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Abstract

This paper discusses evaluation of influence of microscopic uncertainty on a homogenized macroscopic elastic property
of an inhomogeneous material. In order to analyze the influence, the perturbation-based homogenization method is used.
A higher order perturbation-based analysis method for investigating stochastic characteristics of a homogenized elastic
tensor and an equivalent elastic property of a composite material is formulated.

As a numerical example, macroscopic stochastic characteristics such as an expected value or variance, which is caused by
microscopic uncertainty in material properties, of a homogenized elastic tensor and homogenized equivalent elastic property
of unidirectional fiber reinforced plastic are investigated. The macroscopic stochastic variation caused by microscopic uncer-
tainty in component materials such as Young’s modulus or Poisson’s ratio variation is evaluated using the perturbation-based
homogenization method. The numerical results are compared with the results of the Monte-Carlo simulation, validity, effec-
tiveness and a limitation of the perturbation-based homogenization method is investigated. With comparing the results using
the first-order perturbation-based method, effectiveness of a higher order perturbation is also investigated.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Microscopic uncertainty; Stochastic response; Perturbation method; Composite material; Homogenized elasticity; Homog-
enization method

1. Introduction

Inhomogeneous materials such as a composite material can be designed to materialize a highly functional
material for a special use, and this property will be desired in industrial use. However, a composite material
generally has a complex microstructure, dispersion of a microstructure or microscopic material properties
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sometimes occur. This microscopic uncertainty may cause dispersion of a homogenized macroscopic material
property. Uncertainty of a homogenized property caused by a microscopic uncertainty, therefore, should be
taken into account in manufacturing.

In recent, several results of a multi-scale uncertainty analysis using the finite element method have
been reported. Huyse and Maes (1999, 2000, 2001) discussed a homogenized material property with
the random field modeling. Kami’'nski and Kleiber (1996, 2000) reported a stochastic structural analysis
considering uncertainty of interface defects in fiber composites and a perturbation-based homogenization
analysis for material properties of composite materials considering Young’s modulus variation under
plane stress condition. Kami'nski (2001) also reported a perturbation-based stochastic homogenization
analysis of heat conduction problem of composites. Koishi et al. (1996) reported a first order perturba-
tion theory-based homogenization method, and validity of the first-order perturbation-based multi-scale
stress analysis has been discussed with comparing the numerical result obtained using the stochastic finite
element analysis. Ostoja-Starzewski (1994) reported a mechanics for continuum random fields, Zohdi and
Wriggers (2001) reported macro-micro testing using computer simulation. Ostoja-Starzewski (2002) also
discussed scale-dependent hierarchies for accomplishment of stochastic homogenization of material
response in thermomechanics. Niekawa et al. (2004) reported a stochastic finite element analysis using
Mori-Tanaka theory. Xu and Brady (2006) reported a computational method for stochastic homogeni-
zation of random media.

In this paper, for the stochastic analysis of homogenized material elastic property considering the micro-
scopic uncertainty, the perturbation theory-based homogenization method is formulated. The homogenization
method (Babuka, 1976; Guedes and Kikuchi, 1990) will be effective to estimate a homogenized material prop-
erty of an inhomogeneous material, several results have been reported (for example, Terada and Kikuchi,
1996; Terada et al., 2000; Laschet, 2002; Wu and Ohno, 1999).

A stochastic response analysis method based on the homogenization method has been discussed in
some literatures (citebib7; Koishi et al., 1996), however we cannot find a result, which discusses an equiv-
alent elastic property. An effect of a higher order perturbation term on the estimation with considering
both Young’s modulus and Poisson’s ratio variation in a microscopic material has been not discussed
yet. Also, a detailed three-dimensional analysis has not been performed. Therefore, in this study, a per-
turbation-based homogenization method considering a higher perturbation term, which can analyze a sto-
chastic characteristic of a homogenized elastic tensor of composite materials, is formulated at first. The
stochastic response analysis method for an uivalent elastic property assuming an orthogonal material is
also proposed.

