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Polycomb group (PcG) and trithorax group (trxG) proteins are critical regulators of numerous
developmental genes. To silence or activate gene expression, respectively, PcG and trxG
proteins bind to specific regions of DNA and direct the posttranslational modification of
histones. Recent work suggests that PcG proteins regulate the nuclear organization of their
target genes and that PcG-mediated gene silencing involves noncoding RNAs and the RNAi
machinery.
Epigenetic regulation of gene expression is necessary for

the correct deployment of developmental programs and

for the maintenance of cell fates. Polycomb group (PcG)

and trithorax group (trxG) genes were discovered in Dro-

sophila melanogaster as repressors and activators of

Hox genes, a set of transcription factors that specify cell

identity along the anteroposterior axis of segmented ani-

mals. Subsequent work has shown that PcG and trxG pro-

teins form multimeric complexes that are not required to

initiate the regulation of Hox genes, but rather to maintain

their expression state after the initial transcriptional regu-

lators disappear from the embryo. Subsequent work in

Drosophila led to the identification of DNA regulatory

elements that recruit PcG and trxG factors to chromatin

in vivo. These elements, called PcG and trxG response

elements (PREs and TREs), respectively, mediate epige-

netic inheritance of silent and active chromatin states

throughout development (reviewed in Muller and Kassis,

2006; Schwartz and Pirrotta, 2007). PcG and trxG genes

have also been identified in vertebrates, where they also

regulate Hox genes. In addition, PcG and trxG proteins

are implicated in cell proliferation (reviewed in Martinez

and Cavalli, 2006), stem cell identity and cancer (reviewed

in Sparmann and van Lohuizen, 2006; also see review by

Jones & Baylin, in this issue), genomic imprinting in plants

and mammals (reviewed in Delaval and Feil, 2004; Guitton

and Berger, 2005; Bernstein et al., in this issue) and X in-

activation (reviewed in Heard, 2005 and Yang and Kuroda,

this issue). An appreciation for the extensive biological

roles for PcG and trxG proteins has motivated efforts to

determine their mechanisms of action.

Some trxG and PcG components possess methyltrans-

ferase activities directed toward specific lysines of histone

H3, whereas other trxG and PcG proteins interpret these

histone marks. Recent work has established the genome-

wide distribution of PcG proteins, and considerable
progress has been made toward understanding how

PcG and trxG proteins are recruited to chromatin and

how they regulate their target genes. Here, we discuss

the molecular mechanisms of action of PcG and trxG pro-

teins, their roles in regulating cell fate during development

in eukaryotes, and analyze their functions from an evolu-

tionary perspective.

Recruitment of PcG and trxG Proteins

to Their Chromatin Targets

PcG proteins form three different classes of complexes

(Table 1). Polycomb repressive complex 2 (PRC2) con-

tains the four core components: E(z) (Enhancer of zeste),

Esc (Extra sex combs), Su(z)12 (Suppressor of zeste 12)

and Nurf-55 (in humans, EZH2, EED, SUZ12 and

RbAp46/48). The SET domain-containing E(z) subunit tri-

methylates lysine 27 of histone H3 (H3K27me3) (reviewed

in Cao and Zhang, 2004). This mark is specifically recog-

nized by the chromodomain of Polycomb (Pc) (Cao and

Zhang, 2004), a subunit of PRC1-type complexes. PRC1

contains Pc, Polyhomeotic (Ph), Posterior sex combs

(Psc) and dRing, in addition to several other components,

including TBP-associated factors (Saurin et al., 2001). Re-

cently, a third complex involved in homeotic gene silenc-

ing, PhoRC, has been identified (Klymenko et al., 2006).

PhoRC includes the sequence specific DNA binding pro-

tein Pleiohomeotic (Pho) as well as the dSfmbt protein

[Scm-related gene containing four malignant brain tumor

(MBT) domains], which binds specifically to mono- and

dimethylated H3K9 and H4K20 via its MBT repeats.

Neither PRC2 nor PRC1 core complexes contain se-

quence specific DNA binding proteins, but Pho has been

shown to bind to PRC2 subunits and to induce PRC2 re-

cruitment at the bxd PRE of the Ubx gene in Drosophila

(Wang et al., 2004b). A simple pathway for PcG protein

recruitment has been suggested based on the stepwise
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Table 1. PcG and trxG Complexes

Drosophila melanogaster Human

PcG complexes

PhoRC dSfmbt ?

Pho ?

PRC2 E(z) EZH2

Esc EED

Su(z)12 SUZ12

N55 RpAp48

RpAp46

PRC1 dRing RING1A

Pc HPC1-3

Ph HPH1-3

Psc BMI1

Scm SCMH1-2

TBP-associated factors

trxG complexes

SWI/SNF Brm BRM

Osa BAF250

Moira BAF170

Snr1 BAF47

NURF Iswi SNF2L

N38 ?

