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Abstract

In this paper we develop unifying graph theoretic techniques to study the dynamics and the structure
of spaces H({0, 1}

N) and C({0, 1}
N), the space of homeomorphisms and the space of self-maps of the

Cantor space, respectively. Using our methods, we give characterizations which determine when two
homeomorphisms of the Cantor space are conjugate to each other. We also give a new characterization
of the comeager conjugacy class of the space H({0, 1}

N). The existence of this class was established by
Kechris and Rosendal and a specific element of this class was described concretely by Akin, Glasner and
Weiss. Our characterization readily implies many old and new dynamical properties of elements of this
class. For example, we show that no element of this class has a Li–Yorke pair, implying the well known
Glasner–Weiss result that there is a comeager subset of H({0, 1}

N) each element of which has topological
entropy zero. Our analogous investigation in C({0, 1}

N) yields a surprising result: there is a comeager
subset of C({0, 1}

N) such that any two elements of this set are conjugate to each other by an element of
H({0, 1}

N). Our description of this class also yields many old and new results concerning dynamics of a
comeager subset of C({0, 1}

N).
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1. Introduction

In recent years H({0, 1}
N), the group of homeomorphisms of the Cantor space, has enjoyed

attention from mathematicians working in diverse fields such as dynamical systems [4,16] and
model theory [18]. From the dynamics point of view, {0, 1}

N is the symbol space on two
variables and a fundamental tool in analyzing topological dynamics of complicated systems.
From the model theory point of view, H({0, 1}

N) is important as it is isomorphic to the group
of automorphisms of the countable, atomless Boolean algebra. The study of H({0, 1}

N) from
the dynamical systems approach utilizes analytic techniques while the model theory viewpoint
exploits the fact that {0, 1}

N can be viewed as the Fraı̈ssè limit of finite Boolean algebras. Our
approach is fundamentally different in that to each h ∈ H({0, 1}

N) and each finite partition P of
clopen subsets of {0, 1}

N, we associate a digraph Gr(h,P). We use geometric and graph theoretic
properties of these digraphs to deduce dynamical properties of h.

In one of our main results, we establish characterizations of when two elements of H({0, 1}
N)

are topologically conjugate to each other. In addition to its importance from the algebraic point of
view, this result is also very important from the dynamical systems point of view. The reason for
this is that two topologically conjugate homeomorphisms have the same topological dynamics.
Hence, dynamical properties of every element of a conjugacy class can be described by the
dynamical properties of a single member of that class. Characterizations of the conjugacy relation
for other groups such as the symmetric group on N, the group of automorphisms of the random
graph and the group of order preserving automorphisms of the rationals were described by Truss
in [20].

Truss [20] also defined the concept of generics in a Polish group. We say that a Polish group G
admits generics if G has a comeager conjugacy class. In this case, we say that a generic element
of G has Property P if every element of the comeager conjugacy class has Property P. We caution
the reader that in dynamical systems, topology and other fields, the word generic is often used
in a different manner. Namely, it refers to a comeager subset of a complete metric space with no
reference to the algebraic structure. We will use the phrase “comeager conjugacy class” instead
of the word “generic” to avoid confusion.

In 2001 Glasner and Weiss [15] showed that H({0, 1}
N) has a dense conjugacy class. They

called the property of having a dense conjugacy class the topological Rohlin property. This
was also shown by Akin et al. in their monograph [4]. In the same monograph they raised the
question whether H({0, 1}

N) has a comeager conjugacy class. This was settled affirmatively in
2007 by Kechris and Rosendal in [18] using model theoretic techniques. Akin et al. [3], in 2008,
gave a concrete construction of what they called a “Special Homeomorphism” whose conjugacy
class is comeager. As an application of the techniques developed in the present article, we give
a geometric/graph theoretic description of the elements of this comeager conjugacy class. We
describe these homeomorphisms below to give a flavor of the ideas developed here.

Let h ∈ H({0, 1}
N) and P be a finite partition of clopen subsets of {0, 1}

N. Then, Gr(h,P) is
a digraph whose vertex set is P and

−→
ab is an edge of Gr(h,P) if and only if h(a) ∩ b ≠ ∅. A

digraph H is a loop if the vertex set of H is {v1, . . . , vn} and the edges of H are −−→vnv1 and −−−→vivi+1
for 1 ≤ i < n. In this case, we say that H is a loop of length n. A digraph H is a dumbbell
if the vertex set of H is the union of three disjoint sets l1 = {u1, . . . , ur }, p = {v1, . . . , vs},
l2 = {w1, . . . , wt } and the edges of H are

• the edges of the loops formed by l1 and l2,
• the edges of the path p, i.e., −−−→vivi+1 for 1 ≤ i < s, and
•

−−→u1v1, −−→vsw1.
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In this case we say that H is a dumbbell of type (r, s, t). If r = t , then we say that the dumbbell
is balanced with plate weight r . Assume that a component H of Gr(h,P) is a dumbbell and let
us denote H as above. We say that H contains a left loop of h (resp. a right loop of h) if there is
a nonempty clopen subset a of u1 (resp. of w1) such that hr (a) = a (resp. ht (a) = a).

Now we are ready to describe the comeager conjugacy class of H({0, 1}
N).

Theorem. The set of all h ∈ H({0, 1}
N) with the following property is a comeager conjugacy

class of H({0, 1}
N).

For every m ∈ N, there are a partition P of {0, 1}
N of mesh < 1/m and a multiple q ∈ N of m

such that every component of Gr(h,P) is a balanced dumbbell with plate weight q! that contains
both a left and a right loop of h.

We point out that using projective Fraı̈ssè limits, Kwiatkowska [17] has shown that H({0, 1}
N)

has ample generics, a property stronger than having a comeager conjugacy class. We would also
like to point out that the ideas used by Akin et al. in [4] to prove that H({0, 1}

N) has a dense
conjugacy class has some distant resemblance to our techniques.

Using our graph theoretic techniques, we prove a surprising result: there is a comeager subset
of C({0, 1}

N) such that any two elements of this set are conjugate to each other by an element
of H({0, 1}

N). This is done by giving a geometric/graph theoretic description of this class in a
manner similar to that of H({0, 1}

N).
The notion of chaos is another well studied concept in topological dynamics. There are several

different notions of chaos. For instance, page 1306 of [2] contains a table with 11 notions of
chaos and the relationships among them, including the 4 best known notions, namely: positive
topological entropy, chaos in the sense of Devaney, weak mixing and chaos in the sense of Li
and Yorke. As is well-known, Li–Yorke chaos is one of the weaker notions of chaos [7]. In [15]
Glasner and Weiss showed that a comeager subset of H({0, 1}

N) has topological entropy zero.
Hence in some sense an element chosen at “random” from H({0, 1}

N) has topological entropy
zero and therefore is not chaotic in this sense. As a simple corollary to our investigation, we show
that homeomorphisms of the comeager conjugacy class have a much stronger property, namely
that they have no Li–Yorke pair.

We show that homeomorphisms of this comeager conjugacy class also have other properties
which make them tame. In this direction we show that each such homeomorphism has the
shadowing property and the restriction of the homeomorphism to each of its ω-limit sets is
topologically conjugate to the universal odometer. Hochman [16] showed that among all the
transitive homeomorphisms of the Cantor space, the set of homeomorphisms topologically
conjugate to the universal odometer is comeager. We also show that for all h in the comeager
conjugacy class, the set of recurrent points of h is equal to the set of chain recurrent points of h.
Moreover, h is chain continuous on a dense open subset of {0, 1}

N but not equicontinuous on an
uncountable set.

We also show analogous dynamical properties of a comeager subset of C({0, 1}
N). In

particular, we show that the set of all f ∈ C({0, 1}
N) which have the following properties is

comeager in C({0, 1}
N).

• f has no Li–Yorke pair.
• The restriction of f to each of its ω-limit sets is topologically conjugate to the universal

odometer.
• f is chain continuous at every point.
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Earlier it was shown in [13] that the set of f ∈ C({0, 1}
N) with topological entropy zero and

no periodic point is comeager in C({0, 1}
N). In [14] it was shown that there is a comeager set of

f ∈ C({0, 1}
N) such that for a comeager set of σ ∈ {0, 1}

N, the restriction of f to the ω-limit set
of f at σ is topologically conjugate to the universal odometer.

This paper is organized as follows. Section 2 develops properties of Gr( f,P) for f ∈

C({0, 1}
N) and for f ∈ H({0, 1}

N), and contains an important approximation theorem,
Theorem 2.5. In Section 3 we give characterizations of when two homeomorphisms (or two
continuous maps) of the Cantor space are topologically conjugate to each other. Section 4
contains an useful geometric/graph theoretic description of the homeomorphisms of the Cantor
space whose conjugacy class is comeager. Moreover, by applying this description we obtain
several results concerning dynamical properties of the comeager conjugacy class of H({0, 1}

N).
In Section 5 we prove the surprising result that there is a comeager subset of C({0, 1}

N) such that
any two elements of this set are conjugate to each other by an element of H({0, 1}

N). Using the
description of this set, we prove dynamical properties of elements of this set.

2. An approximation theorem

By Cantor space we mean any compact, 0-dimensional metric space without isolated points.
The principal model of the Cantor space we use is {0, 1}

N endowed with the product topology,
where {0, 1} is given the discrete topology. This topology is generated by the metric d(σ, τ ) =

1
n

where n is the least positive integer where σ(n) ≠ τ(n) if such an integer exists and d(σ, τ ) = 0,
otherwise.

By a partition of {0, 1}
N we mean a finite collection of nonempty pairwise disjoint clopen sets

whose union is {0, 1}
N. A map ν : P → Q, between partitions P and Q of {0, 1}

N, is called a
refinement map if

ν(a) ⊃ a for all a ∈ P.

In this case, we say that P is a refinement of Q. Note that a refinement map is necessarily
surjective.

