
J. Math. Anal. Appl. 380 (2011) 163–176

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Minimal tori with low nullity

David L. Johnson a, Oscar Perdomo b,∗
a Department of Mathematics, Lehigh University, Bethlehem, PA 18015-3174, United States
b Department of Mathematics, Central Connecticut State University, New Britain, CT 06050, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 January 2010
Available online 22 February 2011
Submitted by Steven G. Krantz

Keywords:
Minimal tori on spheres
Stability operator
Nullity

The nullity of a minimal submanifold M ⊂ Sn is the dimension of the nullspace of the
second variation of the area functional. That space contains as a subspace the effect
of the group of rigid motions SO(n + 1) of the ambient space, modulo those motions
which preserve M , whose dimension is the Killing nullity kn(M) of M . In the case of 2-
dimensional tori M in S3, there is an additional naturally-defined 2-dimensional subspace
that contributes to the nullity; the dimension of the sum of the action of the rigid motions
and this space is the natural nullity nnt(M). In this paper we will study minimal tori in S3

with natural nullity less than 8. We construct minimal immersions of the plane R
2 in S3

that contain all possible examples of tori with nnt(M) < 8. We prove that the examples
of Lawson and Hsiang with kn(M) = 5 also have nnt(M) = 5, and we prove that if the
nnt(M) � 6 then the group of isometries of M is not trivial.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let ρ̃ : M → S3 be a minimal immersion of an oriented surface without boundary M in the unit three dimensional
sphere S3 ⊂ R

4. Let N : M → S3 be the Gauss map, i.e. N(m) ⊥ Tm M and 〈N(m),m〉 = 0. For any m ∈ M , a(m) will denote
the nonnegative principal curvature of M at m and W1(m) and W2(m) will denote two unit tangent vectors such that
dNm(W1(m)) = −a(m)W1(m) and dNm(W2(m)) = a(m)W2(m). When M is a torus, it is known that for every m, a(m) is
positive [1], therefore in this case we can choose W1(m) and W2(m) so that they define smooth vector fields on M . In the
following, for M a torus, W1 and W2 denote such unit tangent vector fields and a : M → R will be the smooth function
given by the positive principal curvature. Since M is minimal, M is a critical point of the area functional. Since M ↪→ S3 has
codimension 1, any variation of the surface M is given by a function f ∈ C∞(M). The second variation of the area function
at this critical point is given by the stability operator

J : C∞(M) → C∞(M) given by J ( f ) := −� f − 2a2 f − 2 f .

The nullity of a minimal surface is defined as the dimension of the kernel of the operator J and will be denoted by n(M).
Elements of the nullity are infinitesimal variations of M which, up to order 2, do not change the area of M .

1.1. Killing nullity

Given a fixed matrix B ∈ so(4), define f B : M → R by f B = 〈Bρ̃(m), N(m)〉. It is clear that f B satisfies the elliptic equation
J ( f B) = 0 because, when we move the immersion M by the group of isometries eBt : S3 → S3 we induce a family that leaves
the area and second fundamental form constant; f B is the function associated with this family.
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In [2], Lawson and Hsiang classify all the minimal surfaces that are invariant under a 1-parametric group of isometries
in S3. One way to see this classification is the following: Define the Killing nullity by setting K S := { f B : B ∈ so(4)} to
be the space of all variations arising from SO(4), and the Killing nullity is defined as kn(M) := dim(K S). We have that
kn(M) � n(M) and in general the Killing nullity is expected to be 6 since the dimension of so(4) is 6. Lawson and Hsiang
classify all the examples of surfaces with kn(M) < 6, i.e. they classify all minimal surfaces with not full Killing nullity. More
precisely, their classification can be described in the following way,

K3 = {
M ⊂ S3: kn(M) = 3

}
,

which is the set of totally geodesic spheres. Up to rigid motions there is only one example.

K4 = {
M ⊂ S3: kn(M) = 4

}
is the set of Clifford tori, and

K5 = {
M ⊂ S3: kn(M) = 5

}
is a collection of immersed minimal tori. There are infinitely many non-isometric examples in K5. One of the goals of this
paper will be to provide a better understanding of this set.

1.2. Natural nullity

Minimal tori in S3 will have a potentially larger nullity than the Killing nullity. For a minimal torus, since W1 and W2 are

globally defined, we can define hθ : M → R as the directional derivative of −2a− 1
2 in the direction cos(θ)W1 + sin(θ)W2,

that is, hθ = cos(θ)a− 3
2 W1(a) + sin(θ)a− 3

2 W2(a). For tori, H S = {λhθ : λ ∈ R, θ ∈ S1} form a subspace of ker( J ), which
follows by a direct computation. In general, dim(H S) := hn(M) is expected to be 2. Recall that the functions f B defined
above also satisfy J ( f B) = 0, that is, they represent infinitesimal variations of the M through minimal tori. The functions
f B are not only infinitesimal variations but actually generate a family of minimal tori, namely the family t → et M . The
functions hθ are also infinitesimal variations of M through minimal immersions since J (hθ ) = 0, however, the authors have
not yet been able to determine whether or not the functions hθ generate a family of minimal tori.

The principle focus of this paper is to study the space K S + H S := N S , the subspace of the nullity arising from these
two natural sources. We call the natural nullity of the space M nnt(M) := dim(N S). In this paper we classify all minimal tori
with nnt(M) < 8.

The Lawson–Hsiang examples, beyond the Clifford torus, will be shown by a Liouville argument to be the immersed
minimal tori with dim(H S) = 1, as well as those having Killing nullity 5. We also show, using a result by Ramanathan about
isometries of a minimal surfaces of S3, that if dim(H S) = 1 then M ∈ K5. In other words, we have that

N N5 = {
M ⊂ S3: nnt(M) = 5

} = K5 = H1,

where H1 = {M ⊂ S3: dim(H S) = 1}.
We construct every possible torus with nnt(M) < 8 by building, for any angle θ ∈ S1 and any skew-symmetric matrix B ,

an integrable distribution D B,θ in SO(4) × R
2 with the property that the projection onto the first column in SO(4) always

defines a smooth minimal immersion of R
2. If M is a torus with nnt(M) < 8 then there is a B and θ for which M is the

image of such a leaf. In particular, by our previous result we have that if M ∈ K5 then dim(H S) = 1, so hθ = 0 for some θ .
This observation tells us that K5 can be obtained as coming from examples in the distribution D B,θ . We prove that if M ∈ K5
then hθ+ π

2
∈ K S , i.e. we prove that not only is kn(M) = 5 but also nnt(M) = 5.

To describe our last result we point out that if M ∈ K5 then nnt(M) = 5 and M is invariant under infinitely many
isometries (a 1-parameter group to be precise). We prove that if nnt(M) = 6 then M has some nontrivial isometry.

The authors would like to thank the referee for numerous suggestions and comments.

2. Preliminaries

This section reviews some known results that will be used later on. The first result, due to Blaine Lawson, has already
been used in the introduction in order to define the unit tangent smooth vector fields W1 and W2 in an immersed minimal
torus of S3.

