
Journal of Computational and Applied Mathematics 220 (2008) 119–128
www.elsevier.com/locate/cam

A nonmonotone trust-region method of conic model
for unconstrained optimization�

Shao-Jian Qu∗, Ke-Cun Zhang, Jian Zhang
Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, PR China

Received 12 May 2007; received in revised form 26 July 2007

Abstract

In this paper, we present a nonmonotone trust-region method of conic model for unconstrained optimization. The new method
combines a new trust-region subproblem of conic model proposed in [Y. Ji, S.J. Qu, Y.J. Wang, H.M. Li, A conic trust-region
method for optimization with nonlinear equality and inequality 4 constrains via active-set strategy, Appl. Math. Comput. 183 (2006)
217–231] with a nonmonotone technique for solving unconstrained optimization. The local and global convergence properties are
proved under reasonable assumptions. Numerical experiments are conducted to compare this method with the method of [Y. Ji,
S.J. Qu, Y.J. Wang, H.M. Li, A conic trust-region method for optimization with nonlinear equality and inequality 4 constrains via
active-set strategy, Appl. Math. Comput. 183 (2006) 217–231].
© 2007 Elsevier B.V. All rights reserved.

Keywords: Unconstrained optimization; Trust-region method; Conic model; Nonmonotone technique

1. Introduction

In this paper, the following unconstrained optimization is considered:

min
x∈Rn

f (x), (1.1)

where f (x) is twice continuously differentiable function.
Trust-region methods of quadratic model for unconstrained optimization have been studied by many researchers

[5,12,13,15,16]. Trust-region methods are robust, can be applied to ill-conditioned problems and have strong global
convergence properties. Another advantage of trust-region methods is that there is no need to require the approximate
Hessian of the trust-region subproblem to be positive definite. For problem (1.1), Nocedal and Yuan [11] show that a
trust-region trial step is always a descent direction for any approximate Hessian. It is well known that for line search
methods one generally has to assume the approximate Hessian to be positive definite in order to ensure that the search
direction is a descent direction.

� This work is supported by the National Natural Science Foundation of China Grant (Grant Number: 10671057).
∗ Corresponding author.

E-mail address: qushaojian@163.com (S.-J. Qu).

0377-0427/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2007.07.038

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82317715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:qushaojian@163.com

120 S.-J. Qu et al. / Journal of Computational and Applied Mathematics 220 (2008) 119–128

In [7], we proposed a new trust-region subproblem based on conic model for general constraints optimization. For
unconstrained optimization this subproblem can be reduced to⎧⎪⎪⎨

⎪⎪⎩
min �k(s) = gT

k s

1 − �T
k s

+ 1
2

sTBks

(1 − �T
k s)2

s.t. 1 − �T
k s > 0,

‖s‖��k,

(1.2)

where �k(s) is called conic model which is an approximation to f (xk+s)−f (xk), Bk is an approximate Hessian of f (x)

at xk and �k is the trust-region radius. The vector �k is the associated vector for the collinear scaling in the kth iteration,
and it is normally called the horizontal vector. If �k = 0, the conic model reduces to a quadratic model. Therefore the
conic model methods are the generalization of the quadratic model methods. They have several advantages. First, if
the objective function has strong nonquadratic behavior or its curvature changes severely, the quadratic model methods
often produce a poor prediction of the minimizer of the function. In this case, conic model approximates the objective
function better than a quadratic, because it has more freedom in the model. Second, the quadratic model does not take
into account the information concerning the function value in the previous iteration which is useful for algorithms.
However, the conic model possesses richer interpolation information and satisfies four interpolation conditions of the
function values and the gradient values at the current and the previous points. Using these rich interpolation information
may improve the performance of the algorithms. Third, the initial and limited numerical results provided in [4,10],
etc. show that the conic model method gives improvement over the quadratic model method. Finally, the conic model
method has the similar global and local convergence properties as the quadratic model method.

