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An almost complex structure J on a 4-manifold X may be described in terms of a rank 2
vector bundle ΛJ ⊂ Λ2 T X∗ . We call a pair of line subbundles L1, L2 of Λ2 T X∗ a splitting
of J if ΛJ = L1 ⊕ L2. A hypersurface M ⊂ X satisfying a nondegeneracy condition inherits
a CR-structure from J and a path geometry from the splitting (L1, L2). Using the Cartan–
Kähler theorem we show that locally every real analytic path geometry is induced by
an embedding into C

2 equipped with the splitting generated by the real and imaginary
part of dz1 ∧ dz2. As a corollary we obtain the well-known fact that every 3-dimensional
nondegenerate real analytic CR-structure is locally induced by an embedding into C

2.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Motivated by the well-known fact (see for instance [6]) that an almost complex structure J on a 4-manifold X admits a
description in terms of a rank 2 vector bundle ΛJ ⊂ Λ2T X∗ , we introduce the notion of a splitting of an almost complex
structure: A pair of line subbundles L1, L2 of Λ2T X∗ is called a splitting of J if ΛJ = L1 ⊕ L2. A hypersurface M ⊂ X satisfy-
ing a nondegeneracy condition inherits a CR-structure from J and a path geometry from the splitting (L1, L2). The purpose
of this Note is to show that locally every real analytic path geometry is induced by an embedding into R

4 � C
2 equipped

with the splitting generated by the real and imaginary part of dz1 ∧ dz2. This will be done using the Cartan–Kähler the-
orem. As a corollary we obtain the well-known fact that every 3-dimensional nondegenerate real analytic CR-structure is
locally induced by an embedding into C

2. It follows with Nirenberg’s example of a smooth non-embeddable 3-dimensional
CR-manifold that the real analyticity in our main statement is necessary.

The notation and terminology for the Cartan–Kähler theorem and exterior differential systems are chosen to be consistent
with [4,7]. Moreover we adhere to the convention of summing over repeated indices.

2. Preliminaries

2.1. Pairs of 2-forms

Throughout this section, let V denote an oriented 4-dimensional real vector space. Fix a volume form ε ∈ Λ4 V ∗ which
induces the given orientation. Given two 2-forms ω,φ ∈ Λ2 V ∗ , we may write ω ∧ φ = 〈ω,φ〉ε for some unique real
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number 〈ω,φ〉. Clearly the map (ω,φ) 
→ 〈ω,φ〉 defines a symmetric bilinear form on the 6-dimensional real vector space
Λ2 V ∗ which is easily seen to be nondegenerate and of signature (3,3). Replacing ε with another orientation compatible
volume form gives a bilinear form which is a positive multiple of 〈·, ·〉. Consequently, the wedge product may be thought of
as a conformal structure of split signature on Λ2 V ∗ .

Definition. A pair of 2-forms ω,φ ∈ Λ2 V ∗ is called elliptic if

〈ω,ω〉〈φ,φ〉 > 〈ω,φ〉2.

It is a natural problem to classify the pairs of elliptic 2-forms on V . This is a special case of a more general problem:
Let ω ∈ Λ2 V ∗ be a symplectic 2-form whose stabilizer subgroup will be denoted by Sp(ω) ⊂ GL(V ). The natural represen-
tation of Sp(ω) on Λ2 V ∗ decomposes as Λ2 V ∗ = {ω} ⊕ ω⊥ where both summands are irreducible Sp(ω)-modules.2 Here
ω⊥ is the 5-dimensional linear subspace of Λ2 V ∗ consisting of 2-forms orthogonal to ω. One can ask to classify the orbits
of Sp(ω) on ω⊥ . This has been carried out in [8]. In the elliptic case one obtains:

Lemma 1. (See [8].) Let ω,φ ∈ Λ2 V ∗ be a pair of elliptic orthogonal 2-forms, then there exists a positive real number κ and a basis ei

of V ∗ such that

ω = e1 ∧ e3 − e2 ∧ e4, φ = κ
(
e1 ∧ e4 + e2 ∧ e3).

The constant κ is an Sp(ω)-invariant and thus parametrizes the set of elliptic Sp(ω)-orbits. Ellipticity will be useful
because of the following:

Lemma 2. Let W be 3-dimensional real vector space. Then the pullback of an elliptic pair of 2-forms ω,φ ∈ Λ2 V ∗ with any injective
linear map A : W → V gives two linearly independent 2-forms on W .