N301 BPTF

N55 RpAp46

RpAp48

TAC1 Trxa

dCBP

Sbf1

Ash1 Ash1

dCBP

MLL1-3 MLL1-3a

WDR5

ASH2L

RbBP5

CFP1

Only the core components of each complex are shown.
a Trx is an ortholog of MLL proteins, but the TAC1 complex
isolated in Drosophila is composed of proteins that differ

from the subunits of the MLL complex. However, orthologs

of the mammalian MLL core-complex subunits are present

in the Drosophila genome, and therefore MLL-like complexes
may exist in flies. Question mark indicates that the protein is

present in human, but it is not known whether it forms the

same complex as in flies.
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recruitment of PRC2 proteins by Pho (and Pho-like, a pro-

tein that binds to the same DNA motifs), followed by PRC1

recruitment to the H3K27me3 mark deposited by PRC2.

However, PcG recruitment is much more complex than

this. Firstly, Pho is not only able to recruit PRC2, but it

also interacts directly with the Pc and Ph subunits of

PRC1 in vitro (Mohd-Sarip et al., 2002). The presence of

Pho enables the core complex of PRC1 (PCC) to bind

specifically, and without the need of PRC2, to a short se-

quence motif that is present at natural PREs close to Pho

sites (Mohd-Sarip et al., 2005). Secondly, core PREs

might be depleted of nucleosomes. Mohd-Sarip and col-

leagues studied the architecture of the ternary complex

of PRE DNA, Pho and PCC that had been reconstituted

in vitro. This complex wraps DNA around the protein com-

ponent and, in the presence of 6 Pho binding sites and jux-

taposed PC binding elements, it includes over 400 bp of

DNA in this interaction. This argues against a nucleosomal

structure for this PRE in vivo (Mohd-Sarip et al., 2006). The

absence of core histones at the Ubx PRE is also supported

by in vivo studies using chromatin immunoprecipitation

(ChIP) (Kahn et al., 2006; Mohd-Sarip et al., 2006; Papp

and Muller, 2006), which suggest that the H3K27me3

chromatin mark might not be the recruiter of PcG proteins

at core PREs. Finally, Pho binding sites alone are insuffi-

cient to tether PcG proteins to DNA in vivo, even when

multimerized or when the number of sites and the spacing

between them is the same as in a natural PRE (Brown

et al., 1998; Dejardin et al., 2005). Indeed, Pho can form

a second complex with components of the INO80 nucleo-

some remodeling complex, and may play other roles in

addition to recruitment of PcG proteins, which may be

mediated by a subset of the genomic Pho binding sites

(Klymenko et al., 2006). Moreover, a Drosophila mutant

lacking both Pho and Pho-like is lethal at a late develop-

mental stage and, in mutant salivary glands, most PcG

sites are stained normally in polytene chromosomes de-

spite lack of detectable Pho protein (Brown et al., 2003),

suggesting that other proteins can recruit PcG factors in

the absence of Pho and Pho-like. GAGA factor (GAF), Pip-

squeak, Dsp1, Grainyhead and members of the Sp1/KLF

family have all been suggested to be involved in PcG re-

cruitment (reviewed in Muller and Kassis, 2006). Mutations

in these genes do not have a clear PcG phenotype and, in-

triguingly, all seem to be involved in activation as well as in

silencing. One possibility is that a combination of several

DNA binding factors, including as yet unknown compo-

nents, could lead to tethering of PcG proteins to DNA

in vivo.

To date, PREs have only been characterized in Dro-

sophila. In general, PREs can be simply defined as DNA

elements necessary and sufficient for recruitment of PcG

complexes and for PcG-dependent silencing of flanking

promoters. Many of the PcG binding sites identified by

chromatin immunoprecipitation in vertebrates might fit

this criterion, and this prediction will be tested by trans-

genic assays. Their DNA sequences are likely to differ

from fly PREs, because three of the DNA binding factors



involved in PcG recruitment, GAF, Pipsqueak and Zeste,

are not conserved in vertebrates.

In addition to a ‘‘DNA code’’ and, possibly, the

H3K27me3 mark, small RNAs and proteins of the RNAi

machinery might be involved in PcG recruitment. It was

shown that silencing mediated by a 3.6 kilobase DNA ele-

ment from the Fab-7 regulatory region of the Abd-B Hox

gene was relieved by mutations in the RNAi machinery

(Grimaud et al., 2006). Although the recruitment of PcG

proteins was only slightly affected (suggesting that RNAi-

independent mechanisms are sufficient to anchor PcG

complexes at a majority of their endogenous target genes)

a recent report shows that the human AGO1 homolog can

drive transcriptional gene silencing of promoters targeted

by specific small interfering RNAs (siRNAs) via recruitment

of the PcG protein EZH2 (Kim et al., 2006). However, the

reported phenotypes caused by mutations in genes of

the RNAi machinery are not similar to those seen in PcG

mutants. Thus, RNAi components might act redundantly

with DNA binding proteins at a subset of the PcG targets.

Recruitment of trxG proteins is even more mysterious.

