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Algebraic approach to single- 
pushout graph transformation* 

Liiwc. M., Algebraic approach to single-pushout graph transformation, Theoretical Computer 

Science 109 (1993) 181-224. 

The single-pushout approach to graph transformation interprets a double-pushout transformation 

rule of the classical algebraic approach which consists of two rotul graph morphisms as a single 

particll morphism from the left- to the right-hand side. The notion of a double-pushout diagram for 

the transformation process can then be substituted by a single-pushout diagram in an appropriate 

category of partial morphisms. 

It can be shown that this kind of transformation generalizes the double-pushout framework. 

Hence. the classical approach can be seen as a special (and very important) case of the new concept. 

It can be reobtained from the single-pushout approach by imposing an application condition on the 

redices which formulates the gluing conditions in the new setting. On the other hand, single- 

pushout transformations are always possible even if the gluing conditions for the redex are violated. 

The simpler structure of a direct transformation (one pushout diagram instead of two) simplifies 

many proofs. Hence, the whole theory for double-pushout transformations including sequential 

composition, parallel composition, and amalgamation can be reformulated and generalized in the 
new framework. 

Some constructions provide new effects and properties which are discussed in detail. 

1. Introduction 

Graph grammars provide an intuitive description for the manipulation of complex 

graph-like structures as they occur in databases, operating systems, and complex 

applicative software. Besides that all approaches to graph transformation systems 

offer theoretical results which help in the analysis of such systems. 

Especially the algebraic approach [S, 9, 121 has been worked out for several years 

now and provides results for parallelism analysis [25, 271, efficient evaluation of 
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functional expressions [33, 221, synchronization mechanisms [4], distributed systems 

[3, 10, 381, implementation of abstract data types [29], and context-free hyperedge 

replacement [ 18, 193. 

A graph transformation rule (L, K, R) conceptually consists of three graphs L, K, 

and R. L is the left-hand side of the rule. It formulates the precondition under which 

the rule is applicable. K, in most cases a subgraph of L and R, describes the part of the 

left-hand side which is going to be preserved by rule application. Thus, L-K is the 

part which a rule application is going to delete and R-K is added. Here, the inter- 

mediate graph K gets a second role: It describes the context into which added 

components are going to be integrated. (K is called “gluing graph”.) 

A rule is applicable to a graph G if G contains a homomorphic image of L. The 

application of a rule (L, K, R) deletes all items in G which correspond to objects in 

L-K in the first step. It results in the so-called context graph D. Second, it adds all 

items in R - K to D. The connection between “new” items in R-K and “old” objects 

in D is described by the relation of the “new” items in R-K to objects in K. Thus, 

application of a rule r = (L, K, R) to a graph G consists of four steps: 

(1) Try to find L in G. If there are some images of L in G choose one and continue. 

Otherwise, r is not applicable to G. [In some approaches, the matching phase includes 

the check of additional application conditions (see below).] 

(2) Remove the part of G which corresponds to L-K. 
(3) Alld R-K to the result of the last step. 

(4) Embed R-K into G-(L- K) as it is given by the corresponding relation 

between R-K and K. 
This series of four steps seems to be common to all approaches to graph transforma- 

tion; cf. 1261.’ The algebraic approach to graph transformation (cf. Appendix A for 

basic notions) summarizes these four steps in a single categorical construction of 

a double-pushout diagram which facilitates many proofs that would be very hard to 

obtain on the more concrete, operational level: A rule is a pair (/ : K + L, Y : K -+ R) of 

total graph morphisms and a direct transformation with the rule (1: K+L, r: K-R) 
from a graph G to a graph H is possible if there is a context graph D together with 

a gluing morphism k : K +D such that G is the pushout of I and k and the graph H is 

the pushout of r and k (for more details compare Appendix A). With these definitions, 

all operational effects of a direct transformation are encapsulated in a single categori- 

cal colimit construction and, therefore, all universal properties known for this con- 

struction within category theory are inherited [l, 211. Thus, many proofs do not 

bother about operational details but only rely on abstract arguments about colimits. 

Since all results about algebraic graph transformation require the rules’ left-hand 

sides to be injective,2 the rule concept can be simplified when the pair 

I However, there are individual differences in each phase and the formulation of the embedding area by 

a subgraph K of L and R is an idealization. 

‘With noninjective left-hand sides, the context graph in a transformation from G to H need not be 

unique. 



(I: K-+L, r: K +R) of total morphisms is seen as a partial morphism (r’ : L-+R) which 

is defined on I(K) only and coincides with r on its domain. Now the concept of direct 

transformation reduces to a single-pushout construction: G transforms to H using the 

rule (r’: L-R) if there is a total matching morphism (or redex) nz: L+G such that H is 

the pushout of r’ and ??I (here in the category of graphs and partial morphisms). It is 

this single-pushout concept which is comprehensively elaborated below. It turns out 

to be more general than the double-pushout framework and that all corresponding 

proofs are less complex due to the simpler underlying notion of direct transformation. 

Single-pushout transformations in a setting of some sort of partial morphisms have 

been investigated in [36, 231. 

Raoult [36] introduces two conceptually very different approaches. The first one is 

described in the category of sets and partial mappings. A rule is a partial morphism 

r : L-tR, i.e. a partial map which respects the graph structure3 on all objects of L it is 

defined for.4 A redex 111: L+G in some graph G is a total morphism of this type. The 

result of applying r at VI is constructed by two steps. First, the pushout (H, r,,, : G-+H, 

m,: R+H) of r and m in the category of sets and partial maps is built. In the second 

step, a graph structure is established on H such that the pushout mappings r, and m, 

become morphisms. He characterizes the situations in which this graph structure 

uniquely exists; double-pushout transformations with their application conditions (cf. 