Furthermore it is known that the objective function sequences generated by these algorithms are monotonically
decreasing: i.e., f (xk)�f (xk+1), k = 0, 1,

Recently, nonmonotone line search techniques have been studied by many authors since Grippo et al. [6]. Many
authors generalized the nonmonotone technique to trust-region methods and proposed nonmonotone trust-region meth-
ods [17,8,2]. Theoretic analysis and numerical results show that the algorithms with nonmonotone properties are more
efficient than the algorithms with monotone properties. To our knowledge, the nonmonotone trust region methods listed
above are all based on quadratic model, but we have not seen any nonmonotone trust-region methods based on conic
model.

In our paper, we combine the subproblem (1.2) with nonmonotone technique to propose a nonmonotone trust-region
method based on conic model. The local and global convergence properties of the nonmonotone trust-region method
based on conic model are proved under some reasonable assumptions. Finally, the numerical results show the efficiency
of the new algorithm.

The rest of the paper is organized as follows. In Section 2, we present the nonmonotone trust-region method based
on conic model. In Section 3, the global and local convergence properties are studied. Numerical results in Section 4
indicate that the algorithm is efficient.

2. The algorithm

In this section, we give a nonmonotone trust-region algorithm based on conic model. Before giving the algorithm,
the following definitions are needed:

fl(k) = max
0� j �m(k)

{fk−j }, k = 0, 1, 2, . . . , (2.1)

where m(k)=min{m(k−1)+1, 2M, Mk}, m(0) := 0, M �0 is an integer constant and Mk �0 is an integer variable.
Let sk be the solution of the subproblem (1.2). Then either xk + sk is accepted as a new iteration point or the trust-region
radius is reduced according to a comparison between the actual reduction of the objective function

aredk(sk) = fl(k) − f (xk + sk) (2.2)

and the reduction predicted by the conic model

predk(sk) = − gT
k sk

1 − �T
k sk

− 1

2

sT
k Bksk

(1 − �T
k sk)

2
. (2.3)

S.-J. Qu et al. / Journal of Computational and Applied Mathematics 220 (2008) 119–128 121

That is, if the reduction in the objective function is satisfactory, then we finish the current iteration by taking

xk+1 = xk + sk (2.4)

and adjusting the trust-region radius; otherwise the iteration is repeated at point xk with a reduced trust-region radius.
Now we are ready to state the algorithm.

Algorithm NCTR (The nonmonotone conic trust-region algorithm for unconstrained optimization).
Step 0: Choose parameters 0 < c3 < 1 < c1, 0 < c0 �c2 < 1, �max > �min > 0 and ε�0; give a starting point x0 ∈

Rn, B0 ∈ Rn×n, �0 ∈ Rn, an integer constant M �0 and an initial trust-region radius �min ��0 < �max; set k := 0,
m(0) := 0, M1 := M .

Step 1: If ‖gk‖ < ε, then stop with xk as the approximate optimal solution; otherwise go to Step 2.
Step 2: Solve the conic minimization subproblem (1.2) and let sk be one approximate solution of the subproblem

(1.2).
Step 3. If k�1, set m(k) := min{m(k − 1) + 1, 2M, Mk}. Compute aredk(sk), predk(sk) and

rk = aredk(sk)

predk(sk)
.

If rk �c0, then set

�k := c3‖sk‖, Mk := Mk + 1, (2.5)

and go to Step 2. If rk > c0, then

xk+1 := xk + sk, Mk+1 := Mk , (2.6)

�k+1 =
{

max[c1�k, �min] if rk �c2,

�k otherwise.
(2.7)

Step 4: Generate �k+1 and Bk+1; set k := k + 1, and go to Step 1.

Remarks. (i) For the trust-region-based methods, the main computation is spent to solve the trust-region subproblem.
It is well known that solving the trust-region subproblem exactly is expensive. Hence developing approximate methods
for the trust-region subproblem has been a popular research topic since 1980s and numerous algorithms have been
proposed. Recently, for solving the subproblem (1.2) an efficient approximate Algorithm 4.1 of [7] has been proposed.
In this paper, we will use this algorithm to solve the conic trust-region subproblem (1.2).