For each finite collection C of nonempty subsets of {0, 1}
N, we define the mesh of C by

mesh(C) = max
A∈C

diam(A).

If σ is a finite string of 0’s and 1’s, then [σ ] denotes the set of all points of {0, 1}
N which are

extensions of σ . For each n ∈ N, we consider the partition

Bn = {[σ ] : σ ∈ {0, 1}
n
}

of {0, 1}
N. Note that

mesh(Bn) → 0 as n → ∞.

Moreover,


Bn is a basis of clopen sets for the topology of the Cantor space.
We use C({0, 1}

N) (resp. H({0, 1}
N)) to denote the space of all continuous maps (resp. of all

homeomorphisms) of the Cantor space, endowed with the following metric:

d̃( f, g) = max
σ∈{0,1}N

d( f (σ ), g(σ )).
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If f, g ∈ C({0, 1}
N) and P is a partition of {0, 1}

N, then f ∼P g means that f (σ ) and g(σ ) lie
in the same member of P for every σ ∈ {0, 1}

N. Note that

f ∼P g =⇒ d̃( f, g) ≤ mesh(P).

Central to our investigation is the notion of a digraph (= directed graph). A digraph G consists
of a finite set V (G) of vertices together with a set E(G) of directed edges between vertices. By a
left end of G (resp. a right end of G) we mean a vertex v of G that has no incoming edge (resp. no
outgoing edge). We say that G is a digraph without right ends (resp. a digraph without ends) if
G has no right end (resp. no left end and no right end). If G and H are digraphs, then a digraph
map φ : H → G is a map from the vertex set of H into the vertex set of G such that

−−−−−−→
φ(u)φ(v)

is an edge of G whenever −→uv is an edge of H . We say that φ is surjective when it is a surjection
between the sets of vertices (but it need not be surjective on the sets of edges). By a component
of a digraph G we simply mean a largest (in vertices and edges) subgraph H of G such that given
any two vertices a, b in H , there are vertices a1, . . . , an in H such that a1 = a, an = b and for
any 1 ≤ i < n, −−−→ai ai+1 or −−−→ai+1ai is an edge of H .

To each f ∈ C({0, 1}
N) and each partition P of {0, 1}

N, we associate a digraph Gr( f,P)
in the following fashion: the vertices of Gr( f,P) are the elements of P and for sets a, b ∈ P ,
directed edge

−→
ab ∈ Gr( f,P) if and only if f (a)∩ b ≠ ∅. Note that Gr( f,P) is always a digraph

without right ends. If f is surjective, then Gr( f,P) is a digraph without ends. If ν : P → Q is a
refinement map, then ν : Gr( f,P) → Gr( f,Q) is a surjective graph map (in the present case, it
is surjective on edges too). Technically speaking,

P → Gr( f,P)

is a functor from the category of partitions of the Cantor space (whose morphisms are the
refinement maps) to the category of digraphs (whose morphisms are the digraph maps).
Moreover,

f ∼P g =⇒ Gr( f,P) = Gr(g,P).

Theorem 2.1. Let G be a digraph without right ends whose vertex set P is a partition of {0, 1}
N

and define

X =


{a ∈ P : a is a left end of G}.

Then, there is a homeomorphism f from {0, 1}
N onto {0, 1}

N
\ X such that

Gr( f,P) = G.

In particular, if G is a digraph without ends, then f ∈ H({0, 1}
N).

Proof. For each a ∈ P , let Oa be a partition of a whose cardinality is equal to the number of
edges of G going out a. For each b ∈ P which is not a left end of G, let Ib be a partition of b
whose cardinality is equal to the number of edges of G coming into b. For each edge e =

−→
ab ∈ G,

we define an ordered pair (xe, ye) such that

• xe ∈ Oa , ye ∈ Ib and
• if e and e′ are two distinct edges in G, then xe ≠ xe′ and ye ≠ ye′ .
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We note that the second condition above implies that xe ∩ xe′ = ∅ and ye ∩ ye′ = ∅. Now, let f
be a homeomorphism from {0, 1}

N onto {0, 1}
N

\ X such that

f (xe) = ye for each edge e ∈ G.

Then, Gr( f,P) = G. �

Theorem 2.2. Let f ∈ C({0, 1}
N) and Q be a partition of {0, 1}

N. Assume that G is a digraph
without right ends and that φ : G → Gr( f,Q) is a surjective graph map. Then we have the
following.

(a) There exist a refinement map ν : P → Q and a bijection ψ from P onto the vertex set of G
such that ν = φ ◦ ψ .

(b) There exists g ∈ C({0, 1}
N) such that ψ : Gr(g,P) → G is a digraph isomorphism.

Moreover, if G is a digraph without ends, then we may take such a g in H({0, 1}
N).

(c) For any g as in (b),

d̃( f, g) ≤ mesh(Q)+ mesh( f (Q)),

where f (Q) = { f (a) : a ∈ Q}.

Proof. (a) For each a ∈ Q, choose a partition Pa of a with the same cardinality as φ−1 (a).
Consider the partition

P =


a∈Q

Pa

of {0, 1}
N and define ψ as a bijection from Pa onto φ−1 (a) for each a ∈ Q. Then ψ is a bijection

from P onto the vertex set of G and φ ◦ ψ : P → Q is a refinement map.
(b) There exists a unique digraph H whose vertex set is P for which ψ : H → G is a digraph
isomorphism. By Theorem 2.1, there exists g ∈ C({0, 1}

N) such that

Gr(g,P) = H.

Moreover, Theorem 2.1 gives g ∈ H({0, 1}
N) if H (or equivalently G) is a digraph without ends.

(c) Let us fix σ ∈ {0, 1}
N. Let a, b ∈ P be such that σ ∈ a and g(σ ) ∈ b. Then

−→
ab ∈ Gr(g,P),

which implies that

−−−−−→
ν(a)ν(b) =

−−−−−−−−−−−→
φ(ψ(a))φ(ψ(b)) ∈ Gr( f,Q).

Hence, there exists τ ∈ ν(a) such that f (τ ) ∈ ν(b). As f (τ ), g(σ ) ∈ ν(b), we have that
d( f (τ ), g(σ )) ≤ mesh(Q). As σ, τ ∈ ν(a), d( f (σ ), f (τ )) ≤ mesh( f (Q)). Consequently,
d( f (σ ), g(σ )) ≤ mesh(Q)+ mesh( f (Q)). �

A digraph ℓ is a loop if the vertex set of ℓ is {v1, . . . , vn} and the edges of ℓ are −−→vnv1 and
−−−→vivi+1 for 1 ≤ i < n. In this case, we say that ℓ is a loop of length n.

A digraph B is a balloon if the vertex set of B is the union of two disjoint sets p = {v1, . . . , vs}

and ℓ = {w1, . . . , wt }, and the edges of B are

• the edges of the path p, i.e., −−−→vivi+1 for 1 ≤ i < s,
• the edges of the loop formed by ℓ, and
•

−−→vsw1.
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In such case we say that B is a balloon of type (s, t) and we call v1 the initial vertex of B.
Whenever we write a balloon B simply as

B = {v1, . . . , vs} ∪ {w1, . . . , wt },

we implicitly assume that it is the balloon described above.
A digraph D is a dumbbell if the vertex set of D is the union of three disjoint sets l1 =

{u1, . . . , ur }, p = {v1, . . . , vs} and l2 = {w1, . . . , wt }, and the edges of D are

• the edges of the loops formed by l1 and l2,
• the edges of the path p, i.e., −−−→vivi+1 for 1 ≤ i < s, and
•

−−→u1v1, −−→vsw1.

In this case we say that D is a dumbbell of type (r, s, t). If r = t , then we say that the dumbbell
is balanced with plate weight r . We say that s is the length of the bar of the dumbbell. Whenever
we write a dumbbell D simply as

D = {u1, . . . , ur } ∪ {v1, . . . , vs} ∪ {w1, . . . , wt },

we implicitly assume that it is the dumbbell described above.

Lemma 2.3. (a) Let G be a digraph without right ends. For any edge e =
−→uv of G, there exist

positive integers S and M so that if s ≥ S and m is a positive integer multiple of M, then a
balloon of type (s,m) admits a graph map into G such that u is the image of the initial vertex of
the balloon.
(b) Let G be a digraph without ends. For any edge e =

−→uv of G, there exist positive integers N,
S and M so that if s ≥ S and n,m are positive integer multiples of N ,M, respectively, then a
dumbbell of type (n, s,m) admits a graph map into G such that e is the image of a bar edge in
the dumbbell.

Proof. (a) Since G is a digraph without right ends, we can start with edge e and continue a path
in G to the right an arbitrary number of steps. Since there are only finitely many vertices, we
obtain a pseudo-balloon in G, that is, a path

u = u1, v = u2, . . . , uS, uS+1, . . . , uS+M , uS+M+1

with

uS+M+1 = uS+1.

We call it a pseudo-balloon because the vertices need not be distinct. If s ≥ S and m is a positive
integer multiple of M , then we can extend the bar length from S to s by moving into the pseudo-
loop and continuing around it. Then we can go around the pseudo-loop as often as we want to
obtain a pseudo-loop of length m. In this way we obtain a pseudo-balloon in G of the form

u = v1, v = v2, . . . , vs, vs+1, . . . , vs+m, vs+m+1 = vs+1.

Now, let wi = (vi , i) for i = 1, . . . , s + m and consider the balloon

B = {w1, . . . , ws} ∪ {ws+1, . . . , ws+m}.

The projection wi ∈ B → vi ∈ G is the required graph map.
(b) Since G is a digraph without ends, we can apply the same procedure as in (a) also to the left.
In this way we obtain a pseudo-dumbbell in G, that is, a path

u0, u1, . . . , uN , uN+1, . . . , uN+S, uN+S+1, . . . , uN+S+M , uN+S+M+1
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with

uN = u0 and uN+S+M+1 = uN+S+1,

so that the original edge e =
−→uv is somewhere along the bar. Now we continue by arguing as in

case (a). �

Let us now establish our main graph theoretic result.