Appendix A) are special cases of these situations. 

The second model of graph transformation in [36] uses another kind of partiality 

for the morphisms: a rule is a total map r: L +R, which is only partially compatible 

with the graph structure. Let rewrite(r) denote the set of objects which are not 

homomorphically mapped by r. A redex m: L+G is total which means now re- 

write(m)=@ Application of r at m is again defined by two steps. First construct the 

pushout (H, r,: G+H, m,:R-+H) of r and m in the category of sets and total 

mappings and second impose a graph structure on H such that the pushout mappings 

become as compatible as possible, i.e. such that rewrite(r,)=m(rewrite(r)) and 

rewrite(m,)=r(rewrite(nz)). Raoult [36] gives sufficient conditions for the unique 

existence of this structure. This approach has the major disadvantage that objects 

cannot be deleted at all (compare the intuitive graph transformation model 

above). 

Kennaway [23] provides a categorical description for the second approach of [36]. 

Graphs are represented the same way. Morphismsf‘: A-+B are pairs (.f; horn). The first 

component is a total mapping from A to B. The second component provides a subset 

of A on whichf‘respects the graph structure. A rule r: L-+R is any morphism in this 

sense and a redex nr : L-G is a total morphism which now means ~OWI, = L. He shows 

that under certain conditions the two-step construction of 1361 coincides with the 

pushout construction in the category of graphs and the so-defined morphisms. 

‘The graph structure is imposed on a set by a successor relation, and a labeling function. 

4 We disregard the variable concept for this general discussion. 



Unfortunately, only sufficient conditions for the existence of pushouts are given. 

Besides that, object deletion remains impossible. 

The concept in [23] has been further developed in [17]. They introduce “general- 

ized graph rewriting” which uses the same kind of graph morphism. The correspond- 

ing transformation concept not only involves a pushout construction but also a co- 

equalizer. Since both construction are carried out in different categories (of total resp. 

partial morphisms), theoretical results are difficult to obtain. 

The idea which is elaborated below is to resume the first approach in [36]. His 

concept of partial mappings which are compatible with the graph structure on their 

domain can be generalized to a concept of partial homomorphisms on special 

categories of algebras such that pushout construction in these categories is always 

possible. Hence, we get rid of any application conditions. If, however, the necessary 

and sufficient conditions of [36] are satisfied, the construction of pushout objects 

coincides with his two-step construction.5 

Recently, Kennaway [24] independently started to study graph transformation in 

some categories of partial morphisms of this type. His work is based on the categorical 

formulation of a partial morphism provided by [37]. While we consider concrete 

algebraic categories, 1241 stays in a purely categorical framework. Future research has 

to show how both approaches can benefit from each other. 

Van den Broek [S] introduces another kind of single-pushout transformations 

based on “partial” morphisms. Partiality in this framework is described by total 

morphisms which map objects “outside their domain” to marked objects in their 

codomain.(’ Single pushout transformations with this type of morphisms corresponds 

to transformations in junk- or sink-completed structures described in Appendix B. 

The article is organized as follows.’ Section 2 provides the algebraic foundations for 

colimit constructions with partial morphisms. Especially we characterize the class of 

algebraic structures which has all finite colimits, so-called yraph struc‘tures. Section 

3 models graphs, hypergraphs, and other similar structures as graph structures and 

introduces the single-pushout transformation concept for all of these objects. It is 

shown that the single-pushout approach generalizes the double-pushout framework. 

A running example demonstrates the expressive power of the new concept. Sections 

4, 5, and 6 are devoted to sequential composition, parallel composition, and amalga- 

mation of single-pushout rules and transformations, respectively. They provide 

a comprehensive theory of rule composition. All properties that differ from the 

double-pushout case are discussed. The conclusion (Section 7) addresses some issues 

of further research. 

‘Actually, the whole theory presented in the following has been very much motivated and stimulated by 

the pushout constructions in the category of sets and partial mappings the author learned about by 1361. In 

this paper. these constructions arc generalized to the level of algebras and partial homomorphisms. 
‘Marked objects indicate deleted or garbage Items. 

‘The results presented in the following have been presented in [IS] for the first time. The basic ideas of 

the single-pushout approach used here have been published in 1301. 
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2. Partial morphisms and graph structures 

This section provides a general introduction to colimit constructions in algebraic 

categories with partial homomorphisms.* The first central result provides necessary 

conditions for those categories to be closed w.r.t. colimits, namely that the signature 

contains unary operator symbols only. Signatures of this kind are called graph 

strucrures. The second main result shows that categories of graph structures and 

partial homomorphisms have all finite colimits. Both results characterize the struc- 

tures which can be transformed by single-pushout constructions.’ Some examples, 

how graphs, labeled graphs, hypergraphs, and more complex graph-like structures 

can be seen as graph structures, are given at the beginning of Section 3. 

Definition 2.1 (Partial homomorphism). If Sig is signature and A, B are Sig-algebras, 

a partial Sig-homomorphism h : A +B is a total homomorphism from some subalgebra 

Ah of A to B. A is the domain, B the codomain, and A,, the scope of h. 

Since the scope A,, of a partial homomorphism !I : A+ B is a subalgebra of A, we get 

h(C)cB for each CGA and, for each DcB, h-‘(D)GA.” 

Proposition 2.2 (Category of partial homomorphisms). All Sig-algebras and all par- 
tial Sig-homomorphisms~form (1 category AlgP(Sig). 