Theorem 2.1. (See Lawson [1].) If M ⊂ S3 is a closed minimal surface and a : M → R denotes the nonnegative principal curvature
function, then a is positive everywhere if and only if χ(M) = 0.

The next theorem also was mentioned in the introduction in order to define the natural nullity for tori. Even though this
is a known result, for completeness sake we will provide a proof at the end of this section.



D.L. Johnson, O. Perdomo / J. Math. Anal. Appl. 380 (2011) 163–176 165
Theorem 2.2. If M ⊂ S3 is a minimal immersed torus, and W1 : M → S3 and W2 : M → S3 are unit vector fields that define the
principal directions, then the functions

h0,h π
2

: M → R given by h0 = a− 3
2 W1(a) and h π

2
= a− 3

2 W2(a)

satisfy

J (h0) = −�h0 − 2h0 − 2a2h0 = 0 = J (h π
2
).

There is a correspondence between constant mean curvature (CMC) surfaces in Euclidean space and minimal surfaces
in S3. The proof of Theorem 2.2 for the case of CMC surfaces in Euclidean space is established in Sections §2 and §3
of [3].

In Section 4 we construct a family of minimal immersions of the plane into S3. The following theorem will be used to
show that Lawson–Hsiang examples correspond to a subfamily of those immersions.

Theorem 2.3. (See Ramanathan [4].) Let ρ̃ : M → S3 be a minimal immersion of an oriented compact surface. Suppose that M admits
a one parameter group of isometries φt : M → M with respect to the induced metric. Then, there exists a one-parameter family of
orientation preserving isometries Φt of S3 such that ρ̃ ◦ φt = Φt ◦ ρ̃ for all t ∈ R.

The next theorem is a consequence of the uniformization theorem applied to a minimal torus in S3.

Theorem 2.4. For every minimal immersion of a torus ρ̃ : M → S3 , there exists a covering map τ : R
2 → M, a doubly periodic

conformal immersion ρ : R
2 → S3 , a Gauss map ν : R

2 → S3 , and a fixed angle α, so that

ρ(u, v) = ρ̃
(
τ (u, v)

)
, ν(u, v) ⊥ ρ∗

(
T(u,v)R

2), ν(u, v) ⊥ ρ(u, v),

and

∂2ρ

∂u2
= − ∂r

∂u

∂ρ

∂u
+ ∂r

∂v

∂ρ

∂v
+ cos(2α)ν − e−2rρ,

∂2ρ

∂v2
= ∂r

∂u

∂ρ

∂u
− ∂r

∂v

∂ρ

∂v
− cos(2α)ν − e−2rρ,

∂2ρ

∂u∂v
= − ∂r

∂v

∂ρ

∂u
− ∂r

∂u

∂ρ

∂v
− sin(2α)ν,

∂ν

∂u
= e2r

(
− cos(2α)

∂ρ

∂u
+ sin(2α)

∂ρ

∂v

)
,

∂ν

∂v
= e2r

(
sin(2α)

∂ρ

∂u
+ cos(2α)

∂ρ

∂v

)
,

where e−2r = 〈 ∂ρ
∂u ,

∂ρ
∂u 〉 = 〈 ∂ρ

∂v ,
∂ρ
∂v 〉. Moreover, �r + 2 sinh(2r) = 0.

Proof. The idea of the proof is the following: the existence of the conformal map ρ and the covering τ follows from the
uniformization theorem, the existence of the constant α follows from the fact that

f (z) = f (u + iv) =
〈
∂2ρ

∂u2
, ν

〉
− i

〈
∂2ρ

∂u∂v
, ν

〉

is an analytic, doubly periodic function in the whole plane, and therefore is constant. Clearly this constant function f is
not identically zero otherwise M would be totally geodesic. By scaling the coordinates u and v by a constant, we can make
f (u + iv) = cos(2α) + i sin(2α) for some constant angle α.

To complete the proof, the equations for the second derivatives of ρ are just the standard computation of the Christoffel
symbols, and the elliptic equation of r follows from computing the Gauss curvature using the Christoffel symbols and setting
it to 1 − e4r , i.e. this elliptic equation follows from the Gauss equation. �
Remark 2.5. We can change the angle α to any value by rotating the coordinates u and v .

Corollary 2.6. Using the same notation as in Theorem 2.4, the principal directions of the minimal immersion are given by

V 1 = er
(

cos(α)
∂ρ − sin(α)

∂ρ
)

and V 2 = er
(

sin(α)
∂ρ + cos(α)

∂ρ
)

.

∂u ∂v ∂u ∂v
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More precisely,

dν
({dρ(u,v)}−1(W1 ◦ τ )

) = −e2r V 1 and dν
({dρ(u,v)}−1(W2 ◦ τ )

) = e2r V 2.

Moreover, it follows from the last expression that the principal curvatures are ±a where the function a : M → R is defined by
a(τ (u, v)) = e2r(u,v) . We also have that hα ◦ τ = 2 ∂r

∂u and hα+ π
2

◦ τ = 2 ∂r
∂v .

Proof.

−dν
({dρ(u,v)}−1(W1 ◦ τ )

) = erdν

(
− cos(α)

∂

∂u
+ sin(α)

∂

∂v

)

= e3r
(

− cos(α)

(
− cos(2α)

∂ρ

∂u
+ sin(2α)

∂ρ

∂v

)
+ sin(α)

(
sin(2α)

∂ρ

∂u
+ cos(2α)

∂ρ

∂v

))

= e2r V 1.

Similarly, dν({dρ(u,v)}−1(W2 ◦ τ )) = e2r V 2. In the same fashion,

hα ◦ τ = (
e2r)− 3

2
(
cos(α)V 1

(
e2r) + sin(α)V 2

(
e2r))

= e−3rer
(

cos(α)

(
cos(α)

∂ρ

∂u
− sin(α)

∂ρ

∂v

)(
e2r) + sin(α)

(
sin(α)

∂ρ

∂u
+ cos(α)

∂ρ

∂v

)(
e2r))

= 2
∂r

∂u
,

and hα+ π
2

◦ τ = 2 ∂r
∂v . �

Proof of Theorem 2.2. Take maps ρ, V 1, V 2, ν : R
2 → S3, τ : R

2 → M and r : R
2 → R such that they satisfy the condition

of Theorem 2.4 with α = 0, i.e. with V 1(u, v) = W1(τ (u, v)) = er(u,v) ∂ρ
∂u (u, v) and V 2(u, v) = W2(τ (u, v)) = er(u,v) ∂ρ

∂v (u, v).
Since �R2 r + 2 sinh (2r) = 0, we obtain that

�R2
∂r

∂u
+ 4 cosh (2r)

∂r

∂u
= 0.

Since ∂ρ
∂u (u, v) = e−r V 1(u, v) = e−r W1(τ (u, v)) and a(τ (u, v)) = e2r(u,v) , we have

∂r

∂u
= a− 1

2 W1

(
1

2
ln(a)

)
= 1

2
a− 3

2 W1(a).

Denote by �M the Laplacian in the surface. Since the metric induced by ρ in R
2 is given by ds2 = e−2r(du2 + dv2), we

obtain that,

�M

(
1

2
a− 3

2 W1(a)

)
= a�R2

(
∂r

∂u

)
= −a

(
2
(
a + a−1)(1

2
a− 3

2 W1(a)

))
.