TrxG proteins are a somewhat heterogeneous group

(Table 1). One class of trxG members is composed of

SET domain factors like Drosophila Trx and Ash1 and

vertebrate MLL, as well as their associated proteins. A

second class of trxG factors includes components of

ATP-dependent chromatin remodeling complexes like

the SWI/SNF or the NURF complexes. Vertebrate com-

plexes containing homologs of Drosophila Trx and Ash1

proteins are recruited at Hox genes, but the mechanisms

are unknown (Hughes et al., 2004; Wysocka et al., 2003).

In Drosophila, Trx binds a minimal Fab-7 element in sali-

vary glands in the absence of transcriptional activation

(Dejardin and Cavalli, 2004). Other work suggests that

a second DNA element overlapping the bxd PRE up-

stream of Ubx is involved in Trx-dependent maintenance

of Ubx activation (Tillib et al., 1999). Furthermore, Trx is

reported to bind at this element irrespective of the state

of Ubx expression in imaginal discs of Drosophila larvae

(Papp and Muller, 2006), suggesting that specific DNA

tethers recruit Trx independent of the action of transcrip-

tion factors. In Drosophila embryos, Trx is observed to

constitutively bind to the promoter regions of the Ubx

gene and of the bxd element. Interestingly however, this

paper also reports recruitment of Trx to transcribed Ubx

regions, but only upon activation (Petruk et al., 2006).

Thus, between the two papers there is a discrepancy in

Trx location. However, the first study used antibodies di-

rected against the C-terminal part of the protein, whereas

in the latter study the antibody was directed against the

N-terminal part. The Trx protein is proteolytically cleaved

by the Taspase enzyme (Hsieh et al., 2003), and the two

moieties might target different chromatin regions upon

cleavage.

Other trxG components seem to be recruited to chro-

matin in an activation-dependent manner. For instance,

upon Ubx activation Ash1 is recruited to the region imme-

diately downstream the transcription start site (Papp and
Muller, 2006). The SWI/SNF component Brm is also re-

cruited to polytene chromosomes upon activation of

a transgene carrying a minimal Fab-7 element (Dejardin

and Cavalli, 2004). Interestingly, mutation of Zeste sites

in the Fab-7 element prevents recruitment of Brm, but

not of Trx. Thus, multiple DNA tethers cooperate for

recruitment of trxG proteins needed for gene activation.

In summary, recruitment of PcG and trxG proteins in-

volves combinatorial signals from multiple DNA motifs.

The simultaneous binding of multiple silencing and acti-

vating factors at PREs/TREs suggests that they build

switchable regulatory platforms (Figure 1), which may be

able to read early developmental cues and transform

them into heritable states of gene expression or transcrip-

tional silencing.

Posttranslational Chromatin Marks Linked

to PcG and trxG Proteins

PRC2-type complexes possess H3K27-specific trimethy-

lase activity (Cao and Zhang, 2004) whereas several trxG

complexes have H3K4 trimethylase activity (Figure 2A).

(Byrd and Shearn, 2003; Dou et al., 2005; Wysocka

et al., 2005). Do these two histone trimethylation marks

mediate PcG-dependent silencing and trxG-dependent

activation as part of a Yin and Yang relationship?

Recent genome-wide analysis of the distribution of both

marks reveals insight into their epigenetic roles. The com-

ponents of the PRC2 complex in flies, mouse and human

are typically found in the regions that are trimethylated at

H3K27 (Boyer et al., 2006; Lee et al., 2006; Schwartz et al.,

2006; Tolhuis et al., 2006). In contrast, H3K4me3 is pres-

ent at most active promoters in the genome (Kim et al.,

2005 and see review by Li et al. in this issue).

Papp and Müller analyzed the relation between

H3K4me3 and H3K27me3 at the Drosophila Ubx gene

by ChIP analysis of tissues in which the gene is in an active

or a repressed state (Papp and Muller, 2006). Both Trx and

PcG proteins bind at the Ubx PREs in either state without

extensive coating of the remainder of Ubx chromatin. Yet,

in the repressed state, the whole Ubx gene is trimethylated

at H3K27. In contrast, in the active state, H3K27me3 is still

present in the upstream region of the gene, but is virtually

absent at the promoter and the coding region of the gene.

The absence of H3K27 trimethylation in part of the gene

correlates with the binding of Ash1 immediately down-

stream to the promoter, which induces trimethylation of

H3K4. Trx binds constitutively at the PRE in the absence

of detectable H3K4me3 around the PRE region (as re-

vealed by an antibody directed against the C-terminal

portion of the protein). The mammalian Trx homolog

MLL1 is also responsible for H3K4 trimethylation at the

human HOXA9 locus (Dou et al., 2005), but a knockout

of the SET domain of mouse Mll results in the specific de-

pletion of monomethylated H3K4 (Terranova et al., 2006)

at the Hoxd4 and Hoxc8 genes. Thus, the role of Trx and

MLL1 in histone methylation might be gene specific and

might be assisted by additional histone methylase
Cell 128, 735–745, February 23, 2007 ª2007 Elsevier Inc. 737



