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In our paper [2] the example witnessing the validity of Theorem 2.7 is wrong. In fac
spaceX ×X described in the example is regular and scattered, and as such it is here
weakly Whyburn [3], hence the assertion claimed is false. The aim of Theorem 2.
to give a negative answer to a question asking if any subset of a sequential sp
weakly Whyburn. A two step iteratedΨ -space constructed with maximal families provid
a Hausdorff example. LetA be a maximal almost disjoint family inω, and letB be a
maximal almost disjoint family of countable subsets ofA. Let X = ω ∪ A ∪ B. Points of
ω are isolated; a neighbourhood of a pointA ∈ A is {A} ∪ A\F whereF ⊂ ω is a finite
set; a neighbourhood of a pointb ∈ B is of the form{b} ∪ (b\g) ∪ ⋃{A\FA: A ∈ b\g}
whereg ⊂A andFA ⊂ ω are finite sets (see, for example, [1]). The spaceX is sequential
Let Y = ω ∪ B ⊂ X. Let us check thatY is not weakly Whyburn. The setω ⊂ Y is dense
in Y . If a setE ⊂ ω is not closed inY , thenE meets infinitely many elementsA of A
in infinitely many points. By the maximality ofA the setE meets in fact uncountabl
many elements ofA in infinitely many points, since the trace onE of the family A is
maximal in E; but any uncountable subset ofA has infinitely many limit points inB.
Correspondingly there are infinitely many pointsb ∈ B in the closure ofE. We just proved
that Y is not weakly Whyburn. The spaceX is scattered and not regular. As we alrea
noticed a regular example cannot be scattered and this makes harder to look for an e
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The question about the existence of a Tychonoff (or just regular) sequential space that is

(1992)

Univ.
not hereditarily weakly Whyburn remains open.
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