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of J if Ay =Ly @ L. A hypersurface M C X satisfying a nondegeneracy condition inherits
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a CR-structure from J and a path geometry from the splitting (L1, L,). Using the Cartan-
Kéhler theorem we show that locally every real analytic path geometry is induced by

ISVI;:iS an embedding into C% equipped with the splitting generated by the real and imaginary
32V30 part of dz! A dz2. As a corollary we obtain the well-known fact that every 3-dimensional
53C10 nondegenerate real analytic CR-structure is locally induced by an embedding into C2.
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1. Introduction

Motivated by the well-known fact (see for instance [6]) that an almost complex structure J on a 4-manifold X admits a
description in terms of a rank 2 vector bundle Ay C A2TX*, we introduce the notion of a splitting of an almost complex
structure: A pair of line subbundles L1, L of A2TX* is called a splitting of J if Ay =1Ly ® Ly. A hypersurface M C X satisfy-
ing a nondegeneracy condition inherits a CR-structure from J and a path geometry from the splitting (L1, L2). The purpose
of this Note is to show that locally every real analytic path geometry is induced by an embedding into R* ~ C2? equipped
with the splitting generated by the real and imaginary part of dz' A dz2. This will be done using the Cartan-Kihler the-
orem. As a corollary we obtain the well-known fact that every 3-dimensional nondegenerate real analytic CR-structure is
locally induced by an embedding into C2. It follows with Nirenberg’s example of a smooth non-embeddable 3-dimensional
CR-manifold that the real analyticity in our main statement is necessary.

The notation and terminology for the Cartan-Kdhler theorem and exterior differential systems are chosen to be consistent
with [4,7]. Moreover we adhere to the convention of summing over repeated indices.

2. Preliminaries
2.1. Pairs of 2-forms

Throughout this section, let V denote an oriented 4-dimensional real vector space. Fix a volume form & € A*V* which
induces the given orientation. Given two 2-forms w,¢ € A>V*, we may write @ A ¢ = (w, ¢)e for some unique real
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number (w, ¢). Clearly the map (w, ¢) — (w, ¢) defines a symmetric bilinear form on the 6-dimensional real vector space
A%V* which is easily seen to be nondegenerate and of signature (3, 3). Replacing ¢ with another orientation compatible
volume form gives a bilinear form which is a positive multiple of (-, -). Consequently, the wedge product may be thought of
as a conformal structure of split signature on A2V*,

Definition. A pair of 2-forms w, ¢ € A2V* is called elliptic if
(. 0)($, d) > (@, $)°.

It is a natural problem to classify the pairs of elliptic 2-forms on V. This is a special case of a more general problem:
Let w € A2V* be a symplectic 2-form whose stabilizer subgroup will be denoted by Sp(w) C GL(V). The natural represen-
tation of Sp(w) on A%V* decomposes as A%2V* = {w} @ w* where both summands are irreducible Sp(w)-modules.? Here
w' is the 5-dimensional linear subspace of A2V* consisting of 2-forms orthogonal to w. One can ask to classify the orbits
of Sp(w) on w'. This has been carried out in [8]. In the elliptic case one obtains:

Lemma 1. (See [8].) Let w, ¢ € A2V* be a pair of elliptic orthogonal 2-forms, then there exists a positive real number k and a basis e
of V* such that

w=e' re—e*net,  p=k(e' net+erned).

The constant « is an Sp(w)-invariant and thus parametrizes the set of elliptic Sp(w)-orbits. Ellipticity will be useful
because of the following:

Lemma 2. Let W be 3-dimensional real vector space. Then the pullback of an elliptic pair of 2-forms w, ¢ € A2V* with any injective
linear map A : W — V gives two linearly independent 2-forms on W.

Proof. The ellipticity condition is equivalent to every nonzero linear combination of (w, ¢) being symplectic. Suppose (, ¢)
is an elliptic pair of 2-forms. Then for every choice of real numbers (A1, A2) # 0, the 2-form 7 =A@ + A2¢ is symplectic.
Since there are no isotropic subspaces of dimension greater than 2 in the symplectic vector space (V, 7), it follows that
A*T =M A*w + Ay A*¢ #£ 0 for every linear injective map A: W — V. 0O