Theorem 2.4. (a) Let G be a digraph without right ends. There exist positive integers K , S and
M so that if k ≥ K , s ≥ S and m is a positive integer multiple of M, then a digraph consisting
of k disjoint balloons of type (s,m) admits a graph map onto G.
(b) Let G be a digraph without ends. There exist positive integers K , N, S and M so that if
k ≥ K , s ≥ S and n,m are positive integer multiples of N ,M, respectively, then a digraph
consisting of k disjoint dumbbells of type (n, s,m) admits a graph map onto G.

Proof. We shall prove only case (b), since case (a) is analogous. Let e1, . . . , eK be the edges
of G. For each i = 1, . . . , K , the previous lemma associates to the edge ei positive integers
Ni , Si and Mi . Let N and M be the least common multiple of all the Ni ’s and of all the Mi ’s,
respectively, and let S be the max of the Si ’s. If n,m are multiples of N ,M , respectively, and
s ≥ S, then the previous lemma gives us a graph map from a dumbbell Di of type (n, s,m) into
G hitting ei (i = 1, . . . , K ). Clearly, we may assume that the Di ’s are pairwise disjoint. So, the
union H of the Di ’s admits a graph map onto G. If we want more than K dumbbells, then it is
enough to get as many disjoint copies of D1 (for instance) as we want. �

We are now ready to establish our approximation theorem.

Theorem 2.5. (a) Let f ∈ C({0, 1}
N) and ϵ > 0. There exist positive integers K , S and M so

that if k ≥ K , s ≥ S and m is a positive integer multiple of M, then there are g ∈ C({0, 1}
N)

and a partition P of {0, 1}
N with

d̃( f, g) < ϵ and mesh(P) < ϵ,

such that the digraph Gr(g,P) consists of exactly k disjoint balloons of type (s,m).
(b) Let f ∈ H({0, 1}

N) and ϵ > 0. There exist positive integers K , N, S and M so that if
k ≥ K , s ≥ S and n,m are positive integer multiples of N ,M, respectively, then there are
g ∈ H({0, 1}

N) and a partition P of {0, 1}
N with

d̃( f, g) < ϵ and mesh(P) < ϵ,

such that the digraph Gr(g,P) consists of exactly k disjoint dumbbells of type (n, s,m).

Proof. Fix f ∈ C({0, 1}
N) (resp. f ∈ H({0, 1}

N)) and ϵ > 0. Using the uniform continuity of
f , we choose a partition Q of {0, 1}

N such that

mesh(Q) <
ϵ

2
and mesh( f (Q)) <

ϵ

2
·

As Gr( f,Q) is a digraph without right ends (resp. a digraph without ends), we can associate to
Gr( f,Q) positive integers K , S and M (resp. K , N , S and M) so that the property described in
part (a) (resp. in part (b)) of Theorem 2.4 holds. Let k ≥ K , s ≥ S and m be a positive integer
multiple of M (resp. n,m be positive integer multiples of N ,M , respectively). Then, a digraph
G consisting of k disjoint balloons of type (s,m) (resp. of k disjoint dumbbells of type (n, s,m))
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admits a graph map φ onto Gr( f,Q). By Theorem 2.2, there exist a refinement P of Q and
g ∈ C({0, 1}

N) (resp. g ∈ H({0, 1}
N)) so that Gr(g,P) is isomorphic to G and

d̃( f, g) ≤ mesh(Q)+ mesh( f (Q)) < ϵ.

This completes the proof. �

3. The conjugacy relation

In this section we present some characterizations of when two continuous maps of the
Cantor space are topologically conjugate to each other. In particular, we can apply these
characterizations to homeomorphisms of the Cantor space.

We begin by recalling the definition of topological conjugacy. Suppose f and g are self-maps
of spaces X and Y , respectively. We say that f and g are topologically conjugate if there is a
homeomorphism h from X onto Y such that f = h−1gh. We note that topological conjugacy is
an equivalence relation. If f, g ∈ C({0, 1}

N) and h ∈ H({0, 1}
N), then we simply say that f and

g are conjugates.
In order to state our next result, let us introduce some terminology.
If (Pn) is a sequence of partitions of {0, 1}

N, then we say that (Pn) is null whenever
mesh(Pn) → 0, and we say that (Pn) is decreasing whenever Pn+1 is a refinement of Pn for
every n ∈ N. Note that every null sequence of partitions of {0, 1}

N has a decreasing (and null)
subsequence.

Suppose f, g ∈ C({0, 1}
N), (Pn) and (Qn) are decreasing null sequences of partitions of

{0, 1}
N and (νn) is a sequence of isomorphisms

νn : Gr( f,Pn) → Gr(g,Qn).

For each a ∈ Pn , we define

νm(a) =


{νm(b) : b ∈ Pm and b ⊂ a} (m ≥ n)

and

ν̃n(a) =


m≥n

νm(a).

We say that the sequence (νn) commutes with refinements if the diagrams

Pn
νn // Qn

Pn+1
νn+1 //

in

OO

Qn+1

jn

OO

are commutative, where in and jn denote the refinement maps. We have the following character-
izations of this notion.

Proposition 3.1. With the above notations, the following assertions are equivalent:

(i) (νn) commutes with refinements;
(ii) νm(a) = νn(a) whenever m ≥ n and a ∈ Pn;

(iii) ν̃n(a) = νn(a) for every n ∈ N and a ∈ Pn .
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Proof. (i) ⇒ (ii): Suppose m ≥ n and a ∈ Pn . Since (νn) commutes with refinements, the
diagram

Pn
νn // Qn

Pm
νm //

OO

Qm

OO

is commutative, where the up arrows indicate the refinement maps. Consequently,

νm(a) ⊂ νn(a).

Conversely, take σ ∈ νn(a) and let c ∈ Qm be such that σ ∈ c. Since νm is surjective, there
exists b ∈ Pm such that νm(b) = c. Let a′

∈ Pn be such that b ⊂ a′. By what we have just seen,
νm(a′) ⊂ νn(a′). Hence,

σ ∈ c = νm(b) ⊂ νm(a
′) ⊂ νn(a

′).

Since σ ∈ νn(a) and νn is injective, a′
= a. Thus, σ ∈ νm(a).

(ii) ⇒ (iii): Obvious.
(iii) ⇒ (i): Let b ∈ Pn+1 and put a = in(b) ∈ Pn . Then

νn+1(b) ⊂ νn+1(a) ⊂ ν̃n(a) = νn(a),

by hypothesis. Hence, jn(νn+1(b)) = νn(a) = νn(in(b)), as was to be shown. �

We say that the sequence (νn) asymptotically commutes with refinements if

lim
n→∞

mesh({ν̃n(a) : a ∈ Pn}) = 0.

It follows from the previous proposition that if (νn) commutes with refinements, then both (νn)

and (ν−1
n ) asymptotically commute with refinements.

Theorem 3.2. Let f, g ∈ C({0, 1}
N). Then the following assertions are equivalent:

(i) f and g are conjugates;
(ii) there are decreasing null sequences (Pn) and (Qn) of partitions of {0, 1}

N and
isomorphisms νn : Gr( f,Pn) → Gr(g,Qn) so that the sequence (νn) commutes with
refinements;

(iii) there are decreasing null sequences (Pn) and (Qn) of partitions of {0, 1}
N and

isomorphisms νn : Gr( f,Pn) → Gr(g,Qn) so that both (νn) and (ν−1
n ) asymptotically

commute with refinements.

Proof. (i) ⇒ (ii): Suppose f = h−1gh for a certain h ∈ H({0, 1}
N). For each n ∈ N, let Pn = Bn

and Qn = {h(a) : a ∈ Bn}. We now observe that for each n ∈ N, Gr( f,Pn) is isomorphic to
Gr(g,Qn) by the map νn : a ∈ Pn → h(a) ∈ Qn . Indeed,

−→
ab ∈ Gr( f,Pn) ⇐⇒ f (a) ∩ b ≠ ∅

⇐⇒ h f (a) ∩ h(b) ≠ ∅

⇐⇒ gh(a) ∩ h(b) ≠ ∅

⇐⇒
−−−−−→
h(a)h(b) ∈ Gr(g,Qn).

Moreover, it is clear that the sequence (νn) commutes with refinements.
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(ii) ⇒ (iii): Obvious.
(iii) ⇒ (i): For each n ∈ N, we choose an hn ∈ H({0, 1}

N) such that

hn(a) = νn(a) for everya ∈ Pn .

Then

h−1
n (c) = ν−1

n (c) for every c ∈ Qn .

We shall prove that (hn) is a Cauchy sequence in C({0, 1}
N). For this purpose, let us fix ϵ > 0.

Since (νn) asymptotically commutes with refinements, there exists n0 ∈ N such that

mesh({ν̃n(a) : a ∈ Pn}) < ϵ whenever n ≥ n0.

Take σ ∈ {0, 1}
N and m ≥ n ≥ n0. Let a ∈ Pn and b ∈ Pm be such that σ ∈ a and σ ∈ b. Then,

hn(σ ) ∈ νn(a) ⊂ ν̃n(a) and hm(σ ) ∈ νm(b) ⊂ νm(a) ⊂ ν̃n(a),

and so

d(hm(σ ), hn(σ )) < ϵ.

By completeness, the sequence (hn) must converge to a function h in C({0, 1}
N). Since (ν−1

n )

also asymptotically commutes with refinements, we may apply the same argument to the
sequence (h−1

n ) and conclude that this sequence converges to a function t in C({0, 1}
N). Since

hn ◦ h−1
n = h−1

n ◦ hn = I (the identity map of {0, 1}
N) for every n ∈ N, h ◦ t = t ◦ h = I .