In order to investigate validity, effectiveness and a limitation of the perturbation-based homogenization
method, a comparison between the result of the proposed method and that of the Monte-Carlo simulation
is performed. As a numerical example for a stochastic analysis, stochastic characteristics of homogenized elas-
tic properties of a unidirectional fiber reinforced plastics (FRP) are investigated.

2. Influence of microscopic uncertainty on homogenized elastic property of composite media

In this section, influence of uncertainty in microstructure on homogenized macroscopic properties of an
inhomogeneous material is discussed. As an example, uncertainty in microscopic elastic properties of a unidi-
rectional fiber reinforced composite is taken into account. A stochastic response of the homogenized elastic
properties caused by microscopic uncertainty is evaluated using the Monte-Carlo simulation with Box-Muller
randomization technique (see, Press et al., 1993). A homogenized elastic property is computed using the
homogenization method-based three-dimensional finite element analysis. Fig. 1 shows an example of a finite
element model of a microstructure of the unidirectional FRP. Fig. 1(a) shows a scheme of a periodic micro-
structure. A finite element models of a unit cell with square or hexagonal fiber arrangements are shown in
Fig. 1(b) or (¢).

In this case, it is considered that Young’s modulus and Poisson’s ratio of fiber and matrix have a certain
variance. The expected values of elastic properties for fiber and matrix are listed in Table 1. The properties of
fiber and matrix are employed correspond to E-glass and Epoxy resin. Volume fraction of fiber (V5) is 0.2513
in this example.
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Fig. 1. Schematic view of composite material with periodic microstructure.

Table 1
Expected values of elastic properties for fiber and matrix
Fiber (E-glass) Matrix (Epoxy)
Young’s modulus (GPa) 73.0 4.5
Poisson’s ratio 0.2156 0.39

It is assumed that a microscopic elasticity is distributed according to the normal distribution. For example,
an observed value of Young’s modulus can be simply expressed using a random variable as:

E*=E"(1+¢) (1)

where E° is an expected value of Young’s modulus, ¢ is a random variable. Stochastic characteristics of ¢ are
assumed as:

Ele] =0 }

Varle] = o2

(2)

Here E[e] is an expected value and Var[e] is variance of a random variable ¢. In this case, it is assumed that
g =0.055.

In order to determine a sampling size for the Monte-Carlo simulation, a relationship between dispersion of
stochastic responses and the number of sampling data is investigated. Fig. 2(a) shows the relationship between
the expected values of ¢ and the number of sampling data, and Fig. 2(b) shows the relationship between var-
iance of ¢ and the number of sampling data. N in Fig. 2 shows the number of samples. Each result of the
expected value and variance is obtained as a result of the Monte-Carlo simulation, Fig. 2(a) and (b) shows
the results of 10th trials. From Fig. 2, it can be recognized that the dispersion of stochastic response is reduced
according to increase of the number of sampling data. In this case, we adopt N = 500 (namely 500 sampling
data are used) for the Monte-Carlo simulation, then the dispersion of the expected value will be within 0.5%
and that of the variance will be within about 10.0%.

In this case, a microstructure of a unit cell for a unidirectional FRP with square fiber arrangement is
assumed. A result for hexagonal fiber arrangement will be shown in a later section.

The computational results of the expectation and variance of homogenized elastic properties of the com-
posite material, which are obtained using the Monte-Carlo simulation considering Young’s modulus and Pois-
son’s ratio variation of fiber and resin, are listed in Tables 2-5. CV in the tables means the coefficient of
variation, which is defined as;



(a) relationship between expected values and the number of sampling data

Fig. 2. Relationship between a stochastic response and the number of sampling data for the Monte-Carlo simulation.
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Table 2
Stochastic responses of homogenized elastic properties of square arranged unidirectional FRP for E, variation