2.2. Splittings of complex structures

Let CT(V) denote space of complex structures on V which are compatible with the orientation, i.e. its points | € End(V)
satisfy e(v1, Jv1, v, Jva) > 0 for all vectors vq, vy € V. Moreover let G}'(sz*, A4) denote the submanifold of the Grass-
mannian of oriented 2-planes in A2V* to whose elements the wedge product restricts to be positive definite. Given a
(2,0)-form o € A20V* with respect to some J € CT(V), let Aj € G5 (A>V*, A;) denote the 2-dimensional linear subspace
spanned by Re(x), Im(a) and orient A; by declaring Re(), Im(a) to be positively oriented. Clearly A; and its orien-
tation are independent of the chosen (2,0)-form « and one thus obtains a map v : CT (V) — G;(AZV*, A+) given by
J = Aj. Note that G = GLT (V) acts smoothly and transitively from the left on C*(V) via (A, J) — A~!JA. Every ele-
ment of G;(AZV*, A+) admits a positively oriented elliptic conformal basis. It follows with Lemma 1 that via pushforward,
GL*(V) acts smoothly and transitively from the left on GJ (A?V*, A4) as well.

Proposition 1. The map ¢ : C* (V) — G5 (A2V*, A4), ] > Ay is a G-equivariant diffeomorphism.

Proof. Clearly the map v is G-equivariant. To prove that v is a diffeomorphism it is sufficient to show that G; = G (j) for
all J e CT(V) where G; and Gy(j) denote the stabilizer subgroups of G with respect to J and vy (J) respectively. Choose
J €CT(V), then we have G C Gy (). Write

Jv) =—€*(v)er +e' (vez —e*(v)es +e*(v)es
for some basis (e;) of V and dual basis (e') of V*. Then

1 3 2 4 1 k I 3

1
w=e Ae —e°Ae =§Wkl€</\€, p=e' net+e? ne zsz,ek/\el

is a positively oriented conformal basis of A ;. Consequently every A € Gy (j) satisfies A*w =xw+ y¢ and A*¢p = —yw +x¢,
for some real numbers (x, y) # 0. The matrix representation a of A with respect to the basis (e;) thus satisfies

2 We denote by {-} the linear span of the elements within. In the case of smooth differential forms, the coefficients are smooth real-valued functions.
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dwa=xw+yf, dfa=-yw+xf.

From this one easily concludes awf = wfa which is equivalent to A commuting with J. O
Proposition 1 motivates the following:
Definition. A splitting of a complex structure J on V is a pair of lines L1, L; € P(A2V*) such that Aj=L1® L.

Call two 4-dimensional real vector spaces V, V' equipped with complex structures J, J’ and splittings (L1, L), (L}, L})
equivalent, if there exists a complex linear map A:V — V' such that A*(L)) =L; fori=1,2.

On V=R*let wg=e' ne> —e?2 Ane? and ¢g =e! Ae? +e2 A e where e, ..., e?* denotes the standard basis of (R*)*.
Define L1 = {wp} and Ly = {a@wg + ¢o} for some nonnegative real number «. Orient L1 @ L, by declaring wg, ¢o to be a
positively oriented basis and let Jy be the associated complex structure. Then S, = (L1, Ly) is a splitting of Jo.

Proposition 2. Every pair (V, ) equipped with a splitting (L1, L) is equivalent to (R*, Jo) equipped with the splitting So, for some
unique o € Ry

Proof. Let L1 = {w)} and L, = {&'} for some 2-forms w, @’ € A2V*. Since the wedge product restricts to be positive definite
on Ly @ L, we have w A w > 0 and there exists a real number «, such that o’ = aw + ¢ for some 2-form ¢ satisfying
wA¢=0and ¢ A¢ > 0. After possibly rescaling @’ we can assume that ¢ A¢ = w Aw and that « is nonnegative. It follows
with Lemma 1 that there exists a linear map A : V — R* which identifies w with wy and ¢ with ¢p, in particular A is
complex linear. To prove uniqueness of o suppose A :R* — R* satisfies A*wg = xwp and A*(awg + ¢o) = y(Bwo + ¢o) for
some real numbers x, y # 0 and some nonnegative real numbers «, 8. Then A*(wo A wp) = x2wg A wo and consequently

2

A*(wo A (@wo + ¢o)) = ax’wo A wo = Xy Bwg A wo,

which is equivalent to ax = 8y. We also have

A*((orwo + ¢o) A (ctwp + ¢o)) = X (oc2 + 1) wo A wp = yz(,f}2 + 1)wo A wo,

which implies x?> = y? and thus a? = 2. Since «, 8 > 0, the claim follows. O

For a splitting (L1, L), the unique nonnegative real number « provided by Proposition 2 will be called the degree of the
splitting. A splitting of degree 0 will be called orthogonal.