Therefore the function h0 = a− 3
2 W1(a) satisfies J (h0) = 0. J (h π

2
) = 0 follows similarly. �

3. Minimal tori with hn(M) < 2

The Lawson–Hsiang torus examples are characterized as those immersed minimal tori in S3 that are preserved by a
1-parameter group of ambient isometries [2]. It is clear that if for some B ∈ so(4), M ⊂ S3 is invariant under the group of
isometries {eBt : S3 → S3: t ∈ R}, then the function f B vanishes. This is because the function f B is the function associated
with the variation Mt = eBt M and, under our assumption, Mt = M for all t , therefore this variation is constant and f B must
be identically zero. We will start this section showing the converse of this observation.

Proposition 3.1. If ρ̃ : M → S3 is an immersed closed minimal surface, such that f B : M → R vanishes for some B �= 0, then ρ̃(M) is
invariant under the group {et B : t ∈ R}, so that M is one of the examples of Hsiang–Lawson.

Proof. Let X : S3 → R
4 be the tangent vector field on S3 given by X(p) = Bp. Since 0 = f B(m) = 〈Bρ̃(m), N(m)〉, then X

induces a unit tangent vector field on M . Therefore the integrals curves of the vector field X that start in ρ̃(M) remains in
ρ̃(M), i.e. if ρ̃(m) ∈ ρ̃(M) then et B ρ̃(m) ∈ ρ̃(M). �

We continue this section showing that if M is an example in K5, then hn(M) = 1.
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Proposition 3.2. If ρ̃ : M → S3 is a minimal immersion of a torus in the set K5 , then, for some angle θ , hθ : M → R vanishes, and
therefore hn(M) = 1.

Proof. Since M ∈ K5, f B vanishes for some B ∈ so(4). As in the previous proposition, the vector field X(m) = Bρ̃(m) defines
a tangent vector field on M . Since the function a is invariant under isometries and X is a Killing vector field, then the
function X(a) is identically zero. We will prove the proposition by showing that for some fixed angle θ and some fixed real

number λ, X = λa− 1
2 (cos(θ)W1 + sin(θ)W2). Choose maps ρ,ν, V 1, V 2 : R

2 → S3, a covering τ : R
2 → M and a function

r : R
2 → R using Theorem 2.4, and its corollaries, such that

W1
(
τ (u, v)

) = V 1(u, v), W2
(
τ (u, v)

) = V 2(u, v) and N
(
τ (u, v)

) = ν(u, v).

With this special parametrization of this torus and having in mind that a(τ (u, v)) = e2r(u,v) , we have that α = 0 and

V 1 = er ∂ρ

∂u
,

V 2 = er ∂ρ

∂v
,

W1(a)
(
τ (u, v)

) = 2e3r(u,v) ∂r

∂u
(u, v), and

W2(a)
(
τ (u, v)

) = 2e3r(u,v) ∂r

∂v
(u, v).

Using the previous identities and Theorem 2.4 we can check that

∇W1 W2 = − W2(a)

2a
W1 and ∇W2 W1 = − W1(a)

2a
W2. (3.1)

Since X is a tangent vector field, X(τ (u, v)) = f (u, v)V 1(u, v) + g(u, v)V 2(u, v) for two doubly periodic smooth functions
f , g : R

2 → R. Since, moreover, X is a Killing vector field,

〈∇W1 X, W1〉
(
τ (u, v)

) = V 1( f )(u, v) − W2(a)

2a

(
τ (u, v)

)
g(u, v) = er

(
∂ f

∂u
− g

∂r

∂v

)
= 0,

〈∇W2 X, W2〉
(
τ (u, v)

) = V 2(g)(u, v) − W1(a)

2a

(
τ (u, v)

)
f (u, v) = er

(
∂ g

∂v
− f

∂r

∂u

)
= 0, and

(〈∇W1 X, W2〉 + 〈∇W2 X, W1〉
)(

τ (u, v)
) = V 1(g)(u, v) + W2(a)

2a

(
τ (u, v)

)
f (u, v)

+ V 2( f )(u, v) + W1(a)

2a

(
τ (u, v)

)
g(u, v)

= er
(

∂ g

∂u
+ f

∂r

∂v
+ ∂ f

∂v
+ g

∂r

∂u

)

= 0.

A direct verification gives that the three equations above imply that the function h(u + iv) = (er f )(u, v) + i(er g)(u, v)

is an analytic function. Since h is doubly periodic in R
2, and in particular is bounded, then we get that the function

h is constant. We can write this constant as λ cos(θ) + iλ sin(θ) with λ �= 0. Since f = e−rλ cos(θ), g = e−rλ sin(θ) then

X = λa− 1
2 (cos(θ)W1 + sin(θ)W2). Since X(a) = 0 vanishes, then hθ = λ−1a−1 X(a) also vanishes. Notice that hn(M) has to

be 1, otherwise M would be a Clifford torus. �
The previous proposition shows that if H1 is defined as in the introduction, then K5 ⊂ H1. The following proposition

shows that H1 is also a subset of K5.

Proposition 3.3. Let ρ̃ : M → S3 be a minimal immersion of a torus. If for some θ , hθ : M → R vanishes, then f B vanishes for some
nonzero skew-symmetric matrix B. Therefore, M is either a Clifford torus or a torus in K5 .

Proof. Define the vector field X by X = a− 1
2 cos(θ)W1 +a− 1

2 sin(θ)W2. Using Eq. (3.1) we can prove the following identities
which show that X is a Killing vector field on M .
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〈∇W1 X, W1〉 = −1

2
a− 3

2 W1(a) cos(θ) − a− 1
2

1

2a
W2(a) sin(θ) = − 1

2a
hθ = 0,

〈∇W2 X, W2〉 = −1

2
a− 3

2 W2(a) sin(θ) − a− 1
2

1

2a
W1(a) cos(θ) = − 1

2a
hθ = 0,

〈∇W1 X, W2〉 = −1

2
a− 3

2 W1(a) sin(θ) + a− 1
2

1

2a
W2(a) cos(θ),

〈∇W2 X, W1〉 = −1

2
a− 3

2 W2(a) cos(θ) + a− 1
2

1

2a
W1(a) sin(θ) = −〈∇W1 X, W2〉.

Therefore the flow of the vector field X , ΘX (t, ·) : M → M defines a 1-parameter group of isometries in M . By Theorem 2.3,
M is invariant under a 1-parameter group of isometries of S3, and therefore f B vanishes for some nonzero B ∈ so(4). �

The previous two propositions show that H1 = K5. For a minimal torus in K5, we have that the space H S is one
dimensional. What can we say about the function that spans this one dimensional space? We will prove, in Section 5, that
this function is contained in K S , i.e. we will show that H S ⊂ K S .

4. Minimal tori with natural nullity less than 8

In this section we find an integrable distribution that produces every possible minimal torus with nnt(M) < 8. This
distribution will be used to show that if kn(M) = 5, then N S ⊂ K S and also that whenever nnt(M) � 6, then the group of
isometries of M is not trivial.