Figure 1. PREs and TREs as Molecular

Binding Platforms

Multiple DNA binding proteins like Pho (P),

Dsp1 (D), SP1/KLF (S), Zeste (Z), GAGA factor

(G), Pipsqueak (PQ), and Grainyhead (G) recruit

PcG complexes to PREs. The recruitment of ei-

ther PcG or TrxG proteins to the PRE sequence

does not depend on the activation status of the

gene. Moreover, general transcription and

elongation factors, such as TBP and Spt5, are

constitutively bound to the PRE. A develop-

mental signal then determines whether the

PRE mediates gene activation or gene repres-

sion, which are accompanied by trimethylation

(Me) of histone H3 on lysine 4 or lysine 27, re-

spectively. Upon activation, Kismet (Kis), a pro-

tein facilitating elongation, and Ash1, leading to

local H3K4 methylation, are recruited to the

promoter region. Small RNAs (red ladder) may

also contribute to PcG protein recruitment.
activities to produce the H3K4me3 mark associated with

gene expression.

Additional components might also be involved in H3K4

trimethylation. In yeast, H3K4 trimethylation requires

monoubiquitylation of histone H2B at lysine 123 by

Rad6/Bre1 (Sun and Allis, 2002). Although Drosophila

dBre1 has no known involvement in trxG-mediated activa-

tion, a complex between the proteins USP7 and GMP

synthetase (GMPS) has been shown to contribute to PcG-

mediated gene silencing via deubiquitylation of histone

H2B (van der Knaap et al., 2005). This suggests a trans-

histone interplay between activating H3K4 trimethylation,
738 Cell 128, 735–745, February 23, 2007 ª2007 Elsevier Inc.
stimulated by ubiquitylation of H2B, and silencing H3K27

trimethylation, stimulated by deubiquitylation of H2B

(Figure 2B).

In addition to H3K27 trimethylation, PRC2 containing

a specific isoform of the EED protein is thought to catalyze

trimethylation of lysine 26 of histone H1 (H1K26me3)

(Kuzmichev et al., 2004). Surprisingly, similar experiments

performed with recombinant complexes and di- or oligo-

nucleosomes could not confirm whether it has the ability

to methylate histone H1 (Martin et al., 2006), suggesting

that differences in assay conditions can affect the histone

substrate specificity of PRC2-type complexes.
Figure 2. Histone Marks in PcG and trxG

Protein Function

(A) PcG and trxG complexes deposit histone

marks that play complementary roles in silenc-

ing and activation of their target chromatin.

The enzymatic subunits of PcG and trxG

complexes responsible for H3K27me3 and

H3K4me3, respectively, in flies and humans

are shown.

(B) Ubiquitylation of histone H2B on lysine K123

(H2BK123ub1) by the yeast complex Rad6/

Bre1 stimulates histone methylation of histone

H3 on lysine 4 by COMPASS, a trxG complex,

resulting in gene activation. In contrast, deubi-

quitylation of histone H2B by the Drosophila

USP7/GMPS complex may be essential for

histone methylation of histone H3 on lysine

27 (H3K27me3). Moreover, this methyl mark

might help to recruit dRing, a protein with E3

ligase activity leading to ubiquitylation of his-

tone H2A on lysine 119 (H2AK119ub1).



PcG complexes of the PRC1-type also contain an

evolutionarily conserved histone modification activity

leading to ubiquitylation of lysine 119 of histone H2A

(H2AK119ub1, see Figure 2B) (de Napoles et al., 2004;

Wang et al., 2004a), which is required for PcG-mediated

silencing of the Drosophila Ubx gene (Wang et al.,

2004a) as well as of the mouse HoxC13 gene (Cao et al.,

2005). A putative ‘‘reader’’ of this histone mark remains

to be identified. Other histone modifications are associ-

ated with PcG and trxG proteins, although their role is

not well understood. For instance, Papp and colleagues

reported that trimethyhlation of H3K9 and H4K20 accom-

panies the H3K27me3 mark (Papp and Muller, 2006).

Mechanisms of trxG-Mediated Activation

and PcG-Mediated Silencing

What are the roles of all these histone modifications and

are they sufficient to explain PcG-mediated silencing

and trxG-mediated activation? H3K4me3 is recognized

by the PHD finger domain of the Nurf-301 protein (Li

et al., 2006; Wysocka et al., 2006). The NURF complex

tethered to trxG responsive promoters might facilitate

the recruitment of the transcriptional machinery via ATP-

dependent nucleosome remodeling. H3K4me3 might

also stimulate transcriptional elongation. In particular,

H3K4me3 and Ash1 are found downstream to the Ubx

promoter (Papp and Muller, 2006). Trx has also been

shown to facilitate transcriptional elongation at heat shock

genes (Smith et al., 2004) and, more recently, the Dro-

sophila Trithorax complex TAC1 has been proposed to

play a global role in transcriptional elongation (Petruk

et al., 2006). Mll, the mouse counterpart of Trx, is also dis-

tributed all along the coding part of its Hox target genes,

and Mll mutations affect the distribution of elongating

RNA pol II (Milne et al., 2005).