Thus, h ∈ H({0, 1}
N).

Now, given σ ∈ {0, 1}
N and n ∈ N, let a, b ∈ Pn be such that σ ∈ a and f (σ ) ∈ b. Then,

−→
ab ∈ Gr( f,Pn), which implies that

−−−−−−→
νn(a)νn(b) ∈ Gr(g,Qn), that is,

g(νn(a)) ∩ νn(b) ≠ ∅.

Since hn f (σ ) ∈ νn(b) and ghn(σ ) ∈ g(νn(a)), we obtain

d(hn f (σ ), ghn(σ )) ≤ mesh(Qn)+ mesh(g(Qn)).

Hence, by letting n → ∞, we conclude that h f = gh, that is, f = h−1gh. �

In order to state our next characterizations of the conjugacy relation, we need to introduce
some further terminology.

Suppose f, g ∈ C({0, 1}
N), (Pn) and (Qn) are decreasing null sequences of partitions of

{0, 1}
N and (νn) is a sequence of surjective graph maps with

νn : Gr( f,Pn) → Gr(g,Qn) for odd n

and

νn : Gr(g,Qn) → Gr( f,Pn) for even n.

For each odd n and each a ∈ Pn , we define

νm(a) =


{νm(b) : b ∈ Pm and b ⊂ a} (m ≥ n,m odd),

ν−1
m (a) =


{c : c ∈ Qm and νm(c) ⊂ a} (m > n,m even)

and

νn(a) =


{νm(a) : m ≥ n,m odd} ∪


{ν−1

m (a) : m > n,m even}.
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Analogously, we define νm(c) (m ≥ n, m even), ν−1
m (c) (m > n, m odd) and νn(c) for even n

and c ∈ Qn . We say that the sequence (νn) commutes with refinements if the diagrams

Pn
νn // Qn

Pn+1

in

OO

Qn+1
νn+1oo

jn

OO Pn Qn
νnoo

Pn+1

in

OO

νn+1 // Qn+1

jn

OO

n odd n even

are commutative, where in and jn denote the refinement maps. We have the following character-
izations of this concept.

Proposition 3.3. With the above notations, the following assertions are equivalent.

(i) (νn) commutes with refinements.
(ii) The following inclusions hold.

• νm(a) ⊂ νn(a) whenever n is odd, m is odd, m ≥ n and a ∈ Pn .
• ν−1

m (a) ⊂ νn(a) whenever n is odd, m is even, m > n and a ∈ Pn .
• νm(c) ⊂ νn(c) whenever n is even, m is even, m ≥ n and c ∈ Qn .
• ν−1

m (c) ⊂ νn(c) whenever n is even, m is odd, m > n and c ∈ Qn .
(iii) The following equalities hold.

• νn(a) = νn(a) whenever n is odd and a ∈ Pn .
• νn(c) = νn(c) whenever n is even and c ∈ Qn .

Proof. (i) ⇒ (ii): Let n,m, k ∈ N be such that n and m are odd, k is even, m ≥ n and k > n.
Since (νn) commutes with refinements, the diagrams

Pn
νn // Qn

Pm
νm //

OO

Qm

OO Pn
νn // Qn

Pk

OO

Qk
νkoo

OO

are commutative, where the up arrows indicate the refinement maps. This implies that νm(a) ⊂

νn(a) and ν−1
k (a) ⊂ νn(a) for every a ∈ Pn , which proves the first two inclusions in (ii). The

other two inclusions are proved in a similar way.
(ii) ⇒ (iii): Obvious.
(iii) ⇒ (i): Assume n odd and let us prove that

jn = νn ◦ in ◦ νn+1.

Take c ∈ Qn+1 and put b = νn+1(c) ∈ Pn+1 and a = in(b) ∈ Pn . Since n + 1 is even and
νn+1(c) = b ⊂ a, we have that

c ⊂ (νn+1)
−1(a) ⊂ νn(a) = νn(a).

Thus, jn(c) = νn(a), that is, jn(c) = νn(in(νn+1(c))). For n even the proof is analogous. �

We say that the sequence (νn) asymptotically commutes with refinements if

lim
n→∞

mesh({ν2n−1(a) : a ∈ P2n−1}) = 0
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and

lim
n→∞

mesh({ν2n(c) : c ∈ Q2n}) = 0.

By the previous proposition, if (νn) commutes with refinements, then (νn) asymptotically
commutes with refinements.

Theorem 3.4. Let f, g ∈ C({0, 1}
N). Then the following assertions are equivalent:

(i) f and g are conjugates;
(ii) there are decreasing null sequences (Pn) and (Qn) of partitions of {0, 1}

N and surjective
graph maps ν2n−1 : Gr( f,P2n−1) → Gr(g,Q2n−1) and ν2n : Gr(g,Q2n) → Gr( f,P2n) so
that the sequence (νn) commutes with refinements;

(iii) there are decreasing null sequences (Pn) and (Qn) of partitions of {0, 1}
N and surjective

graph maps ν2n−1 : Gr( f,P2n−1) → Gr(g,Q2n−1) and ν2n : Gr(g,Q2n) → Gr( f,P2n) so
that the sequence (νn) asymptotically commutes with refinements.

Proof. (i) ⇒ (ii): By the implication (i) ⇒ (ii) in Theorem 3.2, there are decreasing null
sequences (Pn) and (Qn) of partitions of {0, 1}

N and isomorphisms θn : Gr( f,Pn) → Gr(g,Qn)

so that the sequence (θn) commutes with refinements. So, it is enough to define νn = θn for odd
n and νn = θ−1

n for even n.
(ii) ⇒ (iii): Obvious.
(iii) ⇒ (i): For each odd n and each even m, we define

αn = mesh({νn(a) : a ∈ Pn}) and βm = mesh({νm(c) : c ∈ Qm}).

Since (νn) asymptotically commutes with refinements,

(αn)n odd → 0 and (βm)m even → 0.

For each odd n, we choose an hn ∈ H({0, 1}
N) such that

a∈ν−1
n (c)

hn(a) = c for every c ∈ Qn .

Note that

hn(a) ⊂ νn(a) for every a ∈ Pn .

Given σ ∈ {0, 1}
N and m ≥ n with m and n odd, let a ∈ Pn and b ∈ Pm be such that σ ∈ a and

σ ∈ b. Then

hn(σ ) ∈ νn(a) ⊂ νn(a) and hm(σ ) ∈ νm(b) ⊂ νm(a) ⊂ νn(a),

and so d(hm(σ ), hn(σ )) ≤ αn . This proves that (hn)n odd is a Cauchy sequence in C({0, 1}
N)

and so it converges to a certain h ∈ C({0, 1}
N). Similarly, for each even n, we choose a

tn ∈ H({0, 1}
N) such that

c∈ν−1
n (a)

tn(c) = a for every a ∈ Pn .

Then

tn(c) ⊂ νn(c) for every c ∈ Qn .

By arguing as before, we see that (tn)n even converges to a certain t ∈ C({0, 1}
N).
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Now, let σ ∈ {0, 1}
N and n be odd. Let c ∈ Qn+1 and a ∈ Pn be such that σ ∈ c and

tn+1(σ ) ∈ a. As tn+1(σ ) ∈ tn+1(c) ⊂ νn+1(c) ∈ Pn+1 and tn+1(σ ) ∈ a ∈ Pn , we must have
νn+1(c) ⊂ a. Hence,

σ ∈ c ⊂ (νn+1)
−1(a) ⊂ νn(a).

On the other hand,

hn(tn+1(σ )) ∈ hn(a) ⊂ νn(a) ⊂ νn(a).

Therefore, d(hn(tn+1(σ )), σ ) ≤ αn . This proves that (hn ◦ tn+1)n odd → I , the identity map of
{0, 1}

N. Analogously, (tn ◦ hn+1)n even → I . Thus, h ◦ t = t ◦ h = I , and so h ∈ H({0, 1}
N).

Finally, by arguing exactly as in the last paragraph of the proof of Theorem 3.2 (but consider-
ing only odd n), we conclude that f = h−1

◦ g ◦ h. �

4. Generics and applications to dynamics

Suppose that h ∈ H({0, 1}
N), P is a partition of {0, 1}

N and D is a component of Gr(h,P)
which is a dumbbell. Write

D = {u1, . . . , ur } ∪ {v1, . . . , vs} ∪ {w1, . . . , wt },

with usual labeling. We say that D contains a left loop of h (resp. a right loop of h) if there is a
nonempty clopen subset a of u1 (resp. of w1) such that hr (a) = a (resp. ht (a) = a).

By using our methods, we shall now give a simple geometric/graph theoretic description of
the comeager conjugacy class of H({0, 1}

N).

Theorem 4.1. Let S be the set of all h ∈ H({0, 1}
N) with the following property.

(P) For every m ∈ N, there are a partition P of {0, 1}
N of mesh < 1/m and a multiple q ∈ N

of m such that every component of Gr(h,P) is a balanced dumbbell with plate weight q! that
contains both a left and a right loop of h.
Then, S is a comeager conjugacy class of H({0, 1}

N).

Proof. For each m ∈ N, let Sm be the set of all h ∈ H({0, 1}
N) that satisfies the property

contained in (P) for this particular m. If we fix a partition Q of {0, 1}
N, then the map f →

Gr( f,Q) is locally constant on C({0, 1}
N), because f ∼Q g implies Gr( f,Q) = Gr(g,Q).