Remark 4.1. The condition nnt(M) < 8 is equivalent that for some θ and some B ∈ so(4), hθ = 2 f B .

Proof. Recall that nnt(M) = dim(N S), therefore, if nnt(M) < 8, then, there exist constants λ and θ and a matrix B ∈ so(4)

such that

λhθ − 2 f B = 0.

If the space K S has dimension 6, then λ cannot be zero and then we can rescale so that λ = 1, which will give us the
relation hθ = 2 f B . On the other hand, if the dimension of K S is less than 6 then M is one of the Lawson–Hsiang examples,
i.e. M is either a Clifford torus or a torus in K5. In either of these cases there exists an angle θ such that hθ vanishes (3.2).
Taking this θ and the zero matrix B , once again we obtain the relation hθ = 2 f B . �
4.1. Distributions that produce all examples of minimal tori with nnt(M) < 8

We define the integrable distributions D B,θ , depending upon B ∈ so(4) and θ ∈ S1, that generate all minimal immersions
of the plane with nnt(M) < 8. As a bonus we will find a family of solutions the elliptic sinh-Gordon equation given by
�r + 2 sinh(2r) = 0, where r : R

2 → R.
D B,θ is a 2-dimensional distribution in the tangent bundle

T
(
SO(4) × R

2),
where, for a choice of B ∈ so(4) and θ ∈ S1, at (g, r, s) = ([p, ν, V 1, V 2], r, s) ∈ SO(4) × R

2, Z , W ∈ X(SO(4) × R
2) spanning

the distribution are defined by

Z(g,r,s) :=
⎛
⎜⎝g

⎡
⎢⎣

0 0 −e−r cos(θ) −e−r sin(θ)

0 0 er cos(θ) −er sin(θ)

e−r cos(θ) −er cos(θ) 0 −s
e−r sin(θ) er sin(θ) s 0

⎤
⎥⎦ ,

〈Bp, ν〉, cos(θ)
〈
B V 2,e−rν − er p

〉 − sin(θ)
〈
B V 1,e−rν + er p

〉
⎞
⎟⎠ ,

W (g,r,s) :=
⎛
⎜⎝g

⎡
⎢⎣

0 0 e−r sin(θ) −e−r cos(θ)

0 0 −er sin(θ) −er cos(θ)

−e−r sin(θ) er sin(θ) 0 〈Bp, ν〉
e−r cos(θ) er cos(θ) −〈Bp, ν〉 0

⎤
⎥⎦ ,

s,e−2r − e2r − sin(θ)
〈
B V 2,e−rν − er p

〉 − cos(θ)
〈
B V 1,e−rν + er p

〉
⎞
⎟⎠ . (4.1)
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The following theorem will be used to generate the desired family of minimal immersions, and provides a family of
solutions of the elliptic sinh-Gordon equation.

Theorem 4.2. The vector fields Z and W commute, and if we define the map φ : R
2 → SO(4) × R

2 to be the immersion of the plane
so that φ∗(∂/∂u) = Z , φ∗(∂/∂v) = W ,

φ(u, v) = (
φ1(u, v),φ2(u, v),φ3(u, v)

)
,

where φ1 : R
2 → SO(4) and φ2, φ3 : R

2 → R, we have:

(1) The first column of φ1(u, v), φ1(u, v)(e1), gives a minimal immersion of R
2 into S3 with principal curvature function a = e2r .

(2) The function r(u, v) = φ2(u, v) solves the equation �r + 2 sinh(2r) = 0.

Remark 4.3. Not only will the first column of φ1 give a minimal immersion, but the Gauss map is the second column and
the third and fourth columns are the principal directions V 1 and V 2. So, these immersions of the plane will also have the
principal directions globally defined, and a > 0, whether or not they are compact.

Proof. Commutativity of Z and W is a direct computation. Using the definitions from (4.1)

[Z , W ] =
⎛
⎜⎝Z(g)

⎡
⎢⎣

0 0 e−r sin(θ) −e−r cos(θ)

0 0 −er sin(θ) −er cos(θ)

−e−r sin(θ) er sin(θ) 0 〈Bp, ν〉
e−r cos(θ) er cos(θ) −〈Bp, ν〉 0

⎤
⎥⎦

+ g Z

⎛
⎜⎝

⎡
⎢⎣

0 0 e−r sin(θ) −e−r cos(θ)

0 0 −er sin(θ) −er cos(θ)

−e−r sin(θ) er sin(θ) 0 〈Bp, ν〉
e−r cos(θ) er cos(θ) −〈Bp, ν〉 0

⎤
⎥⎦

⎞
⎟⎠

− W (g)

⎡
⎢⎣

0 0 −e−r cos(θ) −e−r sin(θ)

0 0 er cos(θ) −er sin(θ)

e−r cos(θ) −er cos(θ) 0 −s
e−r sin(θ) er sin(θ) s 0

⎤
⎥⎦

− gW

⎛
⎜⎝

⎡
⎢⎣

0 0 −e−r cos(θ) −e−r sin(θ)

0 0 er cos(θ) −er sin(θ)

e−r cos(θ) −er cos(θ) 0 −s
e−r sin(θ) er sin(θ) s 0

⎤
⎥⎦

⎞
⎟⎠ ,

Z(s) − W
(〈Bp, ν〉), Z

(
e−2r − e2r − sin(θ)

〈
B V 2,e−rν − er p

〉 − cos(θ)
〈
B V 1,e−rν + er p

〉)

− W
(
cos(θ)

〈
B V 2,e−rν − er p

〉 − sin(θ)
〈
B V 1,e−rν + er p

〉)
⎞
⎟⎠ .

Continuing, noting that Z(g) = Z , W (g) = W , Z(p) = e−r cos(θ)V 1 + e−r sin(θ)V 2, etc., substituting for the various deriva-
tives and canceling massively, [Z , W ] = 0.

We now show that r(u, v) = φ2(u, v) is a solution of the elliptic sinh-Gordon equation. We have that

�r = ∂2r

∂u2
+ ∂2r

∂v2
= ∂〈Bp, ν〉

∂u
+ ∂s

∂v
= 〈

B
(
e−r(cos(θ)V 1 + sin(θ)V 2

))
, ν

〉 + 〈
Bp,er(− cos(θ)V 1 + sin(θ)V 2

)〉
− 2 sinh(2r) − sin(θ)

〈
B V 2,e−rν − er p

〉 − cos(θ)
〈
B V 1,e−rν + er p

〉
= −2 sinh(2r).