Ef Ef Gl Gl v " E;
Exp. 7.2697 21.636 2.5729 2.8381 0.3401 0.5496 72.956
Var. 0.0008 0.9903 0.0001 0.0002 0.0000 0.0000 17.231
(e\% 0.0039 0.0460 0.0029 0.0043 0.0002 0.0057 0.0569
Table 3
Stochastic responses of homogenized elastic properties of square arranged unidirectional FRP for v, variation

H H H H H H

E X E z G)z ny Vox v Xy V¥
Exp. 7.2716 21.6479 2.5734 2.8389 0.3400 0.5498 0.2157
Var. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(&\% 0.0007 0.0002 0.0005 0.0008 0.0101 0.0010 0.0561

\/ Var|x]
cv =V A (3)
Elx]

where x is a stochastic variable. From Tables 2-5, it can be recognized that all CV of varying properties of the
component materials are almost same, and correspond to about 0.055. On the other hand, CVs for homog-
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Table 4
Stochastic responses of homogenized elastic properties of square arranged unidirectional FRP for E,, variation

Ef EH Gl G2 v Ve E,
Exp. 7.2596 21.6422 2.5692 2.8342 0.3401 0.5499 4.4971
Var. 0.1348 0.0344 0.0176 0.0202 0.0000 0.0000 0.0659
CV 0.0506 0.0086 0.0516 0.0502 0.0002 0.0056 0.0571
Table 5
Stochastic responses of homogenized elastic properties of square arranged unidirectional FRP for v,, variation

Ef Efi Gg Gg, VZ vg_ Vi
Exp. 7.3032 21.649 2.5710 2.8520 0.3416 0.5546 0.3906
Var. 0.0318 0.0001 0.0014 0.0021 0.0003 0.0019 0.0000
CV 0.0244 0.0005 0.0148 0.0159 0.0493 0.0790 0.0561

enized elastic properties are different from each other. For instance, CV of E for E, variation is larger than
the other values in Table 2. It can be also found that the most of CV of the homogenized elastic properties for
vvariation are very small in Table 3, CVs of EH , GH and GH for E,, variation are larger in Table 4, and CVs of
EH vl and vH for v,, variation are larger in Table 5 CvV of vﬁ for v,, variation is larger than CV of v,, itself,
and the variance of E™ with v,, variation is not small, though it is assumed that Young’s modulus of the com-
ponent materials is 1ndependent of Poisson’s ratio.

From these results, it can be recognized that different influence of microscopic uncertainty in material prop-
erties on macroscopic homogenized elastic properties can be found in each direction, and a kind of uncer-
tainty, such as uncertainty of Young’s modulus of a fiber or resin, has different influences from each other.
Therefore, it can be considered that the stochastic responses in a homogenization problem for an inhomoge-
neous material are very complex, and it is important to investigate influence of microscopic uncertainty on a
macroscopic homogenized property using a detailed three-dimensional analysis.

3. Perturbation-based stochastic response analysis for a homogenization problem

In order to evaluate influence of microscopic uncertainty to homogenized macroscopic elastic properties,
the homogenization method with perturbation theory-based asymptotic expansion on a stochastic variation
of microstructure may be effective, because the Monte-Carlo simulation will involve a higher computational
cost especially in the case of using the large number of samples.

From a general formulation of the homogenization theory, a homogenized macroscopic elastic tensor E”
can be computed as:

B =y () @

where E is an elastic tensor of microstructure, |¥] is the volume of a unit cell, I is a unit tensor. g is a char-
acteristic displacement, which can be obtained as a solution of the following characteristic equation,

0 ax / 0
dY = | —EdY 5
/ oy v Oy G)
Here, we can obtain a matrix form of Eq. (5) discretized using the finite element method as:
[K"]x] = [F"] (6)

In this case, microscopic uncertainty, which arises in material properties or geometry of a microstructure, is
taken into account. With an asymptotic expansion with respect to a microscopic stochastic variable based on
the perturbation theory, an approximation form on the microscopic stochastic variables can be obtained as:
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[E7] = [E°] + [E")e + [E°]* + - -- ()

[B'] = [B°] + [B']e + [B]e” + - -- (8)
where ¢ is a small stochastic variation. [E] is a stress-strain matrix and [B] is a displacement-strain matrix. For
example, E' shows an ith-order differential for stochastic variation ¢ at ¢ = 0.