3. Local embeddability of real analytic path geometries
3.1. Splittings of almost complex structures

Let X be a smooth 4-manifold and J be an almost complex structure with associated rank 2 vector bundle Ay C A2T X*
whose fibre at p € X is the linear subspace A, C A? TpX* associated to Jp : TpX — TpX. A splitting of J consists of a pair

of smooth line bundles L1, L, C A2TX* so that Azy=L1 @ L.
3.2. Induced structure on hypersurfaces

A CR-structure on a 3-manifold M consists of a rank 2 subbundle D ¢ TM and a vector bundle endomorphism [ : D — D
which satisfies 12 = —Idp. A CR-structure (D, ) is called nondegenerate if D is nowhere integrable, i.e. a contact plane
field. A closely related notion is that of a path geometry (see for instance [7] for a motivation of the following definition).
A path geometry on a 3-manifold M consists of a pair of line subbundles (P1, P;) of TM which span a contact plane field.
A CR-structure (D, I) and a path geometry (P1, P2) on M will be called compatible if D = P1 & P, and I(P1) = P5.

Let (L1, Ly) be a splitting of the almost complex structure J on X and (w, ¢) a pair of 2-forms defined on some open
subset U c X which span (L, Ly). Then the pair (w, ¢) is elliptic, i.e. (wp, ¢p) is elliptic for every point p € U. Suppose
M C X is a hypersurface. Then Lemma 2 implies that the 2-forms (w, ¢) remain linearly independent when pulled back to
M N U. This is useful because of the following:

Lemma 3. Let 81, 82 be smooth linearly independent 2-forms on a 3-manifold M. Then there exists a local coframing n = (', n?, n°)"
on M such that 81 =n2 Any and By =02 A N3.

Recall that a (local) coframing on M consists of three smooth linearly independent 1-forms defined on (some proper open
subset of ) M.
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Proof of Lemma 3. Let x: U — E3 be local coordinates on M with respect to which 1|y = b; - +dx and 8|y = by - *dx for
some smooth b; : U — R3 where « denotes the Hodge-star of Euclidean space E3. Define e = (b x by)/|by x by| : U — R?
and

n1 = (b1 x e) - dx, Ny =e-dx, n3 = (by x e) - dx,

then (n', n%, n*) have the desired properties. [

A local coframing on M obtained via Lemma 3 and some (local) choice of 2-forms (w, ¢) spanning (L1, L) will be called
adapted to the structure induced by the splitting (L1, L,). Independent of the particular adapted local coframings are the
line subbundles P and P, of TM, locally defined by

P1={m,m}*, Py = {2, n3}*.

Call a hypersurface M C X nondegenerate if D = P1 & P, is a contact plane field. Summarizing, we have shown:
Proposition 3. A nondegenerate hypersurface M C X inherits a path geometry from the splitting (L1, Ly).

Remark. Fixing a (2,0)-form on X allows to define a coframing on a hypersurface M C X. For the construction of the
coframing and its properties see [3].

3.3. Local embeddability

We conclude by using the Cartan-Kdhler theorem to show that locally every real analytic path geometry is induced by
an embedding into C? equipped with the splitting ({wo}, {¢0}). Here wo = Re(dz! A dz?) and ¢ = Im(dz' A dz*) where
z=(z!,z%) are standard coordinates on C2. Writing z' = x! +ix? and z2 = x3 + ix* for standard coordinates x = (x) on R?,
we have

wo=dx' Adx> —dx® Adx?,  ¢o =dx! Adx* 4+ dx® AdX.

In [5], as an application of his method of equivalence, Cartan has shown how to associate a Cartan geometry to every path
geometry.

Definition. Let G be a Lie group and H C G a Lie subgroup with Lie algebras h C g. A Cartan geometry of type (G, H) on
a manifold M consists of a right principal H-bundle 7 : B — M together with a 1-form 6 € A!(B, g) which satisfies the
following conditions:

(i) 6p : TpB — g is an isomorphism for every b € B,
(ii) 6(Xy) = v for every fundamental vector field X,, v € b,
(iii) (Rp)*6 =Adg(h™") 0 6.

Here Adgy denotes the adjoint representation of G. The 1-form 6 is called the Cartan connection of the Cartan geometry
(m:B— M,0).