Proof. The compositionf’= q of two homomorphisms g: A+B andf: B-+C is given by 

the componentwise composition of the underlying partial mappings. Its scope is 

A , y =y- ’ (Bfng(A,)). It is a subalgebra of A since B, and A, are subalgebras of 

B and A, respectively and g(A,) and B,ng(A,) are subalgebras of B. That fog is 

homomorphic on its scope is implied by the fact that (f’o g)iAl s =,fi~, 0 glAf 9 which are 

total Sig-homomorphisms.” Composition of partial mappings is associative. The 

identities idA : A+ A for each algebra A in AlgP(Sig) are provided by the correspond- 

ing total identity homomorphisms of Alg(Sig).” They satisfy for all partial 

homomorphisms g : A-+ B and ,f: B-t A, idA cjf=,f and g 0 idA = g. 0 

Note that this definition of partial Sig-homomorphisms coincides with the usual 

category-theoretic definition in terms of subobjects and pullbacks as it can be found 

e.g. in [37]. 

“For basic notions and constructions of universal algebra compare 1151. 

“Recently, Ehrig et al. [1 I] have provided some results in this direction for the double-pushout 
approach. 

I0 E denotes the subalgebra relation, h(C)= (h(u)luEC:, and h-‘(D)={.YJ~(.x)ED}. 

1 I If f : A + B is a partial homomorphism, C a subalgebra of A, and D a subalgebra of B, f;c denotes the 

domain restriction off to C and f w denotes the codomain restriction offto D, i.e. the scope of.flD is given 

by f- I(D) and the definition off ID coincides with the definition of fon its scope. 

” Alg(Sig) denotes the category of all Sig-algebras together with all total Slg-homomorphisms. 
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Diagram I. Pushout situation for Two and Trir. 
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Diagram 2. Pushout situation for Trir, Three, and Etnpr~ 

Since we want to use AlgP(Sig) as a basis for graph transformation, we are mainly 

interested in pushout constructions in AlgP(Sig). Therefore, it has to be investigated 

under which conditions AlgP(Sig) has all pushouts. 

Proposition 2.3 (Pushout-incompleteness). AlgP(Sig) is not closed w.r.t. pushouts if 

Sig contains constants or operator s~~hols with more than one argument. 

Proof. First, suppose Sig =(S, OP) contains a constant c:-+cs. Consider Diagram 1 

in which the Sig-algebras and homomorphisms are defined by: 

(1) Trio ::= Trio,= { * > for all SES and opTria(*, . . . , *)= * for all operators 

0p:S1,...,Sn+Sn+1EOP;13 

(2) Two ::= TwoCS=(*,aJ, Two,={*) for sfcs, and opTwO(xl,...,x,)=* for all 

operators op:sI ,..., s,+s,,+lEOP; 

(3) y: Two-t Tric is the unique total homomorphism from Two to Triv; and 

(4) f: Two-t Tric is undefined for a and ,f’( *) = * otherwise. 

If there was an algebra X and partial homomorphisms& : Triu-+X and gs: Triv-+X 

such that gs ~.f=f, t> g, firstly X,,#@ because it must contain cx and secondlyf,(*)= 
,fg(cTri~~)=CX=gf(C~ri~~ )=gs(*) due to.6 and gr being homomomorphic. This implies 

f, 0 g(a)= cx. On the other hand, gJ c~f is undefined for a since f is. The arguments 

above lead to a contradiction to the assumption that there is a completion of Diagram 

1 making it commute. Hence, there is no X, ,f,: Triv-tX, and gf: Triu-+X with 

gf of=& c g which implies that there is no pushout object for f and g. 

Second, suppose Sig =(S, OP) contains no constants and at least one operator 

symbol f:fsl,...,fsn-tfs,+l with n>2. We construct a situation, depicted in 

Diagram 2, which cannot have a pushout completion. The participating algebras and 

homomorphisms are defined by: 

(1) Triv is again the terminal algebra having Trin, = {*} for all SES; 

I3 Trir is the terminal object in Alg(Sig). 
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(2) since there are no constants, the empty algebra Empty is in AlgP(Sig): Empty,=@ 

for all SES and opEmptY=@ for all op~0P;‘~ 

(3) Three is constructed as follows: for all SES, Three, = {*, a, h} and for all oper- 

ators (op:s, ,..., s,,+s,+~)EOP, we define 

a if for all i= 1, . . . , n: xi=u, 

oP 7‘hrc’(.~I, . . . ,xJ= h if for all i= 1, . . . . II: xi=h, 

* otherwise; 

(4) i: Triti+Three is the inclusion of Triv in Three; 

(5) 8 : Triu-t Empty denotes the empty, everywhere undefined homomorphism. 

The absence of constants guarantees that Three is well-defined.15 If all carriers of 

Three are restricted to {a) or to (b], we obtain two subalgebras Triu-one and Triu-two 

and two partial homomorphisms ,fi : Three+ Trio-one and ,fi : Three-r Triv-two such 

that the scopes are given by ThreefI = Tric-one and Threes2= Triv-two, respectively, 

and,f, and,/; are the identities on their scopes. Obviously, there are the unique partial 

homomorphisms 8 : Empty + Trio-one and 0 : EmptJ’+ Trio-two such that (1) and (2) in 

Diagram 3 commute. 

Now assume the existence of pushouts and let (X, io: Empty-+X, @i : Three-+X) be 

the pushout of 0 and i. Note that ie=8 since it is the only partial homomorphism from 

Empty’ into some other algebra. Since (1) and (2) in Diagram 3 commute, there must be 

u1 :X-+Trbo~e and u,:X-+Triz~-two such that (i) u1 c&=f; and (ii) u20&=fz. 

(i) requires that the element a in each carrier of Three is contained in Three@, 

and (ii) requires that the element h in each carrier of Three is an element of Threefit. 