Substituting Egs. (7) and (8) into Eq. (6), and using a stochastic expression of the characteristic displace-
ment y*, an approximated form of Eq. (6) can be written as:

[K™)[x] = [F"] )
where

K] = K" + [K"")e + [K"*])e* + - --

- [wriors [wresers [

Y

o ([ [Eremors |

Y

[B°)"[E"[B®)dV + /

Y

B 0 )
[BO]T[EI][B‘]dV+---)82+--- (10)

] =1+ [']e + [ + - (11)
[F*] = [F"] + [F"e + [F?)& + - -

:/[BO]T[EO}dW— (/[BO]T[El]dV+/[BI]T[EO]dV)e
Y Y Y
+ (/[BO]T[EZ]dV+/[Bl}T[El]dVJr/[BZ]T[EO]dV>82+-~ (12)
Y Y Y
By comparing coefficients for each order of ¢, the following equations can be obtained:
[K"1{x"} = [F"]

(K"} + [K"{'}) = [F"] N
(K1} + K"} + KH)) = [F7) (13)

By solving Eq. (13), each order perturbation term of a characteristic displacement vector for an optional order
of ¢ can be obtained.

Similar to these formulations, an asymptotic expansion form of the homogenized elastic tensor can be also
expressed as:

('] = [E") + [E)e + [E2)e + -

=g [V E 15+ 0a¥ = [+ (e 05 )
X ([B°) + [BYe + [B%)e? + ) x ({x"} + {x' e+ ('} + - )dY + - (14)

Therefore, each order stochastic variation of the homogenized elastic tensor can be obtained with comparing a
coefficient for each order of ¢. [E™] for stochastic variation of material properties of a microstructure can be
computed as:

B0 = L [ [EYAY — L [, [E[B][dY
] = L [IETAY = (BB + EIB)AY .
B2 = L [IEIAY — b (BB + (BB + [E) ] Y (15)



900 S. Sakata et al. | International Journal of Solids and Structures 45 (2008) 894-907

Stochastic responses of a homogenized elasticity for microscopic stochastic variation can be estimated using
Eq. (15). An expectation and variance of the homogenized elastic tensor can be computed by the second-order
approximation (SA) (Nakagiri and Hisada (1985)) as;

E[E™] = [E") +1 > Z[EHz]UCOV[S,-,Sj]

Var[E™] = Z ?[EHIL[EHI} jcovles &) + Z >0 IEME yEleiejen] (16)

J ok

+1 El: 2}: Ek: zl:{[EHz]ij[EHz}jk(E[s,»sjsks,] — covle, g]cov(e, &)}

where covle;,g;] is covariance of ¢, E[g;e6r] and Ele;eieres] are a third and fourth-order moment of . If the second
order perturbation term of the homogenized elastic tensor equals zero, or only the first order perturbation
term is taken into account, the first-order second moment method (FASM) can be also used for estimation
of the expected value and variance. A stochastic analysis method using these formulations is called as the Per-
turbation-based Stochastic Homogenization Method (PSHM) in this paper.

4. Stochastic response analysis of homogenized equivalent elastic constants of orthogonal media

Several types of industrial materials can be regarded as an isotropic or orthotropic material, then the common
material properties such as Young’s modulus or Poisson’s ratio for each direction will be used for evaluation of
material characteristics. Since it is very important to investigate influence of microscopic uncertainty on such a
macroscopic engineering constant, a stochastic variation of the engineering constants are also formulated.