What then is the role of H3K27me3? PRC2-type com-

plexes are conserved throughout the eukaryotic king-

doms, including in those organisms with no trace of

PRC1, such as plants. A plant homolog of E(z) deposits

the H3K27me3 mark on large domains spanning its target

genes leading to their silencing (Schubert et al., 2006). It is

not clear how silencing in the absence of PRC1 is

achieved. One possibility is that PRC1 is replaced by other

factors. For instance, the LIKE HETEROCHROMATIN

PROTEIN 1 (LHP1) is necessary for the maintenance of

the epigenetically repressed state of some euchromatic

genes (Sung et al., 2006). An alternative possibility is

that H3K27me3 represses transcription directly, for in-

stance by inhibiting some step involved in transcriptional

activation or by preventing the deposition of histone

marks associated with gene activation, such as acetyla-

tion, ubiquitylation of histone H2B or trimethylation of

H3K4 (Figure 3A).

Another notable feature of H3K27 trimethylation is that it

is distributed over large chromosomal domains, some-

times covering several hundreds of kilobases. This might

provide the basis for epigenetic inheritance of PcG-de-

pendent silencing during cell division. Even if PcG proteins
are lost from their targets during DNA replication or mitosis

(Buchenau et al., 1998), they would rapidly gain access to

the originally silenced chromatin via specific interactions

with PRE DNA, assisted by interaction of the Pc chromo-

domain with H3K27me3. Meanwhile, the same mark might

prevent the local deposition of activating marks and inap-

propriate gene reactivation. Binding of PRC2 components

to PREs would rapidly restore the trimethylation of H3K27

that is lost upon DNA replication.

Although histone marks may be directly responsible for

PcG-mediated repression, it is important to note that

some PcG target genes must be strongly and reliably

repressed throughout many cell divisions. This robust

silencing might require the contribution of other

Figure 3. Different Layers of PcG-Mediated Gene Silencing

(A) PRC2-mediated histone H3 methylation on lysine 27 (Me) might

directly interfere with transcriptional activation and/or inhibit ubiquity-

lation of histone H2B or trimethylation of H3 on lysine 4. Transcription

of noncoding RNAs may mediate repression of a downstream gene by

transcriptional interference. TAFs, TBP-associated factors.

(B) H3K27me3 and PRC1 complexes spread from the PRE to a pro-

moter located close to the PRE, interfering with ATP-dependent nucle-

osome remodeling activities (SWI/SNF) and RNA Pol II recruitment.

The E3 ligase activity of dRing leads to H2A ubiquitylation, contributing

to silencing by unknown mechanisms.

(C) RNA Pol II can be recruited to a subset of PcG-silenced genes, sug-

gesting a role for PRC1 in gene silencing downstream of RNA Pol II

assembly at the promoter region. For promoters located far away

from PRE sequences, PRC2 complexes bound at PREs may loop

out and contact neighboring nucleosomes. E(z) activity may then gen-

erate a large repressive domain of H3K27me3. Moreover, PRE looping

may allow PcG proteins to contact distant promoters.
Cell 128, 735–745, February 23, 2007 ª2007 Elsevier Inc. 739



mechanisms in addition to the marking of histones. PRC1

can repress ATP-dependent nucleosome remodeling by

the SWI/SNF complex in vitro (Shao et al., 1999), and

the PCC complex is able to condense chromatin in a Psc-

dependent manner and in the absence of histone modifi-

cations (Figure 3B) (Francis et al., 2004). Moreover, native

PRC1 in Drosophila contains TBP-associated factors

(Breiling et al., 2001; Saurin et al., 2001), suggesting that

PcG proteins might contact promoters. Consistent with

this notion, PRE-mediated silencing does not necessarily

prohibit recruitment of RNA pol II, but may interfere with

DNA-melting at the promoter during initiation of transcrip-

tion (Dellino et al., 2004).

The position of PREs relative to their target genes is vari-

able. Sometimes they overlap the promoter, whereas in

other cases they are located tens of kilobases away

(Negre et al., 2006). One possible explanation for silencing

of distant promoters is that PRE-bound E(z) establishes

a large domain of H3K27me3 via transient chromatin con-

tacts mediated by the looping of PREs. This mark might

then silence promoters located within its realm. Alterna-

tively, PcG proteins bound to a PRE might establish spe-

cific contacts with promoter-bound components of the

transcription machinery upon PRE looping (Figure 3C).

Contact between distal domains by PRE looping has

been demonstrated by the tethering of Dam methyltrans-

ferase to the Drosophila Fab-7 region (Cleard et al., 2006).

Moreover, a recent study (in this case, using a transgenic

construct containing the PRE upstream of Ubx) indicates

that PRE looping can drive promoter silencing (Comet

et al., 2006). This is also consistent with the weak but sig-

nificant binding of PcG members to the Ubx promoter in

Drosophila embryos or cultured cells (Comet et al., 2006;

Kahn et al., 2006).