Since the scope of &, i.e. Three@,, must be a subalgebra of Three (cf. Definition 2.1), 

,fThrfp( u, h, a, , u) = * E TI Ireegl. This results in 8, oi(*) to be defined on the carriers for 

sort fs,, I while io ) 0 = 0 T @ = 0 is undefined everywhere. Hence, io d 0 # 8, c i which is 

a contradiction to the assumption that (X, io : Empty+X, & : Three-+X) is the pushout 

object. Due to the fact that the contradiction occurs for each choice of possible 

pushout objects, there cannot be any. 0 

The negative result of Proposition 2.3 motivates the following definition. We 

distinguish signatures which contain monadic operator symbols only. The theory 

presented in the following is the theory of these so-called graph structures. 

Triv LL- Empty Triv"- Empty 
i 

I 
il, 

I 
0 I 

I 
/.?I 

I 
0 

Three f - Triv-one 
T 

Three fFiv-two 
2 

Diagram 3. Commuting diagrams for Trir, Three, and Empty 

“‘Note that due to the absence of constants, EntptJ is a subalgebra of each algebra in AlgP(Sig). 

I5 Note that op 7 h”““(.x,. . x,,) provides * if some arguments are a and some arguments are h. 
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Definition 2.4 (Graph S~YUC~UWS). A signature is a graph structure if it contains unary 

operator symbols only. 

All terms w.r.t. a graph structure have a very special form: 

(1) there are no ground terms due to the absence of constants; 

(2) each term contains exactly one variable due to the absence of operators with 

more than one argument. 

Thus, all terms represent derived unary operators. They can be sorted w.r.t. their value 

sort and the sort of the unique variable in them. Hence, we write T:$$ for the following 

set of terms {tltETs,s.s,( (x)), x~X,j. If t~T”z,‘, XEX, is the variable in t, A is 

a Sig-algebra, and UEA,, we write Y’(U) for the evaluation oft in A using the variable 

assignment x k+ a. 

Lemma 2.5 (Subalgebras). !fSig =(S, OP) is a graph structure and A is a Sig-algebra, 

then the set of subalgebras of’ A is closed w.r.t. intersection and union. 

Proof. Closure w.r.t. intersection is a general property for all signatures; cf. [15]. 

If V is a set of subalgebras of A, U% is also a subalgebra of A if we define 

UK= UC& C, for all SES and op”” = u cEs opt for all 0peOP. Since all operators 

are unary, op “” : uVs-(,j%sr is defined for all XE~%~. It is well-defined because all 

CE% are subalgebras of A. Hence, UY?G A. 0 

With Lemma 2.5, we immediately obtain the following result for arbitrary graph 

structures Sig =(S, OP): If A is a Sig-algebra and B=(BS)SES is a family of subsets of 

A, i.e. (B,G AJSES, then there is a greatest subalgebra of A whose carriers are contained 

in B, namely U {CG AIC,c B, for all SES}. This implication of Lemma 2.5 is crucial 

for the following construction of pushouts in AlgP(Sig). 

Construction 2.6 (Pushouts in graph structures). If Sig=(S, OP) is a graph structure 

and ,f: A+B and g: A-tC is a pair of (partial) Sig-homomorphisms, the pushout 

(O,f,: C-+D, gf: B-+D) off‘and g in AlgP(Sig) can be constructed in four steps. (The 

pushout situation is depicted in Diagram 4.) 

(1) Construction of the gluing object f’0 g which is a subobject of A: f V g is the 

largest subalgebra of A which satisfies 

(a) _fVgz A,.nAg and 

(b) for all .uE,fVg and y~A,f’(x)=f(y) or g(x)=g(y) implies y~fDg. 

f 
A-B 

Diagram 4. Pushout situation. 



189 

A 
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-B 
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I 
‘9 

4 
’ f 

Diagram 5. Pushout construction for partial homomorphisms 

(2) Construction of the scopes of,f, and gs: 

(a) The scope off,, i.e. Cfp, is the largest subalgebra of C whose carriers are 

contained in (C-g(A))ug(fV g). 

(h) Similarly, B,, is the largest subalgebra of B whose carriers are contained in 

(B-f(A))uS(f’vg).‘6 
(3) Gluing construction of D: D =(B,, + Cfp), _, where x w y if there is an item 

z~.fVg such that .u=f(z) and y=g(z).” 

(4) Construction of the pushout homornorplzisms: ,f, : C-+D has the scope CJg and is 

defined for all XEC~, by&(x) = [x] _ Similarly, gs : B-+D is defined on its scope Bgf. 

Note that Construction 2.6 includes a pushout construction for total homomor- 

phisms. The first two steps construct subalgebras of A, B, and C, i.e. f V g, B,,, and 

C,rx, respectively, such that the domain restrictions off and g w.r.t. f0 g are total 

homomorphismsfi, ‘.-,:(f‘V g)+B,, and gIfTs:(fV g)-+C,,, respectively. The object 

D, constructed in the third step, coincides with the pushout object offifTY and glfcy in 

the category of Sig-algebras and total homorphisms. Also,f, and g,r coincide with the 

corresponding total pushout homomorphisms if they are restricted to their scopes. 

The whole situation is drawn in Diagram 5. 

Theorem 2.7 (Pushouts of graph structures). If f: A-+B and g: A+C is a pair of 
morphisms in a category of‘ graph structures AlgP(Sig), the object D together with the 

morphisms fg: C+D and g,: B-+D as they are constructed in Construction 2.6 is the 

pushout of,f and g in AlgP(Sig). 

Proof. Due to Lemma 2.5, D, f,, and gf are uniquely defined. Thus, the two pushout 

properties have to be shown, i.e. (1) ,f, J g = gf sf and (2) for each pair of morphisms 

“The construction provides that ~J~‘(C,~)=~OS=~‘~‘(B,,). 
“Here, + denotes the coproduct operator for arbitrary graph structures: if Sig=(S, OP) is a graph 

structure and A and B are Sig-algebras, (A+B),=A,ti& for all SES and for all op:s+s’~OP, 

oP A+B(.x)=~pR(~) if -YEA, and opA+’ (x) = op”(x) if XEB,. The operator / k constructs the quotient of its 

argument w.r.t. the least congruence which contains the family of relations _ = (- .),sEs. 