The homogenized equivalent elastic properties of isotropic or orthotropic composite materials can be com-
puted by the homogenized compliance. For instance, the homogenized material properties of orthotropic
material can be computed as follows:

El=d El=d. E=

* Sll’ y SZZ’ z S33

H _ _pHQH H _ _pHQH H _ _pHQH

v = —E]Sy, v =—ESy, vy, =—E'S) (17)
Ho_ 1 H 1 Ho_ 1

C:=sm Ou=sp Gu=g

where Sg is a component of a homogenized compliance matrix, which is the inverse of the homogenized elastic
matrix £

The perturbation-based asymptotic expansion form of the compliance matrix will be also necessary to com-
pute each perturbation term of the compliance. In case of using the second-order approximation of the
homogenized elastic tensor, for instance, each component of the compliance of an orthotropic material con-
sidering a microscopic stochastic variation can be expressed as:

C'+Cle+C2e2 4 ...

T Tt T =1
st — D" +Dée+Dée +--- (18)
’ 1 i,j=(4,4),(5,5),(6,6)

Hx
Ef

where C* and D are coefficients computed from the kth order perturbation term of the homogenized elastic
matrix. The other components of the compliance matrix are zero in case of an orthotropic material. For exam-
ple, C}, can be expressed as:
0 0 FHO 0 F7HO
Ch = Eng% _E12LI3 E13{2
1 0 pH1 | HO 0 pH1 | [ HO
Ciy = (EREY + E5 EY) — (B EY + B ESY)
2 HO 2 H2pHO | pH pHI
Chy = (ExyExy + By By + By Eyy) (19)
—(B5'Ey + B ES) + Ep E3y)
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and D° can be expressed as;
D" = EHOEHOEHO | FHORHOEHD | o pHO pHo
_EHOEHOEHO _ BHOEHOEH) _ pHOHO i
D' = (E\EyEsy + EYYEy By + Eyj E'Exy)
+(ERERES + ENER BN 4 ENESYEND)
D? = (EHOEHOEH2 | BHOEH2EHO 4 pH2EHO pHO

From Egs. (18)—(20), each order perturbation term of the compliance matrix Sg" can be computed. Each order
perturbation term of a homogenized equivalent elastic property can be computed by Egs. (19) and (20) and
differential of Eq. (18).

5. Numerical example of the perturbation-based stochastic response analysis of homogenized elastic properties
5.1. Stochastic analysis of unidirectional GFRP

As an example, stochastic characteristics such as expectation or variance of homogenized elastic tensor or
homogenized elastic properties of unidirectional FRP caused by microscopic uncertainty are evaluated using
the perturbation-based homogenization analysis. The expectation and variance of the homogenized elastic
tensor and the homogenized elastic property of the unidirectional GFRP obtained from the PSHM analysis
are evaluated using SA and FASM. In order to investigate validity of the proposed method, the numerical
results using the methods are compared with those of the Monte-Carlo simulation. In this case, 1000 samples
are used for the Monte-Carlo simulation. The finite element model of the microstructure, which is illustrated
in Fig. 1(c), is used for the simulation. As shown in Fig. 1(c), it is assumed that the microstructure has the
hexagonal fiber arrangement. The volume fraction of fiber (Vf) is 0.2513 in this case. The material properties
of fiber and resin listed in Table 1 are also used in this section. Stochastic characteristics of a random variable ¢
in Eq. (1) are; E[¢]=0 and \/Var[e] = 0.055 are assumed.

Figs. 3-6 show relative estimation errors between the expectation of the homogenized elastic properties
computed using the PSHM and that of the Monte-Carlo simulation. FASM in the figures shows the result
of the first-order perturbation method, SA shows the result of the second-order perturbation method.
Fig. 3 shows the result of Young’s modulus variation of fiber, Fig. 4 shows the result of Young’s modulus

[ 1FASM

0.000254 | @722 A
= p
]
5 0000204 M M
[=]
kS ]
= 0.000154] M
2 0.000101 2
E 4
& 0.00003-

0.00000 w? [9 .