Proof. The ellipticity condition is equivalent to every nonzero linear combination of (ω,φ) being symplectic. Suppose (ω,φ)

is an elliptic pair of 2-forms. Then for every choice of real numbers (λ1, λ2) = 0, the 2-form τ = λ1ω + λ2φ is symplectic.
Since there are no isotropic subspaces of dimension greater than 2 in the symplectic vector space (V , τ ), it follows that
A∗τ = λ1 A∗ω + λ2 A∗φ = 0 for every linear injective map A : W → V . �
2.2. Splittings of complex structures

Let C+(V ) denote space of complex structures on V which are compatible with the orientation, i.e. its points J ∈ End(V )

satisfy ε(v1, J v1, v2, J v2) � 0 for all vectors v1, v2 ∈ V . Moreover let G+
2 (Λ2 V ∗,∧+) denote the submanifold of the Grass-

mannian of oriented 2-planes in Λ2 V ∗ to whose elements the wedge product restricts to be positive definite. Given a
(2,0)-form α ∈ Λ2,0 V ∗ with respect to some J ∈ C+(V ), let Λ J ∈ G+

2 (Λ2 V ∗,∧+) denote the 2-dimensional linear subspace
spanned by Re(α), Im(α) and orient Λ J by declaring Re(α), Im(α) to be positively oriented. Clearly Λ J and its orien-
tation are independent of the chosen (2,0)-form α and one thus obtains a map ψ : C+(V ) → G+

2 (Λ2 V ∗,∧+) given by
J 
→ Λ J . Note that G = GL+(V ) acts smoothly and transitively from the left on C+(V ) via (A, J ) 
→ A−1 J A. Every ele-
ment of G+

2 (Λ2 V ∗,∧+) admits a positively oriented elliptic conformal basis. It follows with Lemma 1 that via pushforward,
GL+(V ) acts smoothly and transitively from the left on G+

2 (Λ2 V ∗,∧+) as well.

Proposition 1. The map ψ : C+(V ) → G+
2 (Λ2 V ∗,∧+), J 
→ Λ J is a G-equivariant diffeomorphism.

Proof. Clearly the map ψ is G-equivariant. To prove that ψ is a diffeomorphism it is sufficient to show that G J = Gψ( J ) for
all J ∈ C+(V ) where G J and Gψ( J ) denote the stabilizer subgroups of G with respect to J and ψ( J ) respectively. Choose
J ∈ C+(V ), then we have G J ⊂ Gψ( J ) . Write

J (v) = −e2(v)e1 + e1(v)e2 − e4(v)e3 + e3(v)e4

for some basis (ei) of V and dual basis (ei) of V ∗ . Then

ω = e1 ∧ e3 − e2 ∧ e4 = 1

2
wkle

k ∧ el, φ = e1 ∧ e4 + e2 ∧ e3 = 1

2
fkle

k ∧ el

is a positively oriented conformal basis of Λ J . Consequently every A ∈ Gψ( J ) satisfies A∗ω = xω+ yφ and A∗φ = −yω+ xφ,
for some real numbers (x, y) = 0. The matrix representation a of A with respect to the basis (ei) thus satisfies

2 We denote by {·} the linear span of the elements within. In the case of smooth differential forms, the coefficients are smooth real-valued functions.
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at wa = xw + yf , at f a = −yw + xf .

From this one easily concludes aw f = w f a which is equivalent to A commuting with J . �
Proposition 1 motivates the following:

Definition. A splitting of a complex structure J on V is a pair of lines L1, L2 ∈ P(Λ2 V ∗) such that Λ J = L1 ⊕ L2.

Call two 4-dimensional real vector spaces V , V ′ equipped with complex structures J , J ′ and splittings (L1, L2), (L′
1, L′

2)

equivalent, if there exists a complex linear map A : V → V ′ such that A∗(L′
i) = Li for i = 1,2.

On V = R
4 let ω0 = e1 ∧ e3 − e2 ∧ e4 and φ0 = e1 ∧ e4 + e2 ∧ e3 where e1, . . . , e4 denotes the standard basis of (R4)∗ .