(ii) The method for generating �k+1 and Bk+1 can be seen, for example, in [3,14,1]. The conditions that we assume
for proving global convergence are that the matrices Bk are uniformly bounded and

∀k, ∃� ∈ (0, 1) : ‖�k‖�k �� (2.8)

which ensures that the conic model function �k(s) is bounded over the trust-region {s|‖s‖��k}. We would like to
reiterate the fact that our algorithm reduces to a quadratic model-based algorithm if �k =0 for all k. Note that, under the
smoothness assumptions taken in this paper, the objective function is locally convex quadratic around a local minimizer.
It means that choosing �k � 0 asymptotically is suitable when xk is near the minimizer.

(iii) If M = 0, this algorithm reduces to monotone one.
(iv) In this algorithm, the procedure of “Step 2–Step 3–Step 2” is named as inner cycle.

3. Convergence analysis

In this section, we establish the convergence results of our algorithm given in the previous section. Before we address
some theoretical issues, we would like to make the following assumptions.

Assumption 3.1. (i) The sequence {xk} generated by Algorithm NCTR is contained in a bounded set � and f (x) is
twice continuously differentiable in � for any given x0 ∈ Rn.

(ii) The sequences {B−1
k }, {Bk} and {�k} are all uniformly bounded.

122 S.-J. Qu et al. / Journal of Computational and Applied Mathematics 220 (2008) 119–128

Assumption 3.1(ii) implies that there exists a constant � > 0 such that

‖Bk‖��, ‖B−1
k ‖��, ‖�k‖��, ∀k. (3.1)

The method for generating Bk guarantees matrices {Bk} are positive definite. So they are invertible. From ‖Bk‖
‖B−1

k ‖�1, we have that there exists a positive number �̄ such that

‖B−1
k ‖��̄, ∀k. (3.2)

Theorem 3.1. Suppose that (2.8) and Assumption 3.1 hold. Then there exists a positive constant �1 such that

predk(sk)��1‖gk‖ min

[
�k,

‖gk‖
‖Bk‖

]
(3.3)

for all k, where dk is the solution to (1.2).

Proof. Firstly, we let

sk(t) = −tgk , (3.4)

where t ∈ [0, �k/‖gk‖] such that sk(t) is feasible to (1.2). So, according to the definitions of sk and sk(t), we have

�k(0) − �k(sk)��k(0) − �k(sk(t)) (3.5)

for all t ∈ [0, �k/‖gk‖]. By using Cauchy–Schwartz inequality, we obtain

�k(0) − �k(sk(t))� t
‖gk‖2

1 + �
− t2

2

gT
k Bkgk

(1 − �)2

� ‖gk‖2

2(1 + �)

(
2t − t2 1 + �

(1 − �)2
‖Bk‖

)
(3.6)

for all t ∈ [0, �k/‖gk‖]. By computation, we have that

max
t∈[0, �k/‖gk‖]

(
2t − t2 1 + �

(1 − �)2
‖Bk‖

)
� min

[
�k

‖gk‖ ,
(1 − �)2

1 + �

1

‖Bk‖

]
. (3.7)

Therefore the theorem follows from (3.6) and (3.7) with

�1 = (1 − �)2

2(1 + �)2
. � (3.8)

Lemma 3.2. Suppose that (2.8) and Assumption 3.1 hold, then there exists one positive constant �2 such that

|fk − f (xk + sk) − predk(sk)|��2‖sk‖2, ∀k. (3.9)

Proof. From the definition of predk(sk), we have that

|fk − f (xk + sk) − predk(sk)|

=
∣∣∣∣∣−gT

k sk − 1

2
sT
k ∇2f (xk + 	ksk)sk + gT

k sk

1 − �T
k sk

+ 1

2

sT
k Bksk

(1 − �T
k sk)

2

∣∣∣∣∣
=
∣∣∣∣∣ (�

T
k sk)(g

T
k sk)

1 − �T
k sk

− 1

2
sT
k (∇2f (xk + 	ksk) − Bk)sk − 1

2
sT
k Bksk

(
1 − 1

(1 − �T
k sk)

2

)∣∣∣∣∣
�
[‖�k‖‖gk‖

1 − �
+ 1

2
‖∇2f (xk + 	ksk) − Bk‖ + 1

2

(
1 + 1

(1 − �)2

)]
‖sk‖2, (3.10)