190 M. Liiwe 

f’: C-+E and g’:B+E in AlgP(Sig) such thatf’og=g’cf, there is a unique morphism 

u:D+E with uogs=g’ and uofg=,fl. 
Due to Construction 2.6, the scope of& 2 g is f D g which is also the scope of gf sf) 

and by the identification of f(z) and g(z) for each z~f V g in the third and fourth step 

of the construction, f, 0 g = gf 2.f: Hence, (1) holds. 

In order to prove (2), suppose that there exist f’: C-+ E and g’ : B+E satisfying 

f’o g=g’of: Then B,, must be a subalgebra of B whose carriers are contained in 

(B-f (A)) u f (f D g) and C, I must be a subalgebra of C whose carriers are contained 

in (C-g(A)) u g(f V g). Since B,, and Cfp are the largest of those algebras, B,, c B,, 

and CJ9cC, . 
is’a 

With the third and fourth step of the construction,f,(x)=f,(y) implies 

that there sequence z1, f..) z,,Ef V g with n = 2m+ 1 for some rnEN such that 

g(zI)=x, g(z,)=y, f tz2i- l)=f( ~2, , ‘1 and g(z,i)=g(Zzi+l) for i= 1, . , m. Thus, if 

XECJ,, g(Zi)EC,’ for i= 1, . . . , n since ,f’ 0 g = g’ of: Hence, YEC~ I and .f’(x) =f’(y). 

Similarly, gs(x)=gs(y) and XEB,, implies YEI?,, and g’(x)=g’(y). 

With these preliminaries, define u : D--+ E by 

d(Y) if x=gf(y) and DEB,, , 

4x) = ,f’(Y) if x=&(y) and ygCs, , 

undefined otherwise. 

The morphism u is well-defined since x=gs(yl), x=gs(y2) and yr~B,, implies y,eB,, 

and g’(yl)=g’(y2) by the remarks above. Similarly, x=f,(yr), x=,fg(y2), and yl~CS, 

implies y2~CSZ andf’(yI)=f’(y,). Furthermore, x=gs(y), MEL?,,, x=fy(z), and ZEC,(, 

implies that there exists ac.f V g such that .f(a)= y and f, 0 g(a)=x. Hence, by 

g’ of=f’ 1 g, g’(y) ‘f’(z). Since B,, is closed w.r.t. the equivalence induced by gf on 

B and, vice versa, C, is closed w.r.t. the equivalence induced by f, on C, u 0 gs = g’ and 

u of,=f’ by definition of IL Uniqueness of u follows from the observation that each 

morphism v : D-+E with L’ 0 gs = g’ and v of, =f’ requires the same definition on objects 

as u. 0 

Construction 2.6 has some properties which are used intensively in the following 

sections. 

Corollary 2.8 (Pushout properties). If (D, gf : B+D, f, : C+D) is the pushout object of 

f: A-+B and g: A+C in some category AlgP(Sig) of graph structures, 

(1) f, und gs are jointly sut-jective.ls 

(2) ker(&)cg(ker(f)) and ker(g/)sf (ker(g)).‘” 

(3) f,(gf) is injective iff (g) is injective.” 

I8 A partial homomorphismf: A+B is surjective if,f(A)= B. Two homomorphismsf: A-+B and y : C-B 

are jointly surjective iff(A)uy(C)= B. 

19For a partial homomorphism 1: A-B, the kernel of S is a subset of its scope defined by 

ker(f)= (xEA/I there exists YEA/ such that xfy andf(y)=S(u)]. 
“A partial homomorphism f: A-+B is injective if.f(x) =-f(y) implies I =J for all x, YEA,. 
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(4) f, and gf are total if g and f are total. (Thus, each pushout in the category of total 

homomorphisms is also a pushout in the category of partial homomorphisms.) 
(5) gs is total if und only if (1) A, 5 A, and (2) g(x) = g( y) implies either x, YEA, or 

x, &A,. 

Proof. (1) and (2) are direct consequences of Construction 2.6. (3) is implied by (2). If 

fand g are total A, = A = A, =,f V g and, therefore, B,, = B and CfR = C which implies 

(4). In (5), A,cA, and g(x)=g(y) * x, YEA,. or s, y$Af implies f V g= A,, which 

immediately provides B,, = B. Conversely, if A, $ A,, Bqf # B and g, is partial. Also, if 

there exist x, y with g(x)=<g(j’), XEA~, and y$ A,, we obtainf V g #A,. This implies, 

by Construction 2.6, that B,, #B. Hence, gr is partial. 0 

The existence of pushouts in AlgP(Sig) for each graph structure Sig guarantees that 

AlgP(Sig) is complete w.r.t. arbitrary finite colimits. 

Proposition 2.9 (Initial and final graph structure). If Sig is a graph structure, 

AlgP(Sig) has an initial undjinal object. 

Proof. Let Sig =(S, OP) and define @sis by &,a,., =@ for all SES and oposig =@ for all 

op~0P. The so-defined empty Sig-algebra is both initial and final in AlgP(Sig). For 

initiality, we need a unique partial homomorphism ,f: fl~,~--+A for each A EAlgP(Sig). 

There is exactly one, i.e.f= 8. Conversely, there is exactly one partial homomorphism, 

namely 8: A--+&+, for each AEAlgP(Sig). U 

Corollary 2.10 (Co-completeness). AlgP(Sig) is$nitely co-complete if and only ifSig is 
a graph structure. 