Moreover, if a is clopen in {0, 1}
N and n ∈ N, then the condition f n(a) ⊂ a is an open condition

on C({0, 1}
N). By applying this to the inverse, we see that f n(a) = a is an open condition

on H({0, 1}
N). Therefore, each Sm is open in H({0, 1}

N). Let us prove that each Sm is also
dense in H({0, 1}

N). For this purpose, fix m ∈ N, f ∈ H({0, 1}
N) and ϵ > 0. By applying

the approximation theorem (Theorem 2.5(b)) with min{
ϵ
2 ,

1
m } in place of ϵ, we obtain positive

integers K , N , S and M with the properties described in the theorem. Choose a multiple q ≥ 2
of m such that q! is a multiple of both N and M . Then, with k = K , s = S and n = m = q!,
Theorem 2.5(b) gives us a g ∈ H({0, 1}

N) and a partition P of {0, 1}
N with

d̃( f, g) <
ϵ

2
and mesh(P) < min


ϵ

2
,

1
m


,

such that Gr(g,P) is a digraph whose components are balanced dumbbells with plate weight q!.
Now, we define h ∈ H({0, 1}

N) in the following way: for each component (dumbbell)

D = {u1, . . . , uq!} ∪ {v1, . . . , vs} ∪ {w1, . . . , wq!}
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of Gr(g,P) (with usual labeling), we choose nonempty proper clopen subsets a of g−1(u2) and
b of g(wq!), define h on uq! so that

h(gq!−1(a)) = a and h(uq! \ gq!−1(a)) = u1 \ a,

define h on wq! so that

h(gq!−1(b)) = b and h(wq! \ gq!−1(b)) = g(wq!) \ b,

and put h = g on the remaining vertices of D. Then, Gr(h,P) = Gr(g,P) and each component
(dumbbell) of Gr(h,P) contains both a left and a right loop of h, which shows that h ∈ Sm .
Moreover, d̃(g, h) < ϵ

2 because mesh(P) < ϵ
2 · Therefore, d̃( f, h) < ϵ, proving that Sm is dense

in H({0, 1}
N). Thus, S =


Sm is a comeager subset of H({0, 1}

N).
In order to prove that S is a conjugacy class, we shall begin by making several important

remarks and introducing further terminology.
Suppose that h ∈ H({0, 1}

N), P is a partition of {0, 1}
N and D is a component of Gr(h,P)

which is a dumbbell. Write

D = {u1, . . . , ur } ∪ {v1, . . . , vs} ∪ {w1, . . . , wt },

with usual labeling. If we replace the set u1 of P by the sets h−1(u2) and h−1(v1), we obtain a
refinement P ′ of P such that Gr(h,P ′) has the following dumbbell as a component:

D′
= {ur , h−1(u2), u2, . . . , ur−1} ∪ {h−1(v1), v1, . . . , vs} ∪ {w1, . . . , wt }.

We call this procedure the method of increasing the bar of the dumbbell to the left. Note that
this method does not change the plate weights but increases the bar length by 1. Similarly, by
breaking w1 in the parts h(vs) and h(wt ), we obtain a refinement P ′′ of P such that Gr(h,P ′′)

has the following dumbbell as a component:

D′′
= {u1, . . . , ur } ∪ {v1, . . . , vs, h(vs)} ∪ {w2, . . . , wt , h(wt )}.

This is called the method of increasing the bar of the dumbbell to the right. Hence, by applying
these methods repeatedly, we can make the bar of the dumbbell D increase to the left and/or to
the right as much as we want. This remark will be quite important in the sequel.

Let h ∈ H({0, 1}
N). We say that a partition P of {0, 1}

N is h-regular if each component of
Gr(h,P) is a balanced dumbbell that contains both a left and a right loop of h and all components
of Gr(h,P) have the same plate weight (denoted w(h,P)). Note that the methods of increasing
the bars of the dumbbells transform h-regular partitions in h-regular partitions. If h ∈ S then there
is h-regular partitions P such that mesh(P) is as small as we want and w(h,P) is a multiple of
any positive integer we want.

Suppose P and P ′ are h-regular partitions. If mesh(P ′) is sufficiently small, then P ′ is
necessarily a refinement of P . Assume that this is the case. Then, each component D′ of
Gr(h,P ′) must be contained in some component D of Gr(h,P), in the sense that the union of
all vertices of D′ is contained in the union of all vertices of D. Moreover, w(h,P ′) is necessarily
a multiple of w(h,P). Write

D = {u1, . . . , uq} ∪ {v1, . . . , vℓ} ∪ {w1, . . . , wq}

and

D′
= {u′

1, . . . , u′

q ′} ∪ {v′

1, . . . , v
′

ℓ′} ∪ {w′

1, . . . , w
′

q ′}

(q = w(h,P) and q ′
= w(h,P ′)), with usual labeling. There are three possibilities.
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(1)


{a : a ∈ D′
} ⊂ u1 ∪ · · · ∪ uq :

By applying the methods of increasing the bar of D′, we may assume u′

1, w
′

1 ⊂ u1. Under
this assumption, we say that D′ is a subdumbbell of D of type 1.
(2)


{a : a ∈ D′

} ⊂ w1 ∪ · · · ∪ wq :
Similarly, we may assume u′

1, w
′

1 ⊂ w1 in this case. Under this assumption, we say that D′ is
a subdumbbell of D of type 2.
(3)


{a : a ∈ D′

} meets v1 ∪ · · · ∪ vℓ:
In this case, there must exist an integer r ≥ 0 such that

v′

r+1 ⊂ v1, v′

r+2 ⊂ v2, . . . , v
′

r+ℓ ⊂ vℓ,

u′

1 ∪ · · · ∪ u′

q ′ ∪ v′

1 ∪ · · · ∪ v′
r ⊂ u1 ∪ · · · ∪ uq

and

v′

r+ℓ+1 ∪ · · · ∪ v′

ℓ′ ∪ w′

1 ∪ · · · ∪ w′

q ′ ⊂ w1 ∪ · · · ∪ wq .

By applying the methods of increasing the bar of D′, we may assume u′

1 ⊂ u1 and w′

1 ⊂ w1.
With this assumption, both the number r of v′

j to the left of v′

r+1 and the number ℓ′ − ℓ − r of
v′

j to the right of v′

r+ℓ are multiples of q . Therefore, by applying the methods of increasing the
bar of D′ again, we may assume r = ℓ′ − ℓ− r . Geometrically, this equality gives us symmetry:
v′

r+1, . . . , v
′

r+ℓ lie in the center of the bar of D′. Under these assumptions, we say that D′ is a
subdumbbell of D of type 3.

The previous discussion suggests the following definition: if P and P ′ are h-regular partitions,
we say that P ′ is an h-subpartition of P if P ′ is a refinement of P and every component of
Gr(h,P ′) is a subdumbbell (of type 1, 2 or 3) of a component of Gr(h,P). We have seen that if
h ∈ S, then every h-regular partition P has h-subpartitions P ′ such that mesh(P ′) is as small as
we want and w(h,P ′) is a multiple of any positive integer we want.

Suppose P ′ is an h-subpartition of P and let D be a component of Gr(h,P). Then D can be
thought of as the union of its subdumbbells relative to P ′. Clearly, there must exist at least one
subdumbbell of D of type 3. Since D has both a left and a right loop of h, there must also exist
subdumbbells of D of types 1 and 2 provided mesh(P ′) is sufficiently small. More precisely, we
can make the number of subdumbbells of D of type 1 (resp. type 2, type 3) as large as we want
by choosing P ′ with mesh(P ′) small enough.

We are now in position to prove that S is a conjugacy class. If f ∈ S and g ∈ H({0, 1}
N) is

conjugate to f , then it is easy to verify that g ∈ S. Let us fix f, g ∈ S. It remains to prove that
f and g are conjugates. In view of Theorem 3.4, it is enough to construct sequences (Pn), (Qn)

and (νn) with the properties described in part (ii) of the theorem.
In order to construct P1, Q1 and ν1, we begin by taking a g-regular partition Q1 with

mesh(Q1) < 1. Then, we take an f -regular partition P1 such that mesh(P1) < 1, w( f,P1)

is a multiple of w(g,Q1) and the set A of all components of Gr( f,P1) has cardinality greater
than or equal to that of the set B of all components of Gr(g,Q1). By applying the methods of
increasing the bars of the dumbbells, we may assume that all dumbbells in A ∪ B have the same
bar length. Choose a surjection φ : A → B. For each D ∈ A, we define ν1 on D as the unique
surjection from D onto φ(D) that maps the bar of D onto the bar of φ(D) and satisfies the
relation

−→
ab ∈ Gr( f,P1) =⇒

−−−−−−→
ν1(a)ν1(b) ∈ Gr(g,Q1) (a, b ∈ D).

In this way, we obtain a surjective graph map ν1 : Gr( f,P1) → Gr(g,Q1).
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In order to construct P2, Q2 and ν2, we begin by taking an f -subpartition P2 of P1 such
that mesh(P2) < 1/2 and every component of Gr( f,P1) has subdumbbells of types 1, 2 and 3
relative to P2. Then, we take a g-subpartition Q2 of Q1 such that mesh(Q2) < 1/2, w(g,Q2)

is a multiple of w( f,P2) and every component of Gr(g,Q1) has subdumbbells of types 1, 2
and 3 relative to Q2. Fix a component D of Gr(g,Q1) and let {D1, . . . , Dr } be the set of all
components D j of Gr( f,P1) such that ν1(D j ) = D. We can divide the set of all subdumbbells
D′ of D relative to Q2 into three sets A1, A2 and A3, according to whether D′ is of type 1, 2 or
3, respectively. Similarly, for each 1 ≤ j ≤ r , the set of all subdumbbells of D j relative to P2 is
a union of three disjoint sets B j,1, B j,2 and B j,3. We may assume that Q2 was chosen so that

Card Ai ≥ Card(B1,i ∪ · · · ∪ Br,i ) for i = 1, 2, 3.