S.-J. Qu et al. / Journal of Computational and Applied Mathematics 220 (2008) 119–128 123

where 	k ∈ [0, 1]. It follows from (3.10) and Assumption 3.1 that the lemma is true with

�2 � ‖�k‖‖gk‖
1 − �

+ 1

2
‖∇2f (xk + 	ksk) − Bk‖ + 1

2

(
1 + 1

(1 − �)2

)
. �

The following theorem guarantees that the NCTR algorithm does not cycle infinitely in the inner cycle.

Theorem 3.3. Suppose that (2.8) and Assumption 3.1 hold and that sk is the solution of conic trust-region subproblem
(1.2). That is, if the process does not terminate at xk , then we must have rk > c0 after a finite number of inner iterations
at most.

Proof. We assume that the algorithm does not terminate at xk , that is, ‖gk‖ 	= 0. For simplicity, we suppose that the
superscript denotes the iterative step of inner iteration at xk , then

r
j
k �c0, �j+1

k = c3‖sk‖, j = 1, 2, . . . (3.11)

and s
j
k is a solution of subproblem (1.2) with trust-region radius �j

k . The above relations imply

lim
j→∞ �j

k = 0, lim
j→∞ ‖sj

k ‖ = 0. (3.12)

The above relation and Theorem 3.1 imply that there exist an integer j1 and a constant �3 > 0 such that

predk(s
j
k)��3�

j
k , ∀j �j1. (3.13)

From the definition of fl(k) we have fl(k) �fk . It follows from (3.11) that

c0 �r
j
k = fl(k) − f (xk + s

j
k)

predk(s
j
k)

�
fk − f (xk + s

j
k)

predk(s
j
k)

. (3.14)

On the other hand, from Lemma 3.2 and (3.13),∣∣∣∣∣fk − f (xk + s
j
k)

predk(s
j
k)

− 1

∣∣∣∣∣= |fk − f (xk + s
j
k) − predk(s

j
k)|

predk(s
j
k)

� �2

�3

‖sj
k ‖2

�j
k

� �2

�3
�j

k (3.15)

holds for all j �j1. By (3.12) and (3.15),

fk − f (xk + s
j
k)

predk(s
j
k)

> c0

holds for all sufficiently large j, which contradicts (3.14). This completes the proof. �

Now we prove the global convergence of Algorithm NCTR.

Theorem 3.4. Under the same conditions as Theorem 3.3, assume that {xk} is an infinite sequence generated by
Algorithm NCTR, then every limit point of {xl(k)−1} is a stationary point of (1.1)

Proof. Let x∗ be any limit point of {xl(k)−1}. Then there exists an infinite set K ⊂ {l(k) − 1 : k = 1, 2, . . .} of indices
such that limk∈Kxk = x∗ and limk∈Kgk = g∗. Suppose that x∗ is not a stationary point of (1.1). Then

‖g∗‖ > 0. (3.16)

124 S.-J. Qu et al. / Journal of Computational and Applied Mathematics 220 (2008) 119–128

Next we consider two possibilities:

lim inf
k∈K

�k = 0, (3.17)

lim inf
k∈K

�k > 0. (3.18)

Assume first that (3.17) holds. Then there exists K1, an infinite subset of K, such that

lim
k∈K1

�k = 0. (3.19)

Therefore, there exists an integer k1 such that �k ��min holds for all k ∈ K1 and k�k1, where �min is a positive
constant.