That φ1(u, v)(e1) is a minimal immersion of R
2 into S3 is straightforward. �

Theorem 4.4. If ρ̃ : M → S3 is a minimal immersed torus in S3 such that, for some angle θ and some matrix B ∈ so(4), hθ = 2 f B , then
it is possible to choose a covering map τ : R

2 → M, maps ρ : R
2 → S3 , ν : R

2 → S3 , V 1, V 2 : R
2 → S3 , and a function r : R

2 → R

using Theorem 2.4 and its corollaries, so that

φ(u, v) = (
φ1(u, v),φ2(u, v),φ3(u, v)

) =
((

ρ(u, v), ν(u, v), V 1(u, v), V 2(u, v)
)
, r(u, v),

∂r

∂v
(u, v)

)

is a solution of the system (4.1) with matrix B and angle θ .
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Proof. We can rotate coordinates so that the maps ρ , ν , V 1, and V 2 in Theorem 2.4 and Corollary 2.6 satisfy

V 1(u, v) = W1
(
τ (u, v)

)
, V 2(u, v) = W2

(
τ (u, v)

)
, ν(u, v) = N

(
τ (u, v)

)
and α = θ,

with a(τ (u, v)) = e2r . Since α = θ ,

V 1 = er
(

cos(θ)
∂ρ

∂u
− sin(θ)

∂ρ

∂v

)
and V 2 = er

(
sin(θ)

∂ρ

∂u
+ cos(θ)

∂ρ

∂v

)
,

if 2 f B = hθ , then

2〈Bρ,ν〉 = cos(θ)e−3r
(

er
(

cos(θ)
∂ρ

∂u
− sin(θ)

∂ρ

∂v

))(
e2r) + sin(θ)e−3r

(
er

(
sin(θ)

∂ρ

∂u
+ cos(θ)

∂ρ

∂v

))(
e2r)

= 2
∂r

∂u
.

So

2〈Bρ,ν〉 = 2
∂r

∂u
= hθ (4.2)

and, similarly,

2
∂r

∂v
= 2s = hθ+ π

2
. (4.3)

From the formulas for V 1 and V 2 in Corollary (2.6), we have that

∂ρ

∂u
= e−r(V 1 cos(θ) + sin(θ)V 2

)
and

∂ρ

∂v
= e−r(−V 1 sin(θ) + sin(θ)V 2

)
.

Also, using the equation above and the formula for ∂ν
∂u and ∂ν

∂v in Theorem 2.4, we get that

∂ν

∂u
= er(− cos(θ)V 1 + sin(θ)V 2

)
and

∂ν

∂v
= er(sin(θ)V 1 + cos(θ)V 2

)
.

A direct computation shows that derivatives of ∂V i
∂u combine with the above to satisfy the equations for φ1 to be an integral

submanifold of the distribution. In order to complete the proof of this theorem, let us check the equation for ∂s
∂v . We have

that

∂s

∂v
= ∂2r

∂v2
= −2 sinh(2r) − ∂2r

∂u2

= −2 sinh(2r) − ∂

∂u
〈Bρ,ν〉

= −2 sinh(2r) −
〈

B
∂ρ

∂u
, ν

〉
−

〈
Bρ,

∂ν

∂u

〉

= − sin(θ)
〈
B V 2,e−rν − er p

〉 − cos(θ)
〈
B V 1,e−rν + er p

〉
,

which verifies the equation in the system (4.1). The equation for ∂s
∂u is similar. �

Remark 4.5. Arguing as in the proof of the previous theorem, if

φ(u, v) = (
ρ(u, v), ν(u, v), V 1(u, v), V 2(u, v), r(u, v), s(u, v)

)
is a doubly-periodic solution of the system (4.1) and M is the torus R

2

∼ , then,

hθ (u, v) = 2
∂r

∂u
(u, v) and hθ+ π

2
(u, v) = 2

∂r

∂v
(u, v) = 2s.

Moreover, for any 4 × 4 skew-symmetric matrix B̃ , f B̃(u, v) = 〈B̃ρ(u, v), ν(u, v)〉. Finally, since φ satisfies the system (4.1),
then hθ = 2 f B .

Note 4.6. It follows that doubly-periodic solutions of the system (4.1) induce minimal immersions of tori with natural nullity
less than 8, since for the B and θ defining the distribution, 2 f B = hθ . So far, the authors have not been able to find a method
to determine which solutions are doubly periodic.
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The previous theorem shows that for any choice of B ∈ so(4), θ ∈ S1 and x0 ∈ SO(4)× R
2 we have a solution of the sinh-

Gordon equation. The following theorem shows that this solution and its derivatives are defined in the whole plane and are
bounded. Recall that ∂r

∂v = s and that ∂r
∂u is an algebraic function of the component functions of (φ1(u, v),φ2(u, v),φ3(u, v)).

Theorem 4.7. The functions φ1(u, v),φ2(u, v) = r(u, v), and φ3(u, v) = s(u, v) are defined in the whole plane and are bounded in
T∗(SO(4) × R

2).

The proof of this result appears in Appendix A.
The main tool we use to study minimal tori with natural nullity less than 8 is that we have a representation of them

in term of integral submanifolds of the distribution D B,θ (4.1). Recall that by Remark 4.1, for every torus M ⊂ S3 with
nnt(M) < 8 there exist θ and B ∈ so(4) such that hθ = 2 f B .

4.2. Auxiliary identities

In order to simplify the study of the system (4.1) we give additional relationships among components of the solutions.

Theorem 4.8. Let φ1 := (p, ν, V 1, V 2) : (−ε, ε) × (−ε, ε) → SO(4) and φ2, φ3 := r, s : (−ε, ε) × (−ε, ε) → R be a solution of the
system (4.1), that is, an integral submanifold of D B,θ . If B̃ ∈ so(4) is any skew symmetric matrix, and if we define the functions

ξ1 = 〈B̃ p, ν〉, ξ2 = 〈B̃ V 1, V 2〉, ξ3 = 〈B̃ V 1, p〉, ξ4 = 〈B̃ V 2, p〉, ξ5 = 〈B̃ V 1, ν〉, ξ6 = 〈B̃ V 2, ν〉
then, the following identities hold:

∂

∂u

⎡
⎢⎢⎢⎢⎢⎣

ξ1
ξ2
ξ3
ξ4
ξ5
ξ6

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 er cos(θ) −er sin(θ) e−r cos(θ) e−r sin(θ)

0 0 −e−r sin(θ) e−r cos(θ) −er sin(θ) −er cos(θ)

−er cos(θ) e−r sin(θ) 0 s 0 0
er sin(θ) −e−r cos(θ) −s 0 0 0

−e−r cos(θ) er sin(θ) 0 0 0 s
−e−r sin(θ) er cos(θ) 0 0 −s 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ξ1
ξ2
ξ3
ξ4
ξ5
ξ6

⎤
⎥⎥⎥⎥⎥⎦

and

∂

∂v

⎡
⎢⎢⎢⎢⎢⎣

ξ1
ξ2
ξ3
ξ4
ξ5
ξ6

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 −er sin(θ) −er cos(θ) −e−r sin(θ) e−r cos(θ)

0 0 −e−r cos(θ) −e−r sin(θ) −er cos(θ) er sin(θ)

er sin(θ) e−r cos(θ) 0 −〈Bp, ν〉 0 0
er cos(θ) e−r sin(θ) 〈Bp, ν〉 0 0 0

e−r sin(θ) er cos(θ) 0 0 0 −〈Bp, ν〉
−e−r cos(θ) −er sin(θ) 0 0 〈Bp, ν〉 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ξ1
ξ2
ξ3
ξ4
ξ5
ξ6

⎤
⎥⎥⎥⎥⎥⎦

.