Noncoding RNAs (ncRNAs) may also play a role in the

function of PcG and trxG proteins, but studies have pro-

duced contrasting results. It had been suggested from

earlier work that ncRNAs produced from the regulatory

regions of Hox genes may counteract PcG-dependent

silencing (reviewed in Schmitt and Paro, 2006). Further ev-

idence for an activating role of ncRNAs came from a study

of the bxd regulatory region of the Ubx gene, in which bxd

transcripts are shown to recruit the Ash1 protein to this re-

gion inducing Ubx transcription in larval tissues (Sanchez-

Elsner et al., 2006). However, these results contrast with

more recent work showing that in embryos, Ubx is not

transcribed in the same cells as bxd, and that embryonic

bxd transcripts may participate in PcG-mediated silencing

rather than activation of Ubx (Petruk et al., 2006). In partic-

ular, the authors did not observe ectopic activation of Ubx

by overexpression of bxd transcripts in larval tissues. They

further showed that repression of Ubx by bxd transcription

is mediated in cis by transcriptional interference (Fig-

ure 3A), and does not involve siRNA or miRNA-based

mechanisms. Also, bxd ncRNAs were not detected in lar-

val stages (Petruk et al., 2006), making it unlikely that they

are involved in the maintenance of repression. It will be es-

sential to examine the distribution of PcG proteins at the
740 Cell 128, 735–745, February 23, 2007 ª2007 Elsevier Inc.
Ubx gene with or without bxd transcription to clarify

whether transcription at the bxd region displaces PcG

components. In summary, ncRNAs are likely to play

a role in regulating PcG silencing at a subset of the target

genes, but more work is required in order to clarify their

function and understand their molecular mechanisms of

action.

The formation of subnuclear silencing compartments

might also contribute to the stable repression of transcrip-

tion. Drosophila PcG proteins have a speckled nuclear

distribution (Grimaud et al., 2006) and the number of

‘‘PcG bodies’’ is progressively reduced during develop-

ment, and is smaller than the number of genomic binding

sites detected by combining ChIP with DNA microarrays

(ChIP on chip) (Schwartz et al., 2006; Tolhuis et al.,

2006). A combination of immunofluorescence staining

with DNA FISH has shown that multiple target PcG ele-

ments can associate in the nucleus to enhance the

strength of PcG-mediated silencing (Bantignies et al.,

2003). Clustering of PcG target genes into PcG bodies

might facilitate silencing by exclusion of RNA polymerase.

Interestingly, the association of PcG target elements re-

quires nuclear components of the RNAi machinery that

colocalize with PcG proteins (Grimaud et al., 2006).

In mammalian cells PcG-mediated repression and DNA

methylation might be coordinated in order to stabilize si-

lencing at PcG target genes. EZH2 can directly recruit

DNA methyltransferases (DNMTs) to target genes (Rey-

nolds et al., 2006; Vire et al., 2005), and it collaborates

with DNMT1 to recruit Bmi-1 to PcG bodies (Hernandez-

Munoz et al., 2005b). Two recent studies show that

Polycomb-marked genes are major targets for DNA

methyltransferases, leading to de novo methylation of

PcG target genes and to aberrant and permanent silenc-

ing in cancer cells (Schlesinger et al., 2006; Widsch-

wendter et al., 2006). Additional work is needed to under-

stand what triggers PRC2-mediated recruitment of DNA

methyltransferases during tumorigenesis.

These data indicate that the balance between gene si-

lencing and transcriptional activation at PcG/trxG target

genes is regulated by direct interactions with the tran-

scriptional machinery, the deposition of specific epige-

netic marks on histones and DNA, the transcription of non-

coding RNA, and the regulation of nuclear organization.

Genome-Wide Distribution and Biological Functions

of PcG Proteins

The genome-wide distributions of PcG proteins have been

described recently in mouse and human cells and in Dro-

sophila. Although the comparison is not straightforward

because different cell types and PcG proteins were ana-

lyzed, these studies clearly indicate important similarities

as well as differences between vertebrates and flies. In

all species, binding of PcG proteins is highly correlated

with the distribution of the H3K27me3 mark, which is

sometimes localized to restricted genomic regions,

whereas in other cases it forms domains that are hundreds

of kilobases in size, the largest ones including Hox gene



clusters (Boyer et al., 2006; Bracken et al., 2006; Lee et al.,

2006; Negre et al., 2006; Schwartz et al., 2006; Squazzo

et al., 2006; Tolhuis et al., 2006). PcG binding negatively

correlates with the presence of RNA pol II, suggesting

that RNA pol II is excluded from many PcG target genes

as a consequence of silencing. A striking observation

common to all reports is that PcG proteins bind preferen-

tially to genes encoding transcription factors, including

many homeodomain-containing genes. This suggests

that the main function of PcG proteins is to regulate tran-

scription pathways. Meta-analysis of the putative target

genes from these studies reveals that many of the target

genes are common in the three species analyzed. As

an example, 98 of the 260 target genes identified by

Schwartz and coworkers have clear mouse and human

homologs (identified by HomoloGene). Only 26 of them

are unique targets in flies, whereas the 72 others are tar-

gets in human and/or mouse (Figure S1A in the Supple-

mental Data available with this article online). Strikingly,

63 of these 72 conserved target genes (87.4%) encode

transcription factors, while only 38.5% of the noncon-

served targets do (Figures S1B and S1C; Tables S1 and

S2). Clearly, genes encoding transcription factors repre-

sent the most highly conserved class of PcG targets.