Define L1 = {ω0} and L2 = {αω0 + φ0} for some nonnegative real number α. Orient L1 ⊕ L2 by declaring ω0, φ0 to be a
positively oriented basis and let J0 be the associated complex structure. Then Sα = (L1, L2) is a splitting of J0.

Proposition 2. Every pair (V , J ) equipped with a splitting (L1, L2) is equivalent to (R4, J0) equipped with the splitting Sα for some
unique α ∈ R

+
0 .

Proof. Let L1 = {ω} and L2 = {ω′} for some 2-forms ω,ω′ ∈ Λ2 V ∗ . Since the wedge product restricts to be positive definite
on L1 ⊕ L2 we have ω ∧ ω > 0 and there exists a real number α, such that ω′ = αω + φ for some 2-form φ satisfying
ω∧φ = 0 and φ ∧φ > 0. After possibly rescaling ω′ we can assume that φ ∧φ = ω∧ω and that α is nonnegative. It follows
with Lemma 1 that there exists a linear map A : V → R

4 which identifies ω with ω0 and φ with φ0, in particular A is
complex linear. To prove uniqueness of α suppose A : R4 → R

4 satisfies A∗ω0 = xω0 and A∗(αω0 + φ0) = y(βω0 + φ0) for
some real numbers x, y = 0 and some nonnegative real numbers α, β . Then A∗(ω0 ∧ ω0) = x2ω0 ∧ ω0 and consequently

A∗(ω0 ∧ (αω0 + φ0)
) = αx2ω0 ∧ ω0 = xyβω0 ∧ ω0,

which is equivalent to αx = β y. We also have

A∗((αω0 + φ0) ∧ (αω0 + φ0)
) = x2(α2 + 1

)
ω0 ∧ ω0 = y2(β2 + 1

)
ω0 ∧ ω0,

which implies x2 = y2 and thus α2 = β2. Since α,β � 0, the claim follows. �
For a splitting (L1, L2), the unique nonnegative real number α provided by Proposition 2 will be called the degree of the

splitting. A splitting of degree 0 will be called orthogonal.

3. Local embeddability of real analytic path geometries

3.1. Splittings of almost complex structures

Let X be a smooth 4-manifold and J be an almost complex structure with associated rank 2 vector bundle ΛJ ⊂ Λ2T X∗
whose fibre at p ∈ X is the linear subspace ΛJp ⊂ Λ2T p X∗ associated to Jp : T p X → T p X . A splitting of J consists of a pair
of smooth line bundles L1, L2 ⊂ Λ2T X∗ so that ΛJ = L1 ⊕ L2.

3.2. Induced structure on hypersurfaces

A CR-structure on a 3-manifold M consists of a rank 2 subbundle D ⊂ T M and a vector bundle endomorphism I : D → D
which satisfies I2 = −IdD . A CR-structure (D, I) is called nondegenerate if D is nowhere integrable, i.e. a contact plane
field. A closely related notion is that of a path geometry (see for instance [7] for a motivation of the following definition).
A path geometry on a 3-manifold M consists of a pair of line subbundles (P1, P2) of T M which span a contact plane field.
A CR-structure (D, I) and a path geometry (P1, P2) on M will be called compatible if D = P1 ⊕ P2 and I(P1) = P2.

Let (L1, L2) be a splitting of the almost complex structure J on X and (ω,φ) a pair of 2-forms defined on some open
subset Ũ ⊂ X which span (L1, L2). Then the pair (ω,φ) is elliptic, i.e. (ωp, φp) is elliptic for every point p ∈ Ũ . Suppose
M ⊂ X is a hypersurface. Then Lemma 2 implies that the 2-forms (ω,φ) remain linearly independent when pulled back to
M ∩ Ũ . This is useful because of the following:

Lemma 3. Let β1, β2 be smooth linearly independent 2-forms on a 3-manifold M. Then there exists a local coframing η = (η1, η2, η3)t

on M such that β1 = η2 ∧ η1 and β2 = η2 ∧ η3 .