Hence, we may choose a surjection φi : Ai → B1,i ∪ · · · ∪ Br,i (i = 1, 2, 3). Moreover, by using
the facts that the dumbbells D, D1, . . . , Dr have the same bar length and that each number in the
finite sequence w(g,Q2), w( f,P2), w( f,P1), w(g,Q1) is a multiple of its successor, and by
applying the methods of increasing the bars of the dumbbells, we may assume that all dumbbells
in Ai ∪ B1,i ∪ · · · ∪ Br,i have the same bar length (but the bar length may depend on i). Now, for
each i ∈ {1, 2, 3} and each D′

∈ Ai , we define ν2 on D′ as the unique surjection from D′ onto
φi (D′) that maps the bar of D′ onto the bar of φi (D′) and satisfies the relation

−→
ab ∈ Gr(g,Q2) =⇒

−−−−−−→
ν2(a)ν2(b) ∈ Gr( f,P2) (a, b ∈ D′).

With this definition, note that

j1(a) = ν1(i1(ν2(a))) for every a ∈ D′,

where i1 : P2 → P1 and j1 : Q2 → Q1 are the refinement maps. Indeed, it is easy to see that
this is true by using the following elementary arithmetic fact: if n1, n2,m1,m2 ∈ N, m1 divides
n1, n1 divides n2 and n2 divides m2, then the diagram

Zn1
// Zm1

Zn2

OO

Zm2
oo

OO

is commutative, where Zn → Zm denotes the mod m map. By defining ν2 in this way for each
component D of Gr(g,Q1), we obtain a surjective graph map ν2 : Gr(g,Q2) → Gr( f,P2) such
that j1 = ν1 ◦ i1 ◦ ν2.

Now, we apply exactly the same procedure to construct P3, Q3 and ν3 (but with P3 and
Q3 in place of Q2 and P2, respectively), and so on. This completes the proof that f and g are
conjugates. �

Our goal in the rest of the present section is to show how the description of the comeager
conjugacy class of H({0, 1}

N) given by Theorem 4.1 can be used to establish with little effort very
precise properties of the homeomorphisms of this class. This will make clear that this description
is quite useful and very easy to use. We observe that any comeager dynamical property of an
element of H({0, 1}

N) is automatically satisfied by all elements of the comeager conjugacy
class. Let us also mention that several of these properties can also be derived from the explicit
construction of Akin et al. [3].

Let us begin by considering the notion of chaos. As mentioned in the introduction, there are
several different notions of chaos, Li–Yorke chaos being the weakest of them. Let us recall that
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a pair (x, y) is a Li–Yorke pair for a function f if

lim inf
n→∞

d( f n(x), f n(y)) = 0 and lim sup
n→∞

d( f n(x), f n(y)) > 0.

A function f is Li–Yorke chaotic if there is an uncountable set S such that (x, y) is a Li–Yorke
pair for f whenever x and y are distinct points in S. It was proved in [15] that the set of
homeomorphisms in H({0, 1}

N) which have topological entropy zero is comeager in H({0, 1}
N).

Hence, a homeomorphism chosen at “random” is not chaotic in the sense of entropy. We shall
now see that the elements of the comeager conjugacy class are not even Li–Yorke chaotic. In
fact, a much stronger assertion can be made.

Theorem 4.2. No element of the comeager conjugacy class of H({0, 1}
N) has a Li–Yorke pair.

Proof. Let h be an element of the comeager conjugacy class of H({0, 1}
N). Then, h satisfies

Property P of Theorem 4.1. Assume (σ, τ ) is a Li–Yorke pair for h and choose m ∈ N such that

1
m
< lim sup

n→∞

d(hn(σ ), hn(τ )).

Then, there is a partition P of {0, 1}
N of mesh < 1/m such that every component of Gr(h,P) is

a dumbbell. By our choice of m, there must exist infinitely many n’s such that hn(σ ) and hn(τ )

lie in different sets of P . On the other hand, since lim infn→∞ d(hn(σ ), hn(τ )) = 0, there must
exist infinitely many n’s such that both hn(σ ) and hn(τ ) lie in the same set of P . But this is
impossible since every component of Gr(h,P) is a dumbbell and two points in the same vertex
of such a dumbbell can be mapped into different vertices only once. �

Let h : X → X be a homeomorphism, where X is a metric space. A sequence (xn)n∈Z is a
δ-pseudotrajectory (δ > 0) of h if

d(h(xn), xn+1) ≤ δ for every n ∈ Z.

Recall that h is said to have the shadowing property [9,10] (also called pseudo-orbit tracing
property) if for every ϵ > 0 there exists δ > 0 such that every δ-pseudotrajectory (xn)n∈Z of h is
ϵ-shadowed by a real trajectory of h, i.e., there exists x ∈ X such that

d(xn, hn(x)) < ϵ for every n ∈ Z.

Recall also that h is said to have the weak shadowing property [12] if for every ϵ > 0 there
exists δ > 0 such that for every δ-pseudotrajectory (xn)n∈Z of h there exists x ∈ X such that
the set {xn : n ∈ Z} is contained in the ϵ-neighborhood of the orbit {hn(x) : n ∈ Z}. It was
proved in [19] that there is a comeager subset of H({0, 1}

N), each element of which has the weak
shadowing property. We shall now see that it actually has the shadowing property.

Theorem 4.3. Each element of the comeager conjugacy class of H({0, 1}
N) has the shadowing

property.

Proof. Let h be an element of the comeager conjugacy class of H({0, 1}
N). Fix ϵ > 0 and

choose m ∈ N with 1/m < ϵ. Then, there is a partition P of {0, 1}
N of mesh < 1/m such

that every component of Gr(h,P) is a dumbbell. Let δ be the minimum distance between two
distinct elements of P . To each sequence X = (σn)n∈Z in {0, 1}

N, we associate the sequence
S(X) = (Sn(X))n∈Z in P which satisfies σn ∈ Sn(X) for every n ∈ Z. Let W = (τn)n∈Z be a
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δ-pseudotrajectory of h and let us prove that it can be ϵ-shadowed by a real trajectory of h. Let

D = {u1, . . . , ur } ∪ {v1, . . . , vs} ∪ {w1, . . . , wt }

be the dumbbell in Gr(h,P) (with usual labeling) that contains a vertex containing τ0. By our
choice of δ, there are only three possibilities for the sequence S(W ), namely:

(1) (. . . , u1, . . . , ur , u1, . . . , ur , v1, . . . , vs, w1, . . . , wt , w1, . . . , wt , . . .), or
(2) (. . . , u1, . . . , ur , u1, . . . , ur , u1, . . . , ur , . . .), or
(3) (. . . , w1, . . . , wt , w1, . . . , wt , w1, . . . , wt , . . .).

Since P has mesh <ϵ, it is enough to find real trajectories

X = (hn(x))n∈Z, Y = (hn(y))n∈Z and Z = (hn(z))n∈Z

such that S(X), S(Y ) and S(Z) are of type (1), (2) and (3), respectively. For the first case, it is
enough to get any x in a vertex of the bar of D. For the second case, note that

u1 ⊃ h−r (u1) ⊃ h−2r (u1) ⊃ · · · ,

so that the intersection


∞

n=0 h−nr (u1) is nonempty; then take any y in this intersection. Finally,
since

w1 \ h(vs) ⊃ ht (w1 \ h(vs)) ⊃ h2t (w1 \ h(vs)) ⊃ · · · ,

we may take any z ∈


∞

n=0 hnt (w1 \ h(vs)). �

Given α ∈ (N \ {1})N, consider the product space

∆α =

∞
i=1

Zα(i),

where Zk = {0, . . . , k − 1} with the discrete topology. Note that ∆α is homeomorphic to the
Cantor space. We define an operation of addition on ∆α in the following way: if (x1, x2, . . .) and
(y1, y2, . . .) are in ∆α , then

(x1, x2, . . .)+ (y1, y2, . . .) = (z1, z2, . . .),

where z1 = x1 + y1 mod α(1) and, in general, zi is defined recursively as zi = xi + yi + ϵi−1
mod α(i) where ϵi−1 = 0 if xi−1 + yi−1 + ϵi−2 < α(i − 1) and ϵi−1 = 1 otherwise. If we let fα
be the “+1” map, that is,

fα(x1, x2, . . .) = (x1, x2, . . .)+ (1, 0, 0, . . .),

then (∆α, fα) is a dynamical system known as a solenoid, adding machine or odometer. We also
define a function Mα from the set of primes into N ∪ {0, 1, 2, . . . ,∞} by

Mα(p) =

∞
i=1

n(i),

where n(i) is the largest integer such that pn(i) divides α(i). The following beautiful
characterization of odometers up to topological conjugacy is due to Buescu and Stewart [11].

Let α, β ∈ (N \ {1})N. Then fα and fβ are topologically conjugate if and only if Mα = Mβ .
When Mα(p) = ∞ for every p, fα is said to be an universal odometer. It follows from the

above-mentioned result that any two universal odometers are topologically conjugate.
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We shall need the following result from [8].
Let α ∈ (N \ {1})N and mi = α(1)α(2) · · ·α(i) for each i . Let f : X → X be a continuous

map of a compact topological space X . Then f is topologically conjugate to fα if and only if
(1)–(3) hold.

(1) For each positive integer i , there is a cover Pi of X consisting of mi nonempty pairwise
disjoint clopen sets which are cyclically permuted by f .

(2) For each positive integer i , Pi+1 refines Pi .
(3) If W1 ⊃ W2 ⊃ W3 ⊃ · · · is a nested sequence with Wi ∈ Pi for each i , then


∞

i=1 Wi
consists of a single point.

Let us also recall that the ω-limit set ω(x, f ) of f at x is the set of all limit points of the
sequence ( f n(x))n∈N.

Theorem 4.4. Let h be an element of the comeager conjugacy class of H({0, 1}
N). Then, the

restriction of h to every ω-limit set ω(σ, h) is topologically conjugate to the universal odometer.

Proof. Since h satisfies Property P, we can construct inductively a sequence (Pm)m∈N of
partitions of {0, 1}

N and a sequence (qm)m∈N of natural numbers so that the following properties
hold for every m ∈ N:

• mesh(Pm) < 1/m;
• Pm+1 refines Pm ;
• qm+1 is a multiple of mqm ;
• every component of Gr(h,Pm) is a balanced dumbbell of plate weight qm !