Proof. Direct consequence of Propositions 2.3 and 2.9, Theorem 2.7, and the fact that 

categories which have all pushouts and an initial object are finitely co-complete; 

cf. [21]. q 

3. Single-pushout transformations 

This section introduces the basic notions for single-pushout transformations on 

arbitrary graph structures. We first show (in Section 3.1) that all graph-like structures 

like graphs, labeled graphs, and hypergraphs and many more complex objects can be 

seen as algebras w.r.t. a suitable graph structure. Section 3.2 introduces the funda- 

mental notions rule, redex, direct transformation, transformation, and language. 

Section 3.3 is dedicated to the comparison of single- and double-pushout transforma- 

tions on labeled graphs. It turns out that single-pushout transformations generalize 

the classical framework since no application condition is required for redices of 

single-pushout rules. The effects which rule application at these unrestricted redices 

can produce are investigated by a small database example in Section 3.4. 
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3.1. Sample graph structures 

Graph structures are special signatures with the property that the associated 

category of algebras and partial homomorphisms is finitely co-complete (cf. Section 2). 

For single-pushout constructions in these categories to provide a reasonable trans- 

formation concept, it is to show that objects like graphs or hypergraphs can be seen as 

graph structures. This is done by presenting the suitable signatures. 

Example 3.1 (Unlabeled graphs). Unlabeled graphs consist of a set of vertices V and 

a set of edges E. Each edge is connected to its source and target vertex by a monadic 

operation. Hence, the associated graph structure is: 

Unlabeled Graphs= 

Sorts V, E 

Operations 

source, target : E-tV 

Example 3.2 (Edge-labeled graphs). If the edges of a graph are labeled by elements of 

a label set L, we obtain a natural decomposition of the edge set into sets of edges with 

the same label. Hence, the edge set of edge-labeled graphs is an L-indexed family: 

Edge- Labeled Graphs = 

Sorts V, (EA,, 

Operations 

(source, target: E,+V),,, 

The family of edges (E,)I,L and the corresponding family of operators can be infinite 

if L is. The theory of Section 2, however, is also applicable to these infinite structures 

since all operators are monadic. 

Note that the Edge-Labeled-Graph-homomorphisms are label-preserving. 

Example 3.3 (Labeled graphs). Labeled graphs are constructed from edge-labeled 

graphs by sorting the vertices w.r.t. their labels taken from a vertex label set M: 

Labeled Graphs= 

Sorts (VJmGM, (Esm,rm,l)sm.tmtM,~t~ 

Operations 

( 

source : E,,,,,, ,-+Vsm 

target : 6,. tm, eVtm > sm,tmsM.I6L 

The structure of the operator symbols must be so complex since the associated 

homomorphisms shall preserve the labels of the graph elements. Hence, every edge is 

not only distinguished by its own label but also by the labels of its source and target 

vertex. 

Example 3.4 (Unlabeled hypergruphs). Hypergraphs allow their edges to be connec- 

ted to more than one source and more than one target. Therefore, the set of 



hyperedges H = W,. A. ,nE pi “, is a family of edge sets and each hEH,,, has n sources 

and m targets. 

Unlabeled Hypergraphs= 

Sorts V, (H,,,),.,,~ 

Operations 

(source,,..., source,,, target,, . . . . target,: H,,,+V),,,,w 

Note that the Unlabeled-Hypergraph-homomorphisms must respect the type of 

the edges, i.e. edges can only be mapped to edges with the same number of source and 

target connection. 

Labeled hypergraphs can be obtained from hypergraphs in the same way we have 

constructed labeled graphs from unlabeled graphs. 

If the distinction between source and target connections is dropped, we obtain 

undirected hypergraphs. If more than two different connection types are used, multi- 

dimensional objects as they are applied, for example, in [38] can be represented. 

Example 3.5 (Signatwes) Parisi-Presicce [34] applies graph transformation tech- 

niques to specify signature manipulations. The aim is to provide a method for rule- 

based software design. If signatures, i.e. Sig = (S, OP = (OP,,, Jwes*. ,,s), are con- 

sidered as a special type of hypergraphs (see below), single-pushout transformations 

can also be applied to these structures. 

Signature = 

Sorts Sorts, (Operators,,),,~ 

Operations 

(arg,, . . . , arg,, value: Operators,+Sorts),,w 

Example 3.6 (Functionul expressions). Functional expressions over a signature Sig 

are hyperpaths w.r.t Sig. Sets of these hyperpaths can also be modeled as graph 

structures. The graph structure Signature above has to be slightly changed: substitute 

for each sort symbol a set of instances of the sort and for each operator symbol a set of 

instances of the operator. The signature Sig prescribes which sort instances are 

allowed as arguments or values for an operator instance. This relation is expressed by 

the graph structure Expressions(Sig) below which can be defined for each signature 

Sig =(S, OP): 

Expressions(Sig=(S, OP))= 

Sorts (Sort Instances&s, (Operator lnstances,,),,,op 

Operations 

argument, : Operator lnstances,,+Sort Instances,) 

argument,: Operator lnstances,,--+Sort Instances, 

value: Operator Ir~stances,~-+Sort Instances, 

” N denotes the set of natural numbers with zero. 
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Jungles as they are used in [35, 20, 221 are special expressions. They do not admit 

cyclic structures and sort instances which are value of two different operator instances. 

Each jungle can be interpreted as a set of finite Sig-terms with variables: The variables 

are exactly the sort instances which are not value of any operator instance in the 

jungle. If we interpret the value connection of operator instances as the source of 

a hyperedge and the argument connections as targets, each sort instance Si in a jungle 

represents the term which corresponds to the hyperpath from Si to variables. The term 

interpretation of a jungle is the set of these terms. Note that due to different degree of 

“sharing” for common subterms, different jungles (and expressions) can represent the 

same set of terms. 