Recall that a (local) coframing on M consists of three smooth linearly independent 1-forms defined on (some proper open
subset of ) M .
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Proof of Lemma 3. Let x : U → E
3 be local coordinates on M with respect to which β1|U = b1 · dx and β2|U = b2 · dx for

some smooth bi : U → R
3 where  denotes the Hodge-star of Euclidean space E

3. Define e = (b1 × b2)/|b1 × b2| : U → R
3

and

η1 = (b1 × e) · dx, η2 = e · dx, η3 = (b2 × e) · dx,

then (η1, η2, η3) have the desired properties. �
A local coframing on M obtained via Lemma 3 and some (local) choice of 2-forms (ω,φ) spanning (L1, L2) will be called

adapted to the structure induced by the splitting (L1, L2). Independent of the particular adapted local coframings are the
line subbundles P1 and P2 of T M , locally defined by

P1 = {η1, η2}⊥, P2 = {η2, η3}⊥.

Call a hypersurface M ⊂ X nondegenerate if D = P1 ⊕ P2 is a contact plane field. Summarizing, we have shown:

Proposition 3. A nondegenerate hypersurface M ⊂ X inherits a path geometry from the splitting (L1, L2).

Remark. Fixing a (2,0)-form on X allows to define a coframing on a hypersurface M ⊂ X . For the construction of the
coframing and its properties see [3].

3.3. Local embeddability

We conclude by using the Cartan–Kähler theorem to show that locally every real analytic path geometry is induced by
an embedding into C

2 equipped with the splitting ({ω0}, {φ0}). Here ω0 = Re(dz1 ∧ dz2) and φ0 = Im(dz1 ∧ dz2) where
z = (z1, z2) are standard coordinates on C

2. Writing z1 = x1 + ix2 and z2 = x3 + ix4 for standard coordinates x = (xi) on R
4,

we have

ω0 = dx1 ∧ dx3 − dx2 ∧ dx4, φ0 = dx1 ∧ dx4 + dx2 ∧ dx3.

In [5], as an application of his method of equivalence, Cartan has shown how to associate a Cartan geometry to every path
geometry.

Definition. Let G be a Lie group and H ⊂ G a Lie subgroup with Lie algebras h ⊂ g. A Cartan geometry of type (G, H) on
a manifold M consists of a right principal H-bundle π : B → M together with a 1-form θ ∈ A1(B,g) which satisfies the
following conditions:

(i) θb : Tb B → g is an isomorphism for every b ∈ B ,
(ii) θ(Xv) = v for every fundamental vector field Xv , v ∈ h,

(iii) (Rh)∗θ = Adg(h−1) ◦ θ .

Here Adg denotes the adjoint representation of G . The 1-form θ is called the Cartan connection of the Cartan geometry
(π : B → M, θ).

Denote by H ⊂ SL(3,R) the Lie subgroup of upper triangular matrices. In modern language Cartan’s result is as follows
(for a proof see [2,7]):

Theorem 1 (Cartan). Given a path geometry (M, P1, P2), then there exists a Cartan geometry (π : B → M, θ) of type (SL(3,R), H)

which has the following properties: Writing

θ =
⎛
⎝

θ0
0 θ0

1 θ0
2

θ1
0 θ1

1 θ1
2

θ2
0 θ2

1 θ2
2

⎞
⎠ ,

(i) for any section σ : M → B, the 1-form φ = σ ∗θ satisfies P1 = {φ2
1 , φ2

0}⊥ and P2 = {φ1
0 , φ2

0}⊥ . Moreover φ1
0 ∧φ2

0 ∧φ2
1 is a volume

form on M.
(ii) The curvature 2-form Θ = dθ + θ ∧ θ satisfies

Θ =
⎛
⎝

0 W1θ
1
0 ∧ θ2

0 (W2θ
1
0 +F2θ

2
1 ) ∧ θ2

0

0 0 F1θ
2
1 ∧ θ2

0
0 0 0

⎞
⎠ (3.1)

for some smooth functions W1,W2,F1,F2 : B → R.
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Using this result and the Cartan–Kähler theorem we obtain local embeddability in the real analytic category:

Theorem 2. Let (M, P1, P2) be a real analytic path geometry. Then for every point p ∈ M there exists a p-neighborhood U p ⊂ M and
a real analytic embedding ϕ : U p →C

2 such that the path geometry induced by the splitting ({ω0}, {φ0}) is (P1, P2) on U p .