By (3.16), there exists an integer k2 �k1 such that

‖gk‖� 1
2‖g∗‖ (3.20)

holds for all k ∈ K1 and k�k2. By (3.19), there exists an integer k3 �k2 such that

1

c3
�k < ‖gk‖ (3.21)

holds for all k ∈ K1 and k�k3. From the construction of our algorithm, we have that the trial step sk(�′
k), corresponding

to �′
k = (1/c3)�k , is an unacceptable trial step when k ∈ K1 and k�k3. Because sk(�′

k) is an unacceptable trial step,
we have

rk(�
′
k)�c0, ∀k ∈ K1, k�k3. (3.22)

On the other hand, it follows from Theorem 3.1, (3.19) and (3.20) that

predk(sk(�
′
k))��1‖gk‖ min

{
�′

k,
‖gk‖
‖Bk‖

}
� �1

2
‖g∗‖�′

k, ∀k ∈ K1, k�k3, (3.23)

where k3 is sufficiently large. From the definition of fl(k) we have fl(k) �fk , it follows from (3.22) that

c0 �rk(�
′
k) = fl(k) − f (xk + sk(�′

k))

predk(sk(�
′
k))

� fk − f (xk + sk(�′
k))

predk(sk(�
′
k))

, (3.24)

where

predk(sk(�
′
k)) = − gT

k sk(�′
k)

1 − �T
k sk(�′

k)
− sk(�′

k)
TBksk(�′

k)

2(1 − �ksk(�′
k))

2
. (3.25)

From the above relation and Lemma 3.2 we have that there exist two positive constant �4 and �5 such that∣∣∣∣fk − f (xk + sk(�′
k))

predk(sk(�
′
k))

− 1

∣∣∣∣= |fk − f (xk + sk(�′
k)) − predk(sk(�

′
k))|

predk(sk(�
′
k))

� �4

�5

‖sk(�′
k)‖2

�′
k

� �4

�5
�′

k (3.26)

holds for all k ∈ K1 and k�k3. Therefore by (3.19) and (3.26),

fk − f (xk + sk(�′
k))

predk(sk(�
′
k))

> c0 (3.27)

holds for all sufficiently large k ∈ K1, which contradicts (3.24). Thus, relation (3.17) does not hold.
Now we assume that (3.18) holds. Then there exists a constant
 > 0 such that

�k �
 (3.28)

S.-J. Qu et al. / Journal of Computational and Applied Mathematics 220 (2008) 119–128 125

holds for all k ∈ K ⊂ {l(k) − 1 : k = 1, 2, . . .}. On the other hand (3.3) holds for all �k and rk(sk) > c0. It follows that

fl(k) − fk+1 �c0 predk(sk)�0, ∀k ∈ K . (3.29)

Noting that k ∈ K implies that k + 1 ∈ {l(k) : k = 1, 2, . . .}. Since {fl(k)} admits a limit, it follows that

lim
k∈K

predk(sk) = 0. (3.30)

Noting that (3.3) and (3.28) hold for all k ∈ K , similar to (3.23), we can obtain that

predk(sk)�
�2

2
‖g∗‖ min

{

,

‖g∗‖
�

}
> 0 (3.31)

for all sufficiently large k ∈ K . The above relation contradicts (3.30). Therefore relation (3.18) does not hold either.
This completes the proof of the theorem. �

In a practical implementation, the stop criterion ‖gk‖ = 0 in Algorithm NCTR is changed to ‖gk‖ < ε, there ε > 0 is
a constant. By Theorem 3.4, Algorithm NCTR stops in a finite number of iterations under Assumption 3.1 and (2.8).
In order to explore the superlinear convergence we give the following assumptions.

Assumption 3.2. (i) The sequence {xk} generated by Algorithm NCTR converges to a stationary point x∗, i.e.,

lim
k→∞ xk = x∗ and lim

k→∞ ‖gk‖ = ‖g∗‖ = 0. (3.32)

(ii) If

‖B−1
k gk‖

1 − gT
k B−1

k �k

��k , (3.33)

then

sk = B−1
k gk

1 − gT
k B−1

k �k

. (3.34)

Lemma 3.5. Suppose that Assumptions 3.1 and 3.2 hold, then after finite iterations sk must be defined as (3.34).