Let σ ∈ {0, 1}
N and consider the ω-limit set ω(σ, h). For each m ∈ N, σ belongs to a

vertex of a certain dumbbell Dm in Gr(h,Pm). Then, ω(σ, h) must be contained in one of the
loops of Dm , for each m ∈ N. Thus, it follows from the above-mentioned result from [8] that
h|ω(σ,h) : ω(σ, h) → ω(σ, h) is topologically conjugate to fα , where

α =


q1!,

q2!

q1!
,

q3!

q2!
,

q4!

q3!
, . . .


.

Since m! divides qm+1!

qm !
for every m ∈ N, fα is an universal odometer. �

Given a continuous map f : X → X , where X is a metric space, we shall denote by P( f )
(resp. R( f ), Ω( f ), C R( f )) the set of all periodic points (resp. recurrent points, nonwandering
points, chain recurrent points) of f [5].

Theorem 4.5. Let h be an element of the comeager conjugacy class of H({0, 1}
N). Then, we

have the following.

(a) P(h) is empty.
(b) R(h) = Ω(h) = C R(h).
(c) R(h) is a Cantor set with empty interior in {0, 1}

N.

Proof. (a): Obvious.
(b): Since R(h) ⊂ Ω(h) ⊂ C R(h), let us prove that C R(h) ⊂ R(h). For this purpose, suppose
σ ∉ R(h). Then, there is an m ∈ N such that the set

{n ∈ N : d(hn(σ ), σ ) < 1/m}
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is finite. Let P be a partition of {0, 1}
N of mesh< 1/m such that every component of Gr(h,P) is

a dumbbell. Let D be the dumbbell in Gr(h,P) which contains a vertex containing σ and write

D = {u1, . . . , ur } ∪ {v1, . . . , vs} ∪ {w1, . . . , wt }

with usual labeling. By our choice of m, σ must belong either to the bar {v1, . . . , vs} or to the
loop {u1, . . . , ur } and, in this last case, its trajectory must leave this loop at some moment. Both
possibilities imply that σ ∉ C R(h).
(c): Let us now prove that R(h) is a Cantor set. Since R(h) = Ω(h), which is closed and
nonempty, it is enough to show that R(h) has no isolated point. So, take a point τ ∈ R(h).
Then τ ∈ ω(τ, h). Since ω(τ, h) ⊂ Ω(h) = R(h) and ω(τ, h) is a Cantor set (Theorem 4.4), τ
is not an isolated point of R(h). Finally, suppose A is a nonempty open set of {0, 1}

N which is
contained in R(h) and fix σ ∈ A. Let P and D be as in the proof of (b), where m is chosen so
big that the vertex v of D containing σ must be contained in A. It is easy to see that every point
in every set of the collection

{h−r (v1), . . . , h−2(v1), h−1(v1), v1, . . . , vs, h(vs), h2(vs), . . . , ht (vs)}

is nonrecurrent. Thus, every vertex of D contains a nonrecurrent point, contradicting the fact that
v is contained in A. �

To the best of our knowledge, the fact that the set of all h ∈ H({0, 1}
N)which have no periodic

point is comeager in H({0, 1}
N) first appeared in [4].

Recall that a mapping f from a metric space X into itself is said to be equicontinuous at a
point x ∈ X if for every ϵ > 0 there exists δ > 0 such that

d(y, x) < δ =⇒ d( f n(y), f n(x)) < ϵ for every n ≥ 0.

Moreover, f is said to be chain continuous at x [1,6] if for every ϵ > 0 there exists δ > 0 such
that for any choice of points

x0 ∈ B(x; δ), x1 ∈ B( f (x0); δ), x2 ∈ B( f (x1); δ), . . . ,

we have that

d(xn, f n(x)) < ϵ for every n ≥ 0.

Of course, chain continuity is a much stronger property than equicontinuity.

Theorem 4.6. Let h be an element of the comeager conjugacy class of H({0, 1}
N). Then, h is

chain continuous at every nonrecurrent point and so it is chain continuous at every point of a
dense open set, but it is not equicontinuous at each point of an uncountable set.

Proof. Let σ be a nonrecurrent point of h and fix ϵ > 0. Choose m ∈ N such that 1/m < ϵ and
the set

{n ∈ N : d(hn(σ ), σ ) < 1/m}

is finite. Let P be a partition of {0, 1}
N of mesh < 1/m such that every component of Gr(h,P)

is a dumbbell and let

D = {u1, . . . , ur } ∪ {v1, . . . , vs} ∪ {w1, . . . , wt }

be the dumbbell in Gr(h,P) (with usual labeling) that contains a vertex containing σ . We want
to find a δ > 0 such that the relations σ0 ∈ B(σ ; δ), σ1 ∈ B(h(σ0); δ), σ2 ∈ B(h(σ1); δ), . . .
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imply d(σn, hn(σ )) < ϵ for every n ≥ 0. If σ ∈ v1 ∪· · ·∪vs ∪w1 ∪· · ·∪wt , then it is enough to
choose 0 < δ < ϵ smaller than the minimum distance between two distinct elements of P . If σ
is in the loop {u1, . . . , ur }, our choice of m implies that the trajectory of σ must eventually leave
this loop, and so it is clear that we can also find such a δ in this case. Thus, we have proved that
h is chain continuous at every point of the set {0, 1}

N
\ R(h), which is open and dense in view of

Theorem 4.5.
Let us now prove the last assertion. Since u1 ⊃ h−r (u1) ⊃ h−2r (u1) ⊃ · · · , the closed set

Y =

∞
n=0

h−nr (u1)

is nonempty and satisfies hr (Y ) = Y . If Y were open, it would follow from the inclusions
u1 \ Y ⊃ h−r (u1 \ Y ) ⊃ h−2r (u1 \ Y ) ⊃ · · · that the intersection


∞

n=0 h−nr (u1 \ Y ) is
nonempty, which is impossible. Thus, the closed set

Z = u1 \ Y ∩ Y

is nonempty. Moreover, hr (Z) = Z . If σ ∈ Z then the trajectory of σ remains in the loop
{u1, . . . , ur } forever (because σ ∈ Y ) but as close to σ as we want there are points of u1 \ Y
(because σ ∈ u1 \ Y ) and the trajectories of these points eventually go to the bar of the dumbbell
D. This proves that h is not equicontinuous at σ . Thus, h is not equicontinuous at each point of
the set

Z ∪ h(Z) ∪ · · · ∪ hr−1(Z).

Since this set is closed and invariant under h, it contains the ω-limit set of each of its elements,
and so it is uncountable in view of Theorem 4.4. �

5. The case of continuous maps

Suppose that f ∈ C({0, 1}
N), P is a partition of {0, 1}

N and B is a component of Gr( f,P)
which is a balloon. Write

B = {v1, . . . , vs} ∪ {w1, . . . , wt },

with usual labeling. We say that B is strict relative to f if f (vi ) ( vi+1 for every 1 ≤ i < s,
f (w j ) ( w j+1 for every 1 ≤ j < t , and f (vs) ∪ f (wt ) ( w1.

Surprisingly enough, we shall now prove that there is a comeager subset of C({0, 1}
N) such

that any two elements of this set are conjugate to each other.

Theorem 5.1. Let S be the set of all f ∈ C({0, 1}
N) with the following property.

(Q) For every m ∈ N, there are a partition P of {0, 1}
N of mesh <1/m and a multiple q ∈ N

of m such that every component of Gr( f,P) is a balloon of type (q!, q!) which is strict relative
to f .
Then, S is a comeager subset of C({0, 1}

N) such that any two of its elements are conjugate to
each other.

Proof. For each m ∈ N, let Sm be the set of all f ∈ C({0, 1}
N) that satisfies the property

contained in (Q) for this particular m. Clearly, each Sm is open in C({0, 1}
N). In order to prove

that each Sm is also dense C({0, 1}
N), let us fix m ∈ N, f ∈ C({0, 1}

N) and ϵ > 0. It follows
from Theorem 2.5(a) that there are g ∈ C({0, 1}

N) with d̃( f, g) < ϵ
2 , a partition P of {0, 1}

N
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of mesh < min{
ϵ
2 ,

1
m }, and a multiple q ∈ N of m such that Gr(g,P) is a digraph whose

components are balloons of type (q!, q!). If ψ : {0, 1}
N

→ {0, 1}
N maps each a ∈ P to a single

point of a, then ψ is continuous. Moreover, ψ ◦ g ∼P g, which implies that Gr(ψ ◦ g,P) =

Gr(g,P) and d̃(ψ ◦ g, g) ≤ mesh(P) < ϵ
2 (and so d̃(ψ ◦ g, f ) < ϵ). Since ψ ◦ g has finite

range, each component (balloon) of Gr(ψ ◦ g,P) is strict relative to ψ ◦ g. Hence, ψ ◦ g ∈ Sm ,
proving that Sm is dense in C({0, 1}

N). Thus, S =


Sm is a comeager subset of C({0, 1}
N).

Let f ∈ C({0, 1}
N). We say that a partition P of {0, 1}

N is f -admissible if there is a k ∈ N
such that every component of Gr( f,P) is a balloon of type (k, k) which is strict relative to f . In
this case, we denote this number k by b( f,P). If f ∈ S then there are f -admissible partitions
P such that mesh(P) is as small as we want and b( f,P) is a multiple of any positive integer we
want.