The same interpretation leads to infinite terms for cyclic expressions. And the 

situation that a sort instance Si is value of two different operator instances can be 

interpreted as an equation: Take all hyperpaths from Si to variables and interpret 

them as possibly infinite terms. The set of equations encoded in the expression at si 

consists of all pairs of these terms. The set of equations encoded in an expression is the 

union of the equations which are encoded at the sort instances of the expression. 

Hence, the interpretation of jungles as sets of terms corresponds to the interpretation 

of expressions as sets of equations, i.e. the jungle interpretation is a special case of the 

expression interpretation. With these ideas, each expression w.r.t. a signature Sig is an 

equational specification w.r.t. Sig (cf. 1341). 

Example 3.7 demonstrates that graph structures are flexible enough to represent 

very complex objects: 

Example 3.7 (Structure of graph transformation implementations). The implementa- 

tion of algebraic graph transformation currently being developed at the Technical 

University of Berlin uses so-called ALR-graphs as the fundamental data structure [2]. 

ALR-graphs not only allow to represent arbitrary labeled graphs but also morphisms 

between graphs. Since morphisms map vertices to vertices and edges to edges, they are 

represented by pairs of vertex assignments and edge assignments.22 In order to keep 

track of which assignment belongs to which morphism, an abstraction operator is 

introduced in ALR-graphs which allows to group vertices and edges into graphs and 

vertex and edge assignments into morphisms. Thus, ALR-graphs as algebras w.r.t. the 

graph structure below are able to represent the diagram level (graphs and morphisms) 

and the object level (vertices, edges, and assignments) in a single structure. 

ALR-Graph = 

Sorts V, E, V-Ass, E-Ass, Graph, Morphism 

Operations 

s, t: E-+V 

s, t : V-Ass-*V 

” Note that edge assignments are objects on a third level if we think of vertices being primary objects and 

edges being secondary items. 
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s, t: E-Ass-E 

s, t : Morphism-tGraph 

abstract: V-Graph 

abstract: E+Graph 

abstract: V-Ass+Morphism 

abstract: E-Ass+ Morphism 

In the implementation of ALR-graphs, context conditions make sure that the 

abstraction relation and the morphisms satisfy the intuitive requirements, for 

example: 

(1) for all eEE, abstract(e)=abstract(s(e))=abstract(t(e)), 

(2) for each SE-ASS, there exist t’, weV-Ass such that abstract(e)=ab- 

stract(u)=abstract(w) and s(s(e))=s(c), s(t(e))=t(v), t(s(e))=s(w), and t(t(e))=t(w), 

(3) and some more; cf. [2]. 

Although these conditions are equations in most cases, the graph transformation 

approach with partial morphisms cannot be adapted to the full subcategory of all 

ALR-graphs which satisfy the requirements. This is due to the fact that every 

nontrivial generated congruencez3 on objects cannot be extended to a free construc- 

tion in the context of partial morphisms. Thus, the intuitive consistence requirements 

above can only be used as correctness criteria for transformations performed in 

AlgP(ALR-Graph). 

Application of graph transformation rules in such a system means building of some 

pushout squares of appropriate morphisms. This is due to the fact that the data 

structure of ALR-graphs allows to represent all features of algebraic graph trans- 

formation, i.e. graphs, morphisms, and redices. 

On the other hand, ALR-graphs are graph structures themselves. Thus, the imple- 

mentation of graph transformation on the basis of ALR-graphs can be seen as a graph 

transformation system manipulating graph transformation systems. 

3.2. Basic notions 

Section 3.1 has presented a variety of graph-like structures as graph structures. 
Hence, it is worthwhile to formulate the single-pushout transformation concept for 

arbitrary graph structures. 

General assumption 3.8. In the following definitions and propositions, it is assumed 

that all objects and homomorphisms are taken from a fixed category AlgP(Sig) for 

some graph structure Sig. 

The mathematical basis for rules, redices, and their interaction within a direct 

transformation is provided by the pushout construction for partial homomorphisms 

in Construction 2.6. 

23 The generated congruence is not trivial, if it differs from dG (the least reflexive relation) for at least one 

object G. 
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G- r, r,(G) 
Dlagram 6. Direct transformation in the single-pushout approach 

Definition 3.9 (Rules, redices, und direct transformation). A transformation rule 

r: L+R is a partial morphism from the left-hand side of the rule L to the right-hand 

side R. A redex for r in some object G is a total morphism m : L+G from the left-hand 

side of the rule to G. The application of a rule r : L+R to an object G at a redex 

111: L+G transforms G to r,(G) which is the pushout object in Diagram 6. 

Note that the graph G and the direct derivation r,,,(G) are connected by the pushout 

morphism r,,,: G+r,(G) which is also called direct transformation morphism below. We 

distinguish the following types of redices. 

Definition 3.10 (Application conditions). Let r: L+R be a transformation rule and 

m: L-+G a redex for r in G. 

(1) The redex M is co@ict$ree if m(x)=m(y) implies x, YEL, or x, y$L,. 

(2) If m(.~)=m(y) implies x = y or x, MEL,, m is called d-injectiue. 

(3) The redex nz is d-complete if for each object OEG with op”(o)~m(L- L,) for some 

operator opcSig, we have o~m(L- L,). 

Redices with these additional features will turn out to impose special properties on 

direct transformations which make the whole transformation process more transpar- 

ent. But also from the intuitive point of view, these application conditions are natural. 

If we reconsider the basic ideas about graph transformation of Section 1 in this 

framework of graph structures and partial morphisms, we can again single out three 

components of a rule: the part meant to be deleted, i.e. L-L,., the subobject of 

L which shall be preserved, i.e. L,, and the added structure R-r(L) (forget about 

identification of r for the moment). 

