze patient data from non-MCI emergency situations in which
there are fewer casualties and their health states are monitored
more closely. While acknowledging that such data would originate
from non-MClIs, it would provide a more realistic basis for their
estimation.

2.2.2. Suffering

A second objective of MCI response, f, is to minimize suffering.
We consider suffering to be quantified through two components.
Firstly, for each casualty the time taken from moment of injury to
their arrival at hospital is noted. These times are summed together
with each individual contribution weighted by the severity of that
casualty’s health. Secondly, the standard of treatment available at
the hospitals to which casualties have been assigned is measured.
This is done through forecasting the arrival times of casualties at
each hospital and contrasting with predicted resource levels in or-
der to estimate the amount of time casualties will collectively wait
at a hospital before treatment is administered. To this we add a
penalty term for every casualty who has been assigned to a hos-
pital which does not provide any specialist treatment their injuries
require (e.g., those suffering from severe burns should be encour-
aged to be sent to a hospital with a specialist burns unit). These
two measures are combined to form the single suffering objective,
f, using the weighted metric method of least squares.

2.2.3. Lexicographic ordering

The objectives f; and f, are combined in a lexicographic man-
ner to reflect the fact that the saving of lives is always of higher
priority than the reduction of suffering. The full multi-objective

model can now be defined as

min fi(s), fa(s). (2)

2.3. Solution methodology

2.3.1. Local search

A Variable Neighborhood Descent metaheuristic is employed in
order to find high quality solutions to the scheduling problem de-
scribed above. Four neighborhood structures are employed, each
with variable size, which facilitates the local search process escap-
ing local optima through consideration of larger neighborhoods. A
similar approach has been shown to perform well on a flexible job
shop problem (Amiri, Zandieh, Yazdani, & Bagheri, 2010), which is
of a similar structure to the model described in Section 2.1. As de-
scribed in Wilson et al. (2013a), the algorithm employs four dif-
ferent neighborhood structures, cycling between them at each iter-
ation. When a certain neighborhood structure results in no neigh-
boring solutions which improve upon the current solution, the size
of that neighborhood is increased. For example, one neighborhood
structure allows for any two tasks to be swapped, in terms of their
responder allocation and their position in that responder’s sched-
ule. Increasing the size of this neighborhood allows for two of
these ‘swap’ operations to be carried out in a single step. Accord-
ingly, increasing the size of the neighborhood increases the like-
lihood of finding an improving solution. This strategy enables the
search process to escape any local optima it finds itself in.

2.3.2. Constructive heuristic

In addition to a local search solution methodology, Wilson et al.
(2013a) also provides details of a heuristic routine which can
be applied in a constructive manner. Specifically, the construc-
tor builds a solution by allocating tasks to the end of respon-
ders’ schedules until all tasks have been allocated. At each deci-
sion point, the responder chosen is the one which is due to finish
all their tasks first. A task to be allocated to the end of their sched-
ule is chosen by considering a number of criteria, such as the time
at which the task could begin and the health of the associated ca-
sualty, in a lexicographic manner. The constructor is designed to
approximate how decisions would be made on the ground of an
MCI, focussing on the immediate situation as opposed to planning
ahead.

3. An online model of casualty processing

Having described the pre-computation model M in Section 2,
we now consider its extension to more realistic problems subject
to high volatility and associated uncertainty in model parameters.
We denote this online model by M,. In the following discussion
we shall partition all such parameters into two sets. By solution
space parameters, we refer to those which affect the nature of the
solution space, as described in Section 2.1. That is, a change in a
solution space parameter will alter the set of possible solutions.
In contrast, objective space parameters are those which, when al-
tered, result in a change in the objective value(s) of one or more
solutions.
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Fig. 1. Two-way communication between optimization and response environment.

We describe problems which do not include any dynamic char-
acteristics as static problems. Those which include dynamic ob-
jective spaces are described as partially dynamic problems. Finally,
those problems which exhibit dynamic behavior in both the solu-
tion and objective spaces are denoted fully dynamic problems. In
this section we will first describe how the model can be used in
real-time by allowing instructions to be issued to responders grad-
ually, one task at a time, as opposed to issuing a full schedule at
a single time point. We then go on to describe dynamic features
of the problem which result in changes to solutions space param-
eters, before finally considering features leading to changes to the
objective space.