Suppose P and P ′ are f -admissible partitions. If mesh(P ′) is sufficiently small, then P ′ is
necessarily a refinement of P . Assume that this is the case. Then, each component B ′ of Gr( f,P ′)

must be contained in some component B of Gr( f,P), in the sense that the union of all vertices
of B ′ is contained in the union of all vertices of B. Moreover, b( f,P ′) is necessarily a multiple
of b( f,P). Let B be a component of Gr( f,P). We say that a component B ′ of Gr( f,P ′) is a
subballoon of B of type u if the initial vertex of B ′ is contained in the vertex u of B. With this
definition, B can be thought of as the union of its subballoons relative to P ′. Since the balloon B
is strict relative to f , there must exist subballoons of B of every type u ∈ B provided mesh(P ′)

is sufficiently small. More precisely, we can make the number of subballoons of B of each type
u as large as we want by choosing P ′ with mesh(P ′) small enough.

If f ∈ S and g ∈ C({0, 1}
N) is conjugate to f , then it is easy to verify that g ∈ S. Take

f, g ∈ S and let us prove that f and g are conjugates. It is enough to construct sequences (Pn),
(Qn) and (νn) with the properties described in part (ii) of Theorem 3.4.

We begin by taking a g-admissible partition Q1 with mesh(Q1) < 1. Then, we take an
f -admissible partition P1 such that mesh(P1) < 1, b( f,P1) is a multiple of b(g,Q1) and the
set X of all components of Gr( f,P1) has cardinality greater than or equal to that of the set Y of
all components of Gr(g,Q1). Finally, we choose a surjection φ : X → Y and, for each B ∈ X ,
we define ν1 on B as the unique surjection from B onto φ(B) that maps the initial vertex of B to
the initial vertex of φ(B) and satisfies the relation

−→
ab ∈ Gr( f,P1) =⇒

−−−−−−→
ν1(a)ν1(b) ∈ Gr(g,Q1) (a, b ∈ B).

In this way, we obtain a surjective graph map ν1 : Gr( f,P1) → Gr(g,Q1).
Now, we take an f -admissible partition P2 such that P2 refines P1, mesh(P2) < 1/2 and

every component of Gr( f,P1) has subballoons of every type relative to P2. Then, we take a
g-admissible partition Q2 such that Q2 refines Q1, mesh(Q2) < 1/2, b(g,Q2) is a multiple
of b( f,P2) and every component of Gr(g,Q1) has subballoons of every type relative to Q2.
Let us fix a component B of Gr(g,Q1) and let {B1, . . . , Br } be the set of all components Bk
of Gr( f,P1) such that ν1(Bk) = B. For each u ∈ B, let Xu be the set of all subballoons of B
(relative to Q2) of type u. Moreover, for each 1 ≤ k ≤ r , let Yk,u be the set of all subballoons of
Bk (relative to P2) of type v for some v ∈ ν−1

1 ({u}). We may assume that Q2 was chosen so that

Card Xu ≥ Card(Y1,u ∪ · · · ∪ Yr,u) for every u ∈ B.

Hence, we may choose a surjection φu : Xu → Y1,u ∪ . . .∪ Yr,u (u ∈ B). Finally, for each u ∈ B
and each B ′

∈ Xu , we define ν2 on B ′ as the unique surjection from B ′ onto φu(B ′) that maps
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the initial vertex of B ′ to the initial vertex of φu(B ′) and satisfies the relation
−→
ab ∈ Gr(g,Q2) =⇒

−−−−−−→
ν2(a)ν2(b) ∈ Gr( f,P2) (a, b ∈ B ′).

We claim that

(∗) j1(a) = ν1(i1(ν2(a))) for every a ∈ B ′,

where i1 : P2 → P1 and j1 : Q2 → Q1 are the refinement maps. In fact, let us first consider the
initial vertex c of B ′. Let k ∈ {1, . . . , r} be such that φu(B ′) ∈ Yk,u . Since j1(c) = u (because
B ′

∈ Xu) and i1(ν2(c)) ∈ ν−1
1 ({u}) (because ν2(c) is the initial vertex of φu(B ′) and φu(B ′) ∈

Yk,u), it follows that c satisfies the equality in (∗). Now, let us assume that a certain vertex a of

B ′ satisfies the equality in (∗). Let b be the unique vertex of B ′ such that
−→
ab ∈ B ′. Since

−→
ab ∈ B ′

=⇒
−−−−−−→
j1(a) j1(b) ∈ B,

−→
ab ∈ B ′

=⇒
−−−−−−→
ν2(a)ν2(b) ∈ φu(B

′)

=⇒
−−−−−−−−−−−−→
i1(ν2(a))i1(ν2(b)) ∈ Bk

=⇒
−−−−−−−−−−−−−−−−−−→
ν1(i1(ν2(a)))ν1(i1(ν2(b))) ∈ B,

and we are assuming that j1(a) = ν1(i1(ν2(a))), it follows that b also satisfies the equality
in (∗). By induction, we see that (∗) holds. Thus, by defining ν2 in this way for each compo-
nent B of Gr(g,Q1), we obtain a surjective graph map ν2 : Gr(g,Q2) → Gr( f,P2) such that
j1 = ν1 ◦ i1 ◦ ν2.

Now, we apply exactly the same procedure to construct P3, Q3 and ν3 (but with P3 and Q3
in place of Q2 and P2, respectively), and so on. This completes the proof. �

Let us now establish some applications to dynamics.
It was proved in [13] that the set of elements of C({0, 1}

N)which have zero topological entropy
and no periodic points is comeager in C({0, 1}

N). Hence, an element chosen at “random” from
C({0, 1}

N) is not chaotic in the sense of entropy nor in the sense of Devaney. We show something
much stronger below.

Theorem 5.2. There is a comeager subset of C({0, 1}
N), no element of which has a Li–Yorke

pair.

Proof. Let f ∈ C({0, 1}
N) satisfy Property Q of Theorem 5.1. Suppose that σ, τ ∈ {0, 1}

N

satisfy

lim inf
n→∞

d( f n(σ ), f n(τ )) = 0.

Fix ϵ > 0 and choose m ∈ N such that 1/m < ϵ. Then, there is a partition P of {0, 1}
N of mesh

< 1/m such that every component of Gr( f,P) is a balloon. Moreover, there must exist an n0 ∈ N
such that both f n0(σ ) and f n0(τ ) lie in the same vertex a of Gr( f,P). Let B be the component
of Gr( f,P) that contains a. Since B is a balloon, f maps each vertex of B into a vertex of B.
Hence, both f n(σ ) and f n(τ ) lie in the same vertex of B, so that d( f n(σ ), f n(τ )) < ϵ, for each
n ≥ n0. This proves that

lim
n→∞

d( f n(σ ), f n(τ )) = 0,

and so (σ, τ ) is not a Li–Yorke pair for f . �
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In contrast to the case of homeomorphisms (Theorem 4.6), we have the following.

Theorem 5.3. The set of maps f of C({0, 1}
N) such that f is chain continuous at every point is

comeager in C({0, 1}
N).

Proof. Let f ∈ C({0, 1}
N) satisfy Property Q. Fix ϵ > 0 and choose m ∈ N such that

1/m < ϵ. Then, there is a partition P of {0, 1}
N of mesh < 1/m such that every component

of Gr( f,P) is a balloon. Let δ be the minimum distance between two distinct elements of P .
Given σ ∈ {0, 1}

N, let B be the component of Gr( f,P) which contains a vertex containing σ .
Since B is a balloon, f maps each vertex of B into a vertex of B. Hence, if σ0 ∈ B(σ ; δ),
σ1 ∈ B( f (σ0); δ), σ2 ∈ B( f (σ1); δ), . . . , then both σn and f n(σ ) lie in the same vertex of B,
so that d(σn, f n(σ )) < ϵ, for every n ≥ 0. �

It was proved in [14] that there is a comeager subset of C({0, 1}
N) such that each element f in

this set has property that the restriction of f to the ω-limit set ω(σ, f ) is topologically conjugate
to the universal odometer for a comeager set of σ ∈ {0, 1}

N. The next result tells us that this
actually holds for every point σ ∈ {0, 1}

N.

Theorem 5.4. There is a comeager subset of C({0, 1}
N) such that each f in this set has the

following property. The restriction of f to every ω-limit set ω(σ, f ) is topologically conjugate
to the universal odometer.

Proof. The proof of this result is similar to that of Theorem 4.4 and so we omit it. �

Theorem 5.5. The set of all f ∈ C({0, 1}
N) which satisfies the following properties is comeager

in C({0, 1}
N).

(a) P( f ) is empty.
(b) R( f ) = Ω( f ) = C R( f ).
(c) R( f ) is a Cantor set with empty interior in f ({0, 1}

N).

Proof. Let f ∈ C({0, 1}
N) satisfy Property Q.

(a): Obvious.
(b): The fact that f is chain continuous at every point (Theorem 5.3) clearly implies that
C R( f ) ⊂ R( f ), and so (b) holds.
(c): If τ ∈ R( f ) then τ ∈ ω(τ, f ) ⊂ R( f ), which implies that τ is not an isolated point of R( f )
since ω(τ, f ) is a Cantor set (Theorem 5.4). In view of (b), we conclude that R( f ) is a Cantor
set. Finally, suppose that U is a nonempty open set of f ({0, 1}

N) which is contained in R( f ).
Fix σ ∈ U and let V be an open set of {0, 1}

N such that U = V ∩ f ({0, 1}
N). Let P be a partition

of {0, 1}
N such that every component of Gr( f,P) is a balloon and mesh(P) is so small that the

vertex v of Gr( f,P) containing σ must be contained in V . Let

B = {v1, . . . , vs} ∪ {w1, . . . , wt }

be the component (balloon) of Gr( f,P) which contains the vertex v. Since σ ∈ R( f ), v must be
one of the vertices w1, . . . , wt ; say v = w j . Then

f j (vs) ⊂ w j = v ⊂ V and f j (vs) ∩ R( f ) = ∅,

which implies that f j (vs) ⊂ U \ R( f ) = ∅, a contradiction. �

We remark that it was established in [13] that the set of f ∈ C({0, 1}
N) without periodic point

forms a comeager subset of C({0, 1}
N).
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