[
E11 E12E13 E33 E44 E66 Ex Ez GyzGxy nzx nxy

Fig. 3. Relative estimation errors in expectations of homogenized elastic properties by each method in case of Young’s modulus variation
of fiber.
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Fig. 6. Relative estimation errors in expectations of homogenized elastic properties by each method in case of Poisson’s ratio variation of
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variation of resin. Figs. 5 and 6 show the results of Poisson’s ratio variation of fiber and resin. The results for

the homogenized elastic tensor Ej; and the equivalent elastic constants such as E, or G,, are illustrated.
From these results, it can be recognized that the expectation of each component of the homogenized elastic

tensor is well-estimated using FASM and SA, especially in case of Young’s modulus variation of fiber or resin.
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In case of Young’s modulus variation of fiber or resin, the estimation error in SA is smaller than that of
FASM. Though the expectations for Poisson’s ratio variation of fiber are also well estimated, the estimation
errors in SA are larger than that of FASM. In case of Poisson’s ratio variation of resin, the estimation errors in
Ell1, E12, E13 and nxy are larger than the other cases. The estimation errors in E12, E13, E33 and nxy using
SA are smaller than that of FASM, but others of SA are larger than that of FASM.

Next, an estimation error in the estimated variance is also investigated. Figs. 7-10 show relative estimation
errors between the variance of the homogenized elastic properties computed using the PSHM and that of the
Monte-Carlo simulation. Fig. 7 shows the result of Young’s modulus variation of fiber, Fig. 8 shows the result
of Young’s modulus variation of resin. Figs. 9 and 10 show the results of Poisson’s ratio variation of fiber and
resin.

From these figure, it can be recognized that the PSHM will be effective for estimating variance of the
homogenized elastic properties in case of Young’s modulus variation. SA improves accuracy of the estimation
in case of Young’s modulus variation of fiber.

FA is also effective for estimating the variance in case of Poisson’s ratio variation of fiber, but the estima-
tion errors in the result of SA is very large in this case. It can be noticed that the relative estimation errors in
case of Poisson’s ratio variation of resin are larger than the other cases, and SA improves accuracy of the esti-
mation for the homogenized elastic tensor except to E66. On the other hand, SA is not effective for improving
accuracy of the estimation for the homogenized equivalent elastic constants in this case. These results show

difficulty in using the second order perturbation method for estimating the stochastic characteristics of the
0.074| ZzZZA SA

i

E11 E12EI3 E33 E44E66 Ex Ez GyzGxy nzx nxy
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Fig. 8. Relative estimation errors in variances of homogenized elastic properties by each method in case of Young’s modulus variation of
resin.
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Fig. 10. Relative estimation errors in variances of homogenized elastic properties by each method in case of Poisson’s ratio variation of
resin.

homogenized elastic properties, especially the stochastic characteristics of the homogenized elastic constants
for Poisson’s ratio variation.

5.2. Influence of volume fraction of fiber

Geometry of a microstructure such as a volume fraction of fiber will have an influence of stochastic
responses in homogenized elastic properties. In this paper, therefore, a relationship between accuracy of the
perturbation-based homogenization method and volume fraction of fiber is also investigated.

As an example, relationships between the relative estimation error and volume fraction of fiber in case of
Poisson’s ratio variation of resin is illustrated. The number of samples used for the Monte-Carlo simulation is
1000, the stochastic characteristics of material properties of the component materials are assumed as the pre-
vious example.

Fig. 11 shows the relationship between a relative estimation error of expectation of the homogenized
elastic tensor and volume fraction of fiber. Fig. 12 shows the relationship between that of variance and
volume fraction of fiber. In these figures, as an example, estimation errors in Ef, and E%; are
illustrated.