Proof. This is a long direct computation. �
4.3. Solutions of the system with hn(M) < 2 and natural nullity of the Lawson–Hsiang examples

The following theorem characterizes the integral submanifolds of the system (4.1) that contain every torus M with
hn(M) < 2 in terms of the matrix B . Recall from Eq. (4.3) in the proof of Theorem 4.4 that s(u, v) = ∂r

∂v , so that s = 0
implies that hn(M) < 2.

Theorem 4.9. Let φ : R
2 → SO(4)×R

2 , φ = (φ1, φ2, φ3), be an integral submanifold of D B,θ , and let r(u, v) = φ2(u, v) and s(u, v) =
φ3(u, v). Assume that φ(0,0) = x0 = (I, r0,0) and ∂r

∂u (0,0) = 0. If

B =
⎛
⎜⎝

0 b1 b2 b3
−b1 0 b4 b5
−b2 −b4 0 b6
−b3 −b5 −b6 0

⎞
⎟⎠ ,

then, s vanishes, and so hn(M) < 2, if and only if b1 = b6 = 0 and

(1) −er0 cos(θ)b2 + er0 sin(θ)b3 − e−r0 cos(θ)b4 − e−r0 sin(θ)b5 = 2 sinh(2r0),

(2) −er0 sin(θ)b2 − er0 cos(θ)b3 − e−r0 sin(θ)b4 + e−r0 cos(θ)b5 = 0, and

(3) −e−r0 cos(θ)b2 − e−r0 sin(θ)b3 − er0 cos(θ)b4 + er0 sin(θ)b5 = 0.
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Proof. We will use the identities of Theorem 4.8 with B̃ = B . Notice that

b1 = −ξ1(0,0), b6 = −ξ2(0,0), b2 = ξ3(0,0), b3 = ξ4(0,0), b4 = ξ5(0,0), b3 = ξ6(0,0).

Assume that s(u, v) = 0 for every (u, v) ∈ R
2. The equation b1 = 0 follows because we are assuming that ∂r

∂u (0,0) =
ξ1(0,0) = 0. Eq. (1) in the statement of the theorem follows from the equation ∂s

∂v (0,0) = 0. Eq. (2) follows from the
equation ∂s

∂u (0,0) = 0. We now prove that s ≡ 0 also implies that b6 = 0 and Eq. (3) in the statement of the theorem.
A direct computation shows the following two equations:

∂2s

∂v∂u
= ξ1

( − 2 cosh(2r) + er(sin(θ)ξ4 − cos(θ)ξ3
) + e−r(sin(θ)ξ6 + cos(θ)ξ5

))
+ s

( − er(sin(θ)ξ3 + cos(θ)ξ4
) + e−r(sin(θ)ξ5 − cos(θ)ξ6

)) − 2 sin(2θ)ξ2

and

∂2s

∂v2
= s

( − 4 cosh(2r) + er(sin(θ)ξ4 − cos(θ)ξ3
) + e−r(sin(θ)ξ6 + cos(θ)ξ5

))
+ ξ1

(
er(sin(θ)ξ3 + cos(θ)ξ4

) + e−r(cos(θ)ξ6 − sin(θ)ξ5
)) − 2 cos(2θ)ξ2.

From these equations we get that ξ2(0,0) = −b6 = 0 and that ∂ξ2
∂v (0,0) = 0 because ξ1(0,0) = 0, and

∂ξ1

∂v
(0,0) = ∂s

∂u
(0,0) = 0.

A direct computation shows that Eq. (3) in the statement of the theorem is equivalent to the equation ∂ξ2
∂v (0,0) = 0. So we

have shown one implication in the theorem.
We now show the other implication. Assume that Eqs. (1), (2) and (3) of the statement of the theorem hold, and also

b1 = b6 = 0. These 5 conditions are equivalent to the conditions

ξ1(0,0) = 0, ξ2(0,0) = 0,
∂ξ1

∂v
(0,0) = ∂s

∂u
(0,0) = 0,

∂s

∂v
(0,0) = 0, and

∂ξ2

∂v
(0,0) = 0.

Notice also that by assumption s(0,0) = 0. Using the identities of Theorem 4.8, the initial conditions above imply that

∂ξi

∂u
(0,0) = ∂ξi

∂v
(0,0) = 0, for i = 2,3,5,6, (4.4)

and, also, by induction, given n � 1, k and l nonnegative integers such that k + l = n, there exists a polynomial P =
P (t1, . . . , t9) such that

∂nr

∂ul∂vk
= P

(
er,e−r, s, ξ1, . . . , ξ6

)
.

Along with the equations in (4.4), these equations imply that

∂ns

∂ul∂vk+1
(0,0) = ∂( ∂nr

∂ul∂vk )

∂v
(0,0) = ∂ P (er,e−r, s, ξ1, . . . , ξ6)

∂v
(0,0) = 0.

In the last equation we also used the hypothesis that ∂ξ1
∂v (0,0) = ∂ξ2

∂v (0,0) = 0. We should point out that we have used the
fact that the function r is real analytic, which follows from the fact that �r + 2 sinh(2r) = 0. �

The next theorem shows that for the Lawson–Hsiang examples not only is kn(M) = 5 but also nnt(M) = 5 by showing
that the space N S ⊂ K S .

Theorem 4.10. If M ⊂ S3 is an immersed minimal torus invariant under a one-parameter group of isometries of S3 , then nnt(M) =
kn(M) and therefore the natural nullity nnt(M) � 5.

Proof. By Proposition 3.2 we know that for some angle θ , (cos(θ)V 1 + sin(θ)V 2)(a) = 0 where a : M → R is a positive
function such that the principal curvatures of M at p are ±a(p). Without loss of generality, we can assume that

e1 ∈ M, ν(e1) = e2, V 1(e1) = e3, V 2(e1) = e4, ln a(e1) = 2r0, and ∇a(e1) = 0.

Therefore, M defines a solution of the system (4.1) associated with the matrix B = 0 and θ . Call this solution φ : R
2 →

SO(4) × R
2. Without loss of generality we can assume that φ(0,0) = (I, r0,0).
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Define φ̃ to be the solution of the system (4.1) associated with a matrix B = {bij} that satisfies the conditions in the
previous lemma and θ̃ = θ − π

2 . Moreover we will take the initial solution that satisfies

φ̃(0,0) = (I, r0,0).

Now consider the map φ̂ : R
2 → SO(4) × R

2 given by

φ̂(u, v) = ((
ρ̂(u, v), ν̂(u, v), V̂ 1(u, v), V̂ 2(u, v)

)
, r̂(u, v), ŝ(u, v)

)
= ((

ρ̃(−v, u), ν̃(−v, u), Ṽ 1(−v, u), Ṽ 2(−v, u)
)
, r̃(−v, u),−〈Bρ̃, ν̃〉),

where

φ̃(ũ, ṽ) = ((
ρ̃(ũ, ṽ), ν̃(ũ, ṽ), Ṽ 1(ũ, ṽ), Ṽ 2(ũ, ṽ)

)
, r̃(ũ, ṽ), s̃(ũ, ṽ)

)
.

It is clear that φ̂(0,0) = (I, r0,0). Notice that, by the way B was chosen, we have that s̃ = 0 for every (ũ, ṽ) ∈ R
2. Also, a

direct computation shows that φ̂ is a solution of the system (4.1) with B = 0 and the angle θ , therefore, φ̂(u, v) = φ(u, v),
and so

∂r

∂v
= − ∂ r̃

∂ ũ
= −〈Bρ,ν〉.