3.1. Real-time and online optimization

A necessary first step in adapting the model is allowing for the
model to pass instruction to the problem environment in a gradual
manner as opposed to at one single point in time. This is accom-
plished through the partitioning of all tasks within the model into
two complementary sets: fixed, denoting tasks which have been
given as instructions and which a responder unit has begun; and
free, denoting all tasks yet to be issued to a responder unit.

Employing the local search optimization procedure in real-time
means that, at any given point in the response operation, the lo-
cal search procedure is carried out over only the set of free tasks,
adjusting their positions in the schedule in an attempt to find a
solution of higher quality. At the outset of the operation, optimiza-
tion is carried out over all tasks in the model. Towards the end of
the operation, where the majority of tasks have been carried by
responders and are now fixed in their positions in the schedule,
optimization may involve only a handful of remaining free tasks.
When a responder unit becomes available, their next task is cho-
sen based on the best overall schedule found so far by the op-
timization algorithm. After this task is issued and becomes fixed,
optimization continues considering the remaining fee tasks. Thus,
a responder’s schedule is not fixed at time t= 0, but rather con-
tinuously built as the response operation progresses. In this man-
ner, the optimization model can be used in real-time as the event
unfolds, regularly issuing instructions. This is in contrast with the
usual offline approach, where the model issues a full schedule of
instructions once, at the outset of the response operation.

It should be emphasized that by employing the optimization
procedure in real-time, the common concern of algorithm compu-
tation time is no longer of direct relevance. Usually, the evaluation
of an algorithm would concern both the quality of the solutions
it suggests, and the time required to do so. In designing an al-
gorithm, one would trade-off these two characteristics to achieve
the right balance for the problem at hand. In our case, however,
we continue to optimise over the current set of free tasks until a

responder requires instruction. There is no benefit in pausing or
terminating the optimization procedure before this, and so we are
not concerned with trading off computation time for solution qual-
ity. An inefficient or slow algorithm will impact the quality of the
proposed solutions, but this impact will be entirely encapsulated
by the final solution quality observed upon completion of the re-
sponse operation.

The continuous passing of instructions from the model to the
response environment is complemented by the continuous feed-
back of information from the environment to the model in what
we term online optimization. There, any changes in the environ-
ment which are relevant to the model are noted and passed back
to the model as they are observed, to allow for the model to be
updated and reflect the problem more accurately. This process of
continuous two-way communication is illustrated in Fig. 1.

In the remainder of this Section, we describe the various
changes in the response environment which can be updated within
the model, and how these changes can be simulated for the pur-
poses of experimental evaluation.

3.2. Solution space parameters

As described in Section 2.1, the decision problem modeled con-
sists of assigning an ordered list of tasks to a number of responder
units and allocating casualties to appropriate hospitals. Since the
set of tasks 7 is determined by the set of casualties C, we can re-
duce the parameters associated with solution space change to be:

e C, the set of all casualties,
e R, the set of all responder units,
e #, the set of hospitals.

As the hospitals available for use in the response operation
are unlikely to alter, we do not consider any dynamic changes to
the set H. Regarding the set of available responder units, we note
that this can both increase and decrease as the response opera-
tion progresses. As discussed in Auf der Heide (2006), it is com-
mon for responders from areas neighboring the affected district to
self-dispatch, thus arriving with little or no notice and increasing
the set of responders. Although a reduction can occur due to in-
jury sustained when working in a hazardous environment, given
the short time-scale of problem scenarios considered in this paper
we do not account for this possibility.

In terms of the set of casualties, an increase can occur in both
a gradual manner, as more casualties are discovered during search
and rescue operations, and in a sudden manner, if another incident
were to occur nearby. Moreover, a decrease in the number of ca-
sualties can occur due to self presentation. An illustration of the
d