From these figures, it is recognized that both of the estimation errors in expectations and variances in case
of the second order perturbation method are less than that of the first order perturbation method. Estimation
errors in expectations and variances of Ef| and E%; decrease as the volume fraction of fiber increases, the sec-
ond order perturbation method improves accuracy of the estimation within this range of the volume fraction.
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Poisson’s ratio variation of resin.
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Fig. 12. Relationship between volume fraction of fiber and estimation error in variance of homogenized elastic tensor in case of Poisson’s
ratio variation of resin.

This result shows that the second order perturbation method is effective for improving accuracy of expectation
and variance estimation of the homogenized elastic tensor within a wide range of the volume fraction of fiber
in this case.

Next, a relationship between the relative estimation error in case of the equivalent elastic constants and vol-
ume fraction of fiber is investigated. Fig. 13 shows the relationship between a relative estimation error of
expectation of the homogenized equivalent elastic constants and volume fraction of fiber. Fig. 14 shows the
relationship between that of variance and volume fraction of fiber. In these figures, as an example, estimation
errors in E7 and E” are illustrated.

From these figures, it is recognized that the second order perturbation method is not effective for improving
accuracy of the estimation. Especially, estimation errors in the expectation and variance of E rapidly increase
as the volume fraction increases. On the other hand, the estimation error in the variance of E” is very large for
a small value of the volume fraction. This result shows that the second order perturbation method will not
improve accuracy of the estimation in this case, and the second order perturbation method should not be used
for stochastic analysis of homogenized equivalent elastic constants of a composite material, especially in case
of considering Poisson’s ratio variation.
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Fig. 13. Relationship between volume fraction of fiber and estimation error in expectation of equivalent elastic constants in case of
Poisson’s ratio variation of resin.
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Fig. 14. Relationship between volume fraction of fiber and estimation error in variance of equivalent elastic constants in case of Poisson’s
ratio variation of resin.

6. Conclusion

In this paper, influence of uncertainty in microscopic material properties on homogenized elastic property
using the perturbation-based three-dimensional homogenization analysis is discussed. The perturbation-based
stochastic response analysis method using the homogenized method is formulated. Using this formulation,
each order perturbation term of a homogenized elastic tensor or a homogenized equivalent elastic constant
of an inhomogeneous material can be computed. The stochastic characteristics, such as the expectation or var-
lance against a microscopic stochastic variation can be also computed using SA or FASM.

At first, a stochastic response analysis of homogenized elastic tensor for a unidirectional GFRP is per-
formed using the Monte-Carlo simulation. This numerical result shows the necessary of a detailed thee-dimen-
sional stochastic response analysis for a homogenization problem.

Next, the numerical analysis using the proposed formulation is performed. The numerical results obtained
from the analysis using the proposed method are compared with the results of the Monte-Carlo simulation in
detail. From the numerical results, it can be recognized that SA does not always improve accuracy of the sto-
chastic estimation, and FASM will be useful in some cases of microscopic variation such as Young’s modulus
of fiber. However, the stochastic responses against some kinds of microscopic variation such as Poisson’s ratio
variation of resin cannot be well estimated using the PSHM.
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Additionally, a relationship between volume fraction of fiber and accuracy of the perturbation-based sto-
chastic response analysis is also investigated. From this result, it is recognized that the second order pertur-
bation-based procedure may be effective for improving accuracy of the estimation for the homogenized
elastic tensor, but it will not give an accurate estimation of expectation and variance of the homogenized
equivalent elastic constants for Poisson’s ratio variation.

From the numerical results, therefore, the perturbation-based analysis will be used in several limited cases
of stochastic analysis for a three-dimensional homogenization problem. In concrete, the use of the perturba-
tion-based method should be limited to Young’s modulus variation at most, and the PSHM should be avoided
to use a stochastic analysis of a homogenization problem including a nonlinear stochastic response such as
Poisson’s ratio variation considering a large stochastic variation. The second order perturbation method
may improve accuracy of estimation, especially in case of the homogenized elastic tensor, but it should not
be used for estimation of stochastic characteristics of a homogenized equivalent elastic constants. For more
general use, it can be considered that an improved analysis procedure will be needed.
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