This indicates that regulation of transcriptional pathways

is a major raison d’être of PcG genes.

Many of the PcG target genes are involved in develop-

mental patterning, morphogenesis, and organogenesis.

Some of these pathways are highly enriched in PcG tar-

gets. For instance, 55% of the transcription factors known

to be involved in segmentation of the fly embryo were

scored as PcG targets in several independent mapping

studies (Figure S2A; Table S3). Similarly, most of the mas-

ter transcription regulatory genes involved in eye and limb

development are bound by PcG proteins (Figures S2B,

S2C, and S3). This suggests that PcG proteins might

play a global role to orchestrate these pathways. Future

work should show how many of these targets are bound

in each cell type and how many bound genes are indeed

regulated by these proteins.

Despite similarities in the biochemistry of PcG com-

plexes and in the identity of target genes, striking differ-

ences in the distribution of PcG components were also

found. Mouse and human PRC2 components bind

throughout the H3K27me3 regions (Bracken et al., 2006;

Lee et al., 2006; Squazzo et al., 2006), whereas Drosophila

PRC2 members bind to restricted regions, presumably

PREs, even though H3K27me3 covers large domains

(Papp and Muller, 2006; Schwartz et al., 2006). Thus, the

molecular mechanisms by which H3K27me3 is deposited

on chromatin might differ between flies and vertebrates.

Furthermore, over 90% of the mammalian PcG binding

sites are located close to proximal gene promoter ele-

ments (Boyer et al., 2006; Lee et al., 2006), which is

much higher than in Drosophila (Negre et al., 2006), sug-

gesting that fly PcG proteins frequently act over a longer

range than in mammals. Finally, although the binding of

fly PcG proteins shows some degree of developmental
dynamics, many fly target sites are constitutively bound

throughout development (Negre et al., 2006). Binding of

PcG proteins to their target genes in vertebrates appears

more dynamic, and many of the PcG targets in embryonic

stem cells are activated at later stages, concomitant with

loss of PcG proteins (Boyer et al., 2006; Lee et al., 2006).

This suggests that, although fly PcG proteins may be used

for epigenetic maintenance of transcriptional states at

many targets, mammalian PcG factors are often involved

in reversible gene repression, and other systems such as

DNA methylation might stably lock in transcriptional si-

lencing in these organisms. This is consistent with the

high levels of PcG gene expression and a prominent role

of PcG proteins in maintenance of stem cell identity in

mammals and it indicates that PcG (and probably trxG)

factors do not only serve to maintain long term memory

of transcriptional states.

Evolution of PcG and trxG Genes

These observations put into question some preconceived

views of the biological role of PcG and trxG proteins and

suggest that the analysis of these factors from an evolu-

tionary perspective might give useful insight into their

function. PcG and trxG proteins are often said to be evo-

lutionarily conserved. Indeed, most trxG components are

found in fungi, plants and animals (Supplemental Experi-

mental Procedures; Table S4), consistent with a con-

served role in the regulation of global gene transcription.

The components of the PRC2 complex are found in

plants and animals, but not in the distantly-related fungi

Saccharomyces cerevisiae and Schizosaccharomyces

pombe (Figure 4). However, their ancient origin is con-

firmed by their presence in another fungus, Neurospora

crassa, which also possesses the H3K27me3 mark (Eric

Selker, personal communication). Thus, PRC2 genes

might have an ancient function in transcriptional repres-

sion.

The picture is much more complex for components of

PRC1. First, there is no trace of the core PRC1 genes in

fungi and plants (Figure 4) (Springer et al., 2002). Blast

analysis of several recently sequenced animal genomes

(Supplemental Experimental Procedures) revealed that

PRC1 genes originated early in animal evolution. They

are present in ‘basal’ animals: two different cnidarian spe-

cies (Hydra magnipapillata and Nematostella vectensis)

and, at least to some extent, in the sponge Reniera sp.