Denote by H C SL(3,R) the Lie subgroup of upper triangular matrices. In modern language Cartan’s result is as follows
(for a proof see [2,7]):

Theorem 1 (Cartan). Given a path geometry (M, P1, P2), then there exists a Cartan geometry (7w : B— M, 0) of type (SL(3,R), H)
which has the following properties: Writing
0 p0 HO0
oo
0= 0% 012 022 ,
6 07 05
(i) for any section o : M — B, the 1-form ¢ = o*0 satisfies P1 = {¢3, p2}+ and P, = {¢}, ¢3 }*. Moreover ¢} A2 A p? is a volume

formon M.
(ii) The curvature 2-form ® = d6 + 0 A 0 satisfies

0 Wi AOG Wab) + F208) A 6F
o=|o 0 F107 N O2 (3.1)
0 0 0
for some smooth functions Wy, Wa, F1, F2: B—> R.
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Using this result and the Cartan-Kéhler theorem we obtain local embeddability in the real analytic category:

Theorem 2. Let (M, Py, P2) be a real analytic path geometry. Then for every point p € M there exists a p-neighborhood U, C M and
a real analytic embedding ¢ : Up — C? such that the path geometry induced by the splitting ({wo}, {¢o}) is (P1, P2) on Up.

Proof. Let (7w : B — M, ) denote the Cartan geometry of the path geometry (M, Pq, P3). On N = B x R* consider the
exterior differential system with independence condition (Z, ¢) where ¢ =¢!' A¢2 A3 with ¢ =6}, ¢2 =62, ¢3 =6? and
the differential ideal Z is generated by the two 2-forms

X1=0§/\98—w0, X2=0§A912—¢().

The dual vector fields to the coframing (6!, dx!) of N will be denoted by (T,i, d4). Let Gx(TN) — N be the Grassmann
bundle of k-planes on N and G3(TN,¢) ={E € G3(TN) | ¢¢ # 0} where ¢r denotes the restriction of ¢ to the 3-plane E.
Let V¥(Z) denote the set of k-dimensional integral elements of Z, i.e. those E € Gx(TN) for which B¢ = 0 for every form
B € IF =T N A¥(N). The flag of integral elements F = (E, E', E2, E3) of Z given by E® = {0}, E! = {v1}, E2 = {v1, v2},
E3 ={vq, v2, v3} where

Vi=Th + T3 +T? + 0,
Vo=TQ+ T —T? + 80 + 8,
v3=T} = T? + 9,

has Cartan characters (so, $1, S2, 53) = (0, 2, 4, 3). Therefore, by Cartan’s test, V3(I) has codimension at least 8 at E3. How-
ever the forms of Z3 which impose independent conditions on the elements of G3(TN,¢) are the eight 3-forms dy;,
xinCk i=1,2 k=1,2,3. 1t follows that V3(Z) N G3(TN, ¢) has codimension 8 in G3(TN). Moreover computations show
that V3(Z) N G3(TN, ¢) is a smooth submanifold near E3, thus the flag F is Kihler regular and therefore the ideal Z is
involutive. Pick points p € M and q = (b, 0) € N with 7 (b) = p. By the Cartan-Kdhler theorem there exists a 3-dimensional
integral manifold ¥ = (5, @) : ¥ — B x R* of (Z, ¢) passing through q and having tangent space E> at q. Every volume form
on M pulls back under 7 to a nowhere vanishing multiple of ¢. Since ¢*¢ =5*¢ #£0, T o5: ¥ — M is a local diffeomor-
phism. Therefore p € M has a neighborhood U, on which there exists a real analytic immersion ¢ = (s, ¢) : Up — B x R4
such that the pair (1, Up) is an integral manifold of the EDS (N,Z,¢) and s a local section of 7 : B — M. After possibly
shrinking U, we can assume that ¢ is an embedding. Since by construction ¢*(wq + igo) = s*(Gg A (9(} + i612)), it follows
that the path geometry induced by ¢ is (P1, P2) on Up. O

Remark. Every nondegenerate hypersurface M c C? also inherits a CR-structure (D, I) from the complex structure J on C?:
For every p € M define D) to be the largest Jp-invariant subspace of T,M and I : TyM — T, M to be the restriction of J,
to Dp. Then (D, I) is easily seen to be compatible with the path geometry induced on M by ({wo}, {¢0}).

Using this remark and Theorem 2 we get the well-known:

Corollary 1. Let (D, I) be a nondegenerate real analytic CR-structure on a 3-manifold M. Then for every point p € M there exists a p-
neighborhood U, and a real analytic embedding ¢ : Up — C2, such that (D, I) is the CR-structure on U induced by the embedding ¢.

Proof. Pick a line bundle P, C D, define P; = I(P3) and apply Theorem 2. O

Remark. Corollary 1 also holds without the nondegeneracy assumption and in higher dimensions [1]. In [9], Nirenberg has
constructed a smooth nondegenerate 3-dimensional CR-structure which is not induced by an embedding into C2. It follows
that the real analyticity assumption in Theorem 2 is necessary.
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