Proof. Define

K =
{

k| ‖B−1
k gk‖

1 − gT
k B−1

k �k

> �k

}
. (3.35)

Now we will prove that the set K is finite. If K is infinite, then by Assumption 3.2(i), we have that

lim
k→∞ �k = 0. (3.36)

This together with Lemma 3.2 and the proof of Theorem 3.4, we have that

rk > c0 (3.37)

holds for sufficiently large k. Then by Algorithm NCTR,

�k+1 ��k (3.38)

holds for sufficiently large k, which contradicts (3.36). Therefore the set K is finite. �

126 S.-J. Qu et al. / Journal of Computational and Applied Mathematics 220 (2008) 119–128

Theorem 3.6. Suppose that Assumptions 3.1 and 3.2 hold. If ∇2f (x∗) is positive definite and

lim
k→∞

‖[Bk − ∇2f (x∗)]sk‖
‖sk‖ = 0, (3.39)

then the sequence {xk} converges to x∗ superlinearly.

Proof. By Lemma 3.5, we have that for large enough k, ‖B−1
k gk‖/(1−gT

k B−1
k �k)��k . Then according to Assumption

3.2(ii), for large enough k, sk = B−1
k gk/(1 − gT

k B−1
k �k). So similar to the proof of Theorem 8 of [2], the theorem can

be proved. �

4. Numerical experiments

In this part, we will carry numeric experiments for the algorithm NCTR. All programs are written in C++, numerical
test in PC, CPU Main Frequency 1.43GEMS 256MMrun circumstance VC + +6.0, numeric type double float. The
parameters in algorithm are:

c0 = 0.1, c1 = 1.5, c2 = 0.7, c3 = 0.5, �max = 150, �min = �0 = 20, B0 = I, �0 = 0.

The convergence criterion

‖gk‖�10−6 or f (xk−1) − f (xk)�10−6 max{0.1, |f (xk−1)|}
is used for the termination test; that is, when one of the two conditions is satisfied, computation stop. We also set a
maximum iteration number, 500, to terminate calculation when this number is reached. The following four functions
from [9] are presented:

1. Box three-dimensional function

f (x) =
3∑

j=1

fj (x)2,

where fj (x) = exp[−tj x1] − exp[−tj x2] − x3(exp[−tj] − exp[−10tj]) and tj = (0.1)j .
2. Penalty function

f (x) =
3∑

i=1

10−5(xi − 1)2 +
⎡
⎣
⎛
⎝ 4∑

j=1

x2
j

⎞
⎠− 1

4

⎤
⎦

2

.

3. Trigonometric function

f (x) =
5∑

j=1

[
5 −

5∑
i=1

cos xi + j (1 − cos xj) − sin xj

]2

.

4. Kowalik and Osborne function

f (x) =
11∑

j=1

(
yj − x1(u

2
j + ujx2)

u2
j + ujx3 + x4

)2

,

where yj and uj are given in Table 1.
Algorithm NCTR is used to solve the unconstrained optimization problems (1.1) with the objective functions defined

as above, respectively. As we can see that these problems are actually the nonlinear least squares problems. Note that,
in general, these problems are not easy to be solved by general minimization algorithms, since they tend to ignore the
structure in these problems.

S.-J. Qu et al. / Journal of Computational and Applied Mathematics 220 (2008) 119–128 127

Table 1
uj and yj

j yj uj j yj uj

1 0.1957 4.0000 7 0.0456 0.1250
2 0.1947 2.0000 8 0.0342 0.1000
3 0.1753 1.0000 9 0.0323 0.0833
4 0.1600 0.5000 10 0.235 0.0714
5 0.0844 0.2500 11 0.0246 0.0625
6 0.0627 0.1670

Table 2
Results of NCTR

Pro. M Residual Itr

1 0 8.564783 × 10−7 17
2 2.337964 × 10−8 14
4 5.867754 × 10−7 8
6 7.365741 × 10−7 14
8 3.899977 × 10−7 35

10 8.666745 × 10−7 84
12–14 Failed Failed

2 0 3.75210 × 10−7 9
2 7.857641 × 10−6 13
4–14 Failed Failed

3 0 2.422347 × 10−10 42
2 7.498763 × 10−9 14
4 1.772999 × 10−7 34
6 8.397511 × 10−7 54
8–14 Failed Failed

4 0 4.656321 × 10−8 67
2 8.837662 × 10−7 38
4 8.561476 × 10−7 84
6 7.786666 × 10−7 91
8 1.873443 × 10−7 88