This equality is equivalent to the fact that sin(θ)u1 − cos(θ)u2 = f B , where the functions u1 = h0, u2 = hπ/2, and f B

are defined in the first section. This last equation implies that hθ+ π
2

= − f B , therefore, hθ , which is identically zero, and
hθ+ π

2
are functions in { fC : C ∈ so(4)}. Then, both functions u1 and u2 are also generated by the functions in the set

{ fC : C ∈ so(4)}, i.e. the natural nullity is 5. Recall that the space {uC : C ∈ so(4)} is 5-dimensional for any torus invariant
under a 1-parameter group of isometries in S3. �

The results in Section 3 show that for a torus, the condition kn(M) < 6 is equivalent to the condition hn(M) < 2. There-
fore, M is invariant under a group of isometries {et B : t ∈ R}, if and only if, the function a : M → R is invariant under a
constant direction with respect to the principal directions. The following corollary establishes this relationship.

Corollary 4.11. If M is a minimal immersed torus in S3 , then nnt(M) � 5 if and only if M is one of the examples of Hsiang and Lawson.

Proof. If M has nnt(M) � 5, then kn(M) � 5. Therefore, for some nonzero skew-symmetric matrix B , f B vanishes. By
Proposition 3.1, M will be invariant under a 1-parameter subgroup of the rigid motions of S3, which, following [2], im-
plies that M is one of Hsiang and Lawson’s examples. On the other hand, since any of the Hsiang–Lawson examples
are preserved by a one-parameter subgroup of SO(4), there is a B ∈ so(4) for which f B = 0. Then Theorem 4.10 implies
nnt(M) � 5. �
4.4. Symmetry of tori with natural nullity less than 7

In this subsection we will prove that if the natural nullity of a torus is less than 7, then the group of isometries is not
trivial. Let us start with the following lemma.

Lemma 4.12. If for any solution of the system (4.1), the functions ξ1 . . . ξ6 defined in Theorem 4.8 satisfy r(0,0) = r0 , ξ1(0,0) =
s(0,0) = ξ4(0,0) = 0, then r(u, v) = r(−u,−v).

Proof. A direct computation using the identities of Theorem 4.8 shows that the conditions ξ1(0,0) = s(0,0) = ξ2(0,0) = 0
give

∂ξi

∂u
(0,0) = ∂ξi

∂v
(0,0) = 0 for i = 3,4,5,6.

Let Cω(R2) be the set of analytic functions on R
2 and let P0 be the ideal of Cω(R2) generated by the functions

{er,e−r, ξ2, ξ3, ξ5, ξ6}. Given a nonnegative integer k, define Pk as the set of functions in Cω(R2) that can be written as
a homogeneous polynomial of degree k in the variables s, ξ1 and ξ2 with coefficients in P0. A direct computation using
again the identities in Theorem 4.8 give us that if f ∈ P0, then ∂ f

∂u and ∂ f
∂v are in P1. In the same way, if f ∈ Pk then

∂ f
∂u and ∂ f

∂v are in Pk+1 + Pk−1. Now with these observations in mind, we proceed to show that the function r satisfies
r(u, v) = r(−u,−v), by showing that all the partial derivatives of odd order of the function r vanish at (0,0). To achieve
this we first notice that the first derivatives of r, the functions ξ1 and s vanish at (0,0). Then, notice that the second deriva-
tives of r, i.e. the first derivatives of s and ξ1, are functions in P0. The last statement implies that the third derivatives of
r are in P1 and therefore vanish at (0,0). Once we know that the third derivatives of r are in P1 we get that the fourth
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derivatives or r are in P0 + P2. If we continue with this process we notice that if k is a positive even integer, then the k-th
derivatives of r are functions in P0 + P2 + · · · + Pk−2, and in the case that k is an odd integer greater that 1, then, the k-th
derivatives of r are in P1 + P3 + · · · + Pk−2. Now, since ξ1(0,0) = s(0,0) = ξ2(0,0) = 0, the odd derivatives of the function
r vanish at (0,0). �
Theorem 4.13. Let M be a minimal torus immersed in S3 . If nnt(M) � 6, then the group of isometries of M is not trivial.

Proof. Unless there is some nonzero B ∈ so(4) for which f B = 0, in which case Proposition 3.1 implies the existence of a
one-parameter group of isometries of S3 which restrict to isometries of M , then nnt(M) � 6 implies that the span of {u1, u2},

u1 := a− 3
2 W1(a) = h0 and u2 := a− 3

2 W2(a) = h π
2

, will be contained in the span of { f B |B ∈ so(4)}. Since then u1 = 2 f B for
some B ∈ so(4), then M defines a solution φ of the system (4.1) associated with the matrix B and with θ = 0. The condition
u2 = 2 f B̃ implies by Remark 4.5 that s = ξ̃1, for the identities of Theorem 4.8 associated with two distinct matrices B , B̃ and
θ = 0. As before, we will assume that ξ1(0,0) = s(0,0) = 0 and r(0,0) = r0. Define the function f = s − ξ̃1. The hypothesis
in the theorem is equivalent to the condition that f is identically zero, in particular, ξ̃1(0,0) = 0, since f (0,0) = 0. The
theorem is a consequence of the previous lemma and will follow by showing that ξ2(0,0) = 0. A direct computation shows
that

∂ f

∂u
= e−rξ6 − erξ4 − e−r ξ̃5 − er ξ̃3

and

∂2 f

∂u2
= ξ1

(−e−rξ6 − erξ4 + e−r ξ̃5 − er ξ̃3
) + e−r(−sξ5 + erξ2

) − er(−sξ3 − e−rξ2
)

− e−r(−sξ5 + erξ2
) − er(−sξ3 − e−rξ2

) − er(sξ̃6 − e−rξ1
) − er(sξ̃4 − er ξ̃1

)
= ξ1

(−e−rξ6 − erξ4 − e−r ξ̃5 − er ξ̃3
) + s

(−e−rξ5 + erξ3 − e−r ξ̃6 − er ξ̃4
) + 2ξ2 + 2 cosh(2r)ξ̃1.

From the last equation, using the fact that s(0,0) = ξ1(0,0) = ξ̃1(0,0) and ∂2 f
∂u2 = 0, we conclude that ξ2(0,0) = 0, which

implies, by the previous lemma, that r(u, v) = r(−u,−v). To finish the proof of the theorem, we notice that the function
A(u, v) = −(u, v) preserves the lattice in R

2 given by the double-periodicity of the function φ and therefore induces a
function in the torus τ (R2) = M , since the first fundamental form of M in the coordinates u and v is ce−2r(du2 + dv2)

where c is a positive constant, then, this function from M to M induced by A is an isometry. �
Appendix A. First integrals and existence of global solutions

In this subsection we prove Theorem 4.7, that the integral submanifolds of D B,θ are defined in the whole of R
2. The

theorem will follow from the following lemmas.