Proof. Let (π : B → M, θ) denote the Cartan geometry of the path geometry (M, P1, P2). On N = B × R
4 consider the

exterior differential system with independence condition (I, ζ ) where ζ = ζ 1 ∧ ζ 2 ∧ ζ 3 with ζ 1 = θ1
0 , ζ 2 = θ2

0 , ζ 3 = θ2
1 and

the differential ideal I is generated by the two 2-forms

χ1 = θ2
0 ∧ θ1

0 − ω0, χ2 = θ2
0 ∧ θ2

1 − φ0.

The dual vector fields to the coframing (θ i
k,dxl) of N will be denoted by (T i

k, ∂xl ). Let Gk(T N) → N be the Grassmann
bundle of k-planes on N and G3(T N, ζ ) = {E ∈ G3(T N) | ζE = 0} where ζE denotes the restriction of ζ to the 3-plane E .
Let V k(I) denote the set of k-dimensional integral elements of I , i.e. those E ∈ Gk(T N) for which βE = 0 for every form
β ∈ Ik = I ∩ Ak(N). The flag of integral elements F = (E0, E1, E2, E3) of I given by E0 = {0}, E1 = {v1}, E2 = {v1, v2},
E3 = {v1, v2, v3} where

v1 = T 1
0 + T 2

0 + T 2
1 + ∂x4 ,

v2 = T 0
0 + T 1

0 − T 2
1 + ∂x1 + ∂x2 ,

v3 = T 1
1 − T 2

1 + ∂x1 ,

has Cartan characters (s0, s1, s2, s3) = (0,2,4,3). Therefore, by Cartan’s test, V 3(I) has codimension at least 8 at E3. How-
ever the forms of I3 which impose independent conditions on the elements of G3(T N, ζ ) are the eight 3-forms dχi ,
χi ∧ ζ k , i = 1,2, k = 1,2,3. It follows that V 3(I) ∩ G3(T N, ζ ) has codimension 8 in G3(T N). Moreover computations show
that V 3(I) ∩ G3(T N, ζ ) is a smooth submanifold near E3, thus the flag F is Kähler regular and therefore the ideal I is
involutive. Pick points p ∈ M and q = (b,0) ∈ N with π(b) = p. By the Cartan–Kähler theorem there exists a 3-dimensional
integral manifold ψ̄ = (s̄, ϕ̄) : Σ → B ×R

4 of (I, ζ ) passing through q and having tangent space E3 at q. Every volume form
on M pulls back under π to a nowhere vanishing multiple of ζ . Since φ̄∗ζ = s̄∗ζ = 0, π ◦ s̄ : Σ → M is a local diffeomor-
phism. Therefore p ∈ M has a neighborhood U p on which there exists a real analytic immersion ψ = (s,ϕ) : U p → B × R

4

such that the pair (ψ, U p) is an integral manifold of the EDS (N,I, ζ ) and s a local section of π : B → M . After possibly
shrinking U p we can assume that ϕ is an embedding. Since by construction ϕ∗(ω0 + iφ0) = s∗(θ2

0 ∧ (θ1
0 + iθ2

1 )), it follows
that the path geometry induced by ϕ is (P1, P2) on U p . �
Remark. Every nondegenerate hypersurface M ⊂ C

2 also inherits a CR-structure (D, I) from the complex structure J on C
2:

For every p ∈ M define D p to be the largest J p-invariant subspace of T p M and I p : T p M → T p M to be the restriction of J p
to D p . Then (D, I) is easily seen to be compatible with the path geometry induced on M by ({ω0}, {φ0}).

Using this remark and Theorem 2 we get the well-known:

Corollary 1. Let (D, I) be a nondegenerate real analytic CR-structure on a 3-manifold M. Then for every point p ∈ M there exists a p-
neighborhood U p and a real analytic embedding ϕ : U p →C

2 , such that (D, I) is the CR-structure on U p induced by the embedding ϕ .

Proof. Pick a line bundle P2 ⊂ D , define P1 = I(P2) and apply Theorem 2. �
Remark. Corollary 1 also holds without the nondegeneracy assumption and in higher dimensions [1]. In [9], Nirenberg has
constructed a smooth nondegenerate 3-dimensional CR-structure which is not induced by an embedding into C

2. It follows
that the real analyticity assumption in Theorem 2 is necessary.
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