10 9.877541 × 10−7 93
12 7.114456 × 10−7 95
14 5.398762 × 10−7 112

Table 2 contains the results for these experiments, where Ini, Residual and Itr stand for the initial point, ‖gk‖
satisfying the stop rules and the numbers of iterations, respectively. For each problem, the code runs from M = 0–14,
where M =0 means the monotone trust-region method of conic model in [7]. Therefore, we have actually computed 32
problems and for every problem we have eight cases (from M = 0 to 14). Analyzing the numerical results, we have the
following conclusions: for the four problems, Algorithm NCTR is good for most problems; our nonmonotone method
is competitive with the monotone method in [7] and for some special optimization problems the performance of the
nonmonotone method is better.

Acknowledgments

We are grateful to the editors and referees for their suggestions and comments. The first author thanks Pro. Wu for
her helpful suggestions and comments.

128 S.-J. Qu et al. / Journal of Computational and Applied Mathematics 220 (2008) 119–128

References

[1] K.A. Ariyawansa, Deriving collinear scaling algorithms as extensions of quasi-Newton methods and the local convergence of DFP and BFGS
related collinear scaling algorithm, Math. Programming 49 (1990) 23–48.

[2] Z.W. Chen, J.Y. Han, D.C. Xu, A nonmonotone trust region method for nonlinear programming with simple bound constraints, Appl. Math.
Optim. 43 (2001) 63–85.

[3] W.C. Davidon, Conic approximation and collinear scaling for optimizers, SIAM J. Numer. Anal. 17 (1980) 268–281.
[4] S. Di, W. Sun, Trust region method for conic model to solve unconstrained optimization problems, Optim. Meth. Software 6 (1996) 237–263.
[5] R. Fletcher, Practical Method of Optimization, Unconstrained Optimization, vol. 1, Wiley, New York, 1980.
[6] L. Grippo, F. Lampariello, S. Lucidi, A nonmonotone line search technique for Newton’s Method, SIAM J. Numer. Anal. 23 (1986) 707–716.
[7] Y. Ji, S.J. Qu, Y.J. Wang, H.M. Li, A conic trust-region method for optimization with nonlinear equality and inequality 4 constrains via active-set

strategy, Appl. Math. Comput. 183 (2006) 217–231.
[8] J.T. Mo, K.C. Zhang, Z.X. Wei, A nonmonotone trust region method for unconstrained optimization, Appl. Math. Comput. 171 (2005)

371–384.
[9] J.J. Moré, B.S. Garbow, K.E. Hilstron, Testing unconstrained optimization software, ACM Trans. Math. Software 7 (1981) 17–41.

[10] Q. Ni, S. Hu, A new derivative free algorithm based on conic interpolation model, Technical Report, Faculty of Science, Nanjing University of
Aeronautics and Astronautics, 2001.

[11] J. Nocedal, Y. Yuan, Combining trust region and line search techniques, Report NAM 07, Department of EECS, Northwestern University, 1991.
[12] M.J.D. Powell, On the global convergence of trust region algorithms for unconstrained optimization, Math. Programming 29 (1984) 297–303.
[13] G.A. Schultz, R.B. Schnabel, R.H. Byrd, A family of trust region based algorithms for unconstrained minimization with strong global

convergence, SIAM J. Numer. Anal. 22 (1985) 47–67.
[14] D.C. Sorensen, The q-superlinear convergence of a collinear scaling algorithm for unconstrained optimization, SIAM J. Numer. Anal. 17 (1980)

84–114.
[15] Y. Yuan, On the convergence of trust region algorithms, Math. Numer. Sinica 16 (1996) 333–346.
[16] Y. Yuan, W. Sun, Optimization Theory and Methods, Science Press, Beijing, China, 1997.
[17] J.L. Zhang, X.S. Zhang, A nonmonotone adaptive trust region method and its convergence, Comput. Math. Appl. 45 (2003) 1469–1477.

	A nonmonotone trust-region method of conic modelfor unconstrained optimization62626262
	Introduction
	The algorithm
	Convergence analysis
	Numerical experiments
	Acknowledgments
	References