With these interpretations, conflict-freeness of a redex guarantees that an element of 

G is either meant to be preserved or meant to be deleted. The general concept of 

redices allows conflicts in this respect and the transformation process has to solve the 

conflict by defining deletion or preservation to be dominant (compare Section 3.4). 

The notion of d-injectivity implies conflict-freeness and additionally requires one- 

to-one correspondence between candidates for deletion in G and L. Thus, in order to 

apply a rule which deletes n items, we have to find n suitable elements in G if 

d-injective redices are required. 

D-complete redices, on the other hand, make sure that the whole structural context 

of the elements of G which are going to be deleted is described in L. Here x is in the 

structural context of y if op(u)= y for some operator symbol op in the underlying 

graph structure. For example, the structural context of a vertex is given by all incident 

edges in the category of directed graphs. 



Algebraic approach to single-pushout graph transformation 197 

These properties of d-injective or d-complete redices can be summarized as follows: 

if L - L,, i.e. the part of the rule’s left-hand side which describes the elements that are 

deleted by rule application, has y1 elements, d-injectivity of redices guarantees that at 

least n items are deleted in each direct transformation and d-completeness makes sure 

that at most n elements are deleted.24 

In Definition 3.9 of direct transformation, this intuition is exactly captured as the 

following propositions show. 

Proposition 3.11 (Direct transformation). Let a direct transformation rm: G-+H be 

given us it is dejined by Dejnition 3.9. 

(1) [fm is conJict:free, then r V m = L,, the embedding ofthe rule’s right-hund side in 

the transformation result m,: R-H is total, m(L,)zG,m, and m(L-L,.)EG-G,_. 

(2) !f m is d-injective and d-complete, G-G,,” = m(L- L,). 

Proof. Direct consequence of the pushout Construction 2.6 and Corollary 2.8. U 

On the basis of the notion for direct transformations, we can give precise meaning 

to the notions “rule system”, “ transformation”, and “generated language”. 

Definition 3.12 (Rule system, transformation, language). A rule system RS is a finite set 

of transformation rules. 

An object G can be transformed to H with a rule system RS if there is a sequence of 

direct transformations (r’),$ : G’- ‘+G’for i=l,...,n such that G=G’, H=G”, and 

for i= 1, . . . , n, (r’:L’-+R’)cRS and mi: L’-+G’-’ is a redex for ri in G’-‘. 

The language generated by a rule system RS with shart object G is denoted by RS(G) 

and defined by RS(G)= jH 1 G can be transformed to H with RS). 

R&,(G), RSi(G), and RSi+,(G) denote the sublanguages of RS(G) which are gener- 

ated by RS using conflict-free, d-injective, respectively d-injective and d-complete 

redices in each direct transformation only. 

If G transforms to H with rules in RS, G and H are connected by the partial 

morphism Rw = ri,, 0 .. . 3 r,!,l: G+H which is called transformation morphism in the 

following. 

3.3. Single- versus double-pushout transformations 

For the comparison of single- and double-pushout transformations assume that all 

constructions in this paragraph are performed in the category of Labeled Graphs- 

algebras; cf. Example 3.3. See Appendix A for basic notions of the double-pushout 

approach. 

Definition 3.13 (Translation of single- and double-pushout rules). If r : L-+R is a trans- 

formation rule according to Definition 3.9, D(r)= (1: L,+L, r’ : L,+R) denotes its 

24 The application conditions d-injectivity and d-completeness reformulate the gluing conditions of the 

double-pushout framework for single-pushout transformations. 
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translation to a double-pushout rule, where 1 is the inclusion of L, in L and r’ is the 

domain restriction of r to L,. 

Conversely, for a double-pushout rule p = (1: K--f L, r : K+R), S(p) : L-t R denotes 

its translation to single-pushout rules, where LscpI= l(K) and S(p) = r 0 1- ‘. 25 

Theorem 3.14 (Embedding of the classical approach). If the object H is the result of 
transforming an object G with rule p at redex m in the dobule-pushout framework, the 

translation of p to a single-pushout rule, i.e. S(p), transforms G to H at the same redex 
m in the single-pushout setting. 

Conversely, if G can be transformed to H with rule r at redex m by a single-pushout 

transformation, the translation of r to a double-pushout rule, i.e. D(r), is applicable to 
G at m in the double-pushout framework if and only ifm is d-injective and d-complete. In 

this case, the double-pushout transformation of G with D(r) at m results in the same 

object H. 

Proof. For the first part, consider Diagram 7, where (1) + (2) depicts a direct trans- 

formation in the double-pushout setting and s and s* are the translations of (1, r) and 

of (I*, r*) to single-pushout rules, i.e. s= S(1, r) and s* = S(l*, r*). We have to show 

that (3) is a pushout in the framework of partial morphisms. By Theorem AS, 

m satisfies the gluing conditions. Thus, it is d-injective and d-complete w.r.t. s. 

Thereby, it is conflict-free providing s D m = L, = l(K) by Proposition 3.11. Further- 

more, the pushout morphisms s, and m, satisfy RmS = R and Gsm = G - m(L - L,) = D 

by the same proposition. Therefore, SI(, TV) = r and ml(s c m) = k. Since (2) is the pushout 

of r and k, H is the pushout of sl, V: m and m/ss m and thereby coincides with the pushout 

object of s and m in the framework of partial homomorphisms; cf. Construction 2.6 

and Diagram 5. Since 1 * : D-PC is the inclusion of G,$. = D into G and R,. = R, s* and 

m* are the pushout morphisms for s and m. 

For the second part, consider Diagram 8, where (1) is a direct single-pushout 

transformation and (1, r) and (I*, r*) are the translations of s and s, to