Lemma A.1. For a given solution of the system (4.1), the functions ξ1, . . . , ξ6 defined in Theorem 4.8 satisfy the condition that

M = 1

2

{
ξ2

1 + · · · + ξ2
6

}
is a constant.

Proof. A direct computation using Theorem 4.8 gives us that

∂M

∂u
= ξ1

∂ξ1

∂u
+ · · · + ξ6

∂ξ6

∂u
= ξ1

(
er(cos(θ)ξ3 − sin(θ)ξ4

) + e−r(cos(θ)ξ5 + sin(θ)ξ6
)) + ξ3

(
sξ4 − er cos(θ)ξ1 + e−r sin(θ)ξ2

)
+ ξ4

(−sξ3 + er sin(θ)ξ1 − e−r cos(θ)ξ2
) + ξ2

(
er(− sin(θ)ξ5 − cos(θ)ξ6

) + e−r(cos(θ)ξ4 − sin(θ)ξ3
))

+ ξ5
(
sξ6 + er sin(θ)ξ2 − e−r cos(θ)ξ1

) + ξ6
(−sξ5 + er cos(θ)ξ2 − e−r sin(θ)ξ1

)
= 0.

Similarly,

∂M

∂v
= ξ1

∂ξ1

∂v
+ · · · + ξ6

∂ξ6

∂v
= ξ1

(−er(cos(θ)ξ4 + sin(θ)ξ3
) + e−r(cos(θ)ξ6 − sin(θ)ξ5

)) + ξ3
(−ξ1ξ4 + er sin(θ)ξ1 + e−r cos(θ)ξ2

)
+ ξ4

(
ξ1ξ3 + er cos(θ)ξ1 + e−r sin(θ)ξ2

) + ξ2
(
e−r(− cos(θ)ξ3 − sin(θ)ξ4

))
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+ ξ5
(−ξ1ξ6 + er cos(θ)ξ2 + e−r sin(θ)ξ1

) + ξ6
(
ξ1ξ5 − er sin(θ)ξ2 − e−r cos(θ)ξ1

)
= 0,

therefore, M is a constant. �
Lemma A.2. For a given solution of the system (4.1),

E = 1

2

{〈p, p〉 + 〈V 1, V 1〉 + 〈V 2, V 2〉 + 〈ν,ν〉}
is a constant.

Proof. As in the proof of the previous lemma, a direct computation shows that ∂ E
∂u = ∂ E

∂v = 0. �
Lemma A.3. For a given solution of the system (4.1), the functions ξ1, . . . , ξ6 defined in Theorem 4.8 satisfy the identity that

A = er(cos(θ)ξ3 − sin(θ)ξ4
) − e−r(cos(θ)ξ5 + sin(θ)ξ6

) + 1

2
s2 + cosh(2r) − 1

2
(ξ1)

2

is a constant.

Proof. Similarly to the previous two lemmas, we prove that ∂ A
∂u = ∂ A

∂v = 0.
Denote by

B = er(cos(θ)ξ3 − sin(θ)ξ4
) − e−r(cos(θ)ξ5 + sin(θ)ξ6

)
and

C = ∂ξ1

∂u
= er(cos(θ)ξ3 − sin(θ)ξ4

) + e−r(cos(θ)ξ5 + sin(θ)ξ6
)
.

Notice that B + 1
2 s2 − 1

2 ξ2
1 + cosh(2r) = A. A direct computation shows that

∂ B

∂u
= ξ1C + er{cos(θ)

(
sξ4 − er cos(θ)ξ1 + e−r sin(θ)ξ2

) − sin(θ)
(−sξ3 + er sin(θ)ξ1 − e−r cos(θ)ξ2

)}
− e−r{cos(θ)

(
sξ6 + er sin(θ)ξ2 − e−r cos(θ)ξ1

) + sin(θ)
(−sξ5 + er cos(θ)ξ2 − e−r sin(θ)ξ1

)}
= ξ1

∂ξ1

∂u
+ s

(
er cos(θ)ξ4 + er sin(θ)ξ3 − e−r cos(θ)ξ6 + e−r sin(θ)ξ5

)
+ ξ2

(
cos(θ) sin(θ) + cos(θ) sin(θ) − cos(θ) sin(θ) − cos(θ) sin(θ)

)
+ ξ1

(−e2r cos2(θ)ξ4 − e2r sin2(θ)ξ3 + e−2r cos2(θ) + e−2r sin2(θ)
)

= ξ1
∂ξ1

∂u
− s

∂s

∂u
− 2ξ1 sinh(2r)

= 1

2

∂ξ2
1

∂u
− 1

2

∂s2

∂u
− ∂ cosh(2r)

∂u
.

Therefore ∂ A
∂u = 0. Similarly,

∂ B

∂v
= sC + er{cos(θ)

(−ξ1ξ4 + er sin(θ)ξ1 + e−r cos(θ)ξ2
) − sin(θ)

(−ξ1ξ3 + er cos(θ)ξ1 + e−r sin(θ)ξ2
)}

− e−r{cos(θ)
(−ξ1ξ6 + er cos(θ)ξ2 + e−r sin(θ)ξ1

) + sin(θ)
(
ξ1ξ5 − er sin(θ)ξ2 − e−r cos(θ)ξ1

)}

= s

(
−2 sinh(2r) − ∂s

∂v

)
+ ξ1

(−er cos(θ)ξ4 + e2r cos(θ) sin(θ) − e2r sin(θ) cos(θ) − er sin(θ)ξ3
)

+ e−r cos(θ)ξ6 − e−2r cos(θ) sin(θ) − e−r sin(θ)ξ5 + e−2r sin(θ) cos(θ)

+ ξ2
(
cos2(θ) − sin2(θ) + cos2(θ) + sin2(θ)

)

= −1

2

∂s2

∂v
− ∂ cosh(2r)

∂v
+ 1

2

∂ξ2
1

∂v
. �

Lemma A.4. Given a solution of the system (4.1). If M and A are the constants given by Lemmas A.1 and A.3, respectively, if (u0, v0)

is any point in the domain of the solution, and if R is a real number such that

cosh(2R) > A + 4M cosh(R) + M2

and R >
∣∣r(u0, v0)

∣∣,

2
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then, |r(u, v)| < R and

1

2
s2(u, v) + cosh

(
2r(u, v)

)
� A + M2

2
+ cosh(2R)

for any (u, v) in the domain of the solution.

Proof. We have that

1

2
s2(u, v) + cosh

(
2r(u, v)

) = A + 1

2
ξ2

1 + e−r(cos(θ)ξ5 + sin(θ)ξ6
) − er(cos(θ)ξ3 − sin(θ)ξ4

)

� A + M2

2
+ 4M cosh(r).

This inequality above shows that the result will follow once we prove that |r(u, v)| � R . We prove that |r(u, v)| < R by
contradiction. If, for some (u, v), |r(u, v)| = R , then, the inequality above implies that at that (u, v),

cosh(2R) � A + M2

2
+ 4M cosh(R).

This is a contradiction with the choice of R given in the hypotheses. �
Theorem 4.7 is a corollary of the previous lemmas, since the solution of the system (4.1) remains bounded in SO(4)×R

2

for all (u, v), guaranteeing the existence of the solution for all (u, v).
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