(Figure 4). The PRC1 gene set is complete in several insect

and vertebrate species, as well as in the echinoderm

Strongylocentrotus purpuratus, but a varying number of

PRC1 genes are missing in species from other phyla (Fig-

ure 4). For instance, all PRC1 core genes (except Scm) are

absent in two Caenorhabditis species, and at least three

PRC1 subunits are not found in the urochordate Oiko-

pleura dioica. Finally, Polycomb itself, the ‘‘reader’’ of

the H3K27me3 histone mark, is missing in many species

though present in both cnidarians (Figure 4). This is

a strong indication that PRC1 genes have been repeatedly

lost during evolution of the animal kingdom.
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Figure 4. Phylogenetic Distribution of the PRC1, PRC2, and Hox Gene Clusters

Depicted is a current view of the phylogenetic relationships among a broad spectrum of eukaryotes (Adoutte et al., 2000; Delsuc et al., 2006; Kurtzman

and Robnett, 2003). Phylogenetic groups are indicated either on the left of the nodes that define each group or below some of the terminal branches.

For each species, + indicates the presence and � the absence of the proteins that constitute the PRC1 and PRC2 complexes. The existence of Hox

gene clusters in the different species is also indicated. + indicates the presence of one or more ‘‘bona fide’’ Hox clusters, +/� indicates the existence

of partial Hox clusters, – indicates that Hox genes exist, but are not clustered, and X indicates the absence of Hox genes.
The phenotypes of PcG mutants and the strong binding

of PRC1 to Hox gene clusters in flies and vertebrates sug-

gest that these clusters are important PRC1 targets. Thus,

one hypothesis might be that PRC1 genes can be lost as

a consequence of the disintegration of the Hox gene clus-

ter, which occurred repeatedly during evolution (Chourr-

out et al., 2006; Pierce et al., 2005; Seo et al., 2004). In-

deed, most PRC1 genes are absent in the urochordate

Oikopleura dioica, which is an extreme example due to

its nine unlinked Hox genes (Seo et al., 2004). PRC1 genes

are also absent in both Caenorhabditis species, which

have profoundly rearranged Hox clusters (Aboobaker

and Blaxter, 2003). However, the integrity of Hox gene

clusters does not strictly correlate with the presence of

a full set of PRC1 genes (Figure 4). Indeed, most or all

PRC1 genes are found in several species with degener-

ated clusters, including both cnidarians Nematostella vec-

tensis and Hydra magnipapillata (Chourrout et al., 2006)

the platyhelminth Schistosoma mansonii (Pierce et al.,

2005) and the urochordate Ciona intestinalis (Spagnuolo
742 Cell 128, 735–745, February 23, 2007 ª2007 Elsevier Inc.
et al., 2003). It is important to stress that the function of

Hox genes is essentially unknown in most animal species

apart from arthropods/vertebrates. In other species, these

genes may not necessarily specify the anteroposterior

axis of the body plan. However, diminution of the PRC1

complement may accompany breakdown of the Hox clus-

ter without being caused by it. Elucidating how PcG has

coevolved with the Hox cluster could illuminate the con-

tribution of epigenetic mechanisms to the evolution of

animal development.

An interesting hypothesis is that the role of PRC1 pro-

teins in mammalian stem cells might reflect an evolution-

arily conserved function for these factors in regulating

cell plasticity and/or switching between pluripotent and

differentiated cell states. PRC1 genes may be absolutely

required in species showing strong cellular plasticity and

a developmental regulation including the ability to regen-

erate up to the adult stage, as observed in cnidarians. In

these species, PRC1 might cooperate with PRC2 and

trxG complexes to reinforce and fine-tune silencing of



master developmental genes involved in these functions.

Conversely, PRC1 genes—in particular Pc—would not

be required in animals displaying highly determinate

development with invariant cell lineage such as Caeno-

rhabditis and the urochordates. In these cases the differ-

ential rates of genome evolution might have resulted in

variable levels of PRC1 gene loss and breakdown of Hox

gene clusters within each major taxon.

Perspectives

Thanks to recent fundamental discoveries and the devel-

opment of analytical tools, we are likely to witness great

progress in the coming years toward understanding the

biological roles of PcG and trxG proteins. This will include

clarifying the role of histone marks in PcG and trxG regu-

lation. Furthermore, the activities of PcG and trxG com-

plexes toward nonhistone substrates have not been inves-

tigated in detail. For instance, human Pc2/CBX4 has been

shown to have SUMO E3 activity directed toward CtBP,

a transcriptional corepressor (Kagey et al., 2005). PcG

and trxG proteins are themselves among the putative non-

histone targets. For example, BMI1 can be ubiquitylated

by the CULLIN3/SPOP E3 ligase to contribute to female

X-inactivation (Hernandez-Munoz et al., 2005a). The set

of rules that lead to the targeting of specific genes by

PcG and trxG proteins should also be decrypted. In partic-

ular, we need to learn more about the contribution of nu-

clear organization and RNAi components. Another excit-

ing area of investigation will be to determine how these

proteins transmit memory of gene expression states dur-

ing the process of cell division. To date this long-standing

question has not been approached directly and address-

ing it might require new technology. Finally, genomic and

proteomic studies, evolutionary analysis using bioinfor-

matics, and experimental approaches in nonmodel organ-

isms will provide new insights into the biological roles of

these proteins.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, three figures, and four tables and can be

found with this article online at http://www.cell.com/cgi/content/full/

128/4/735/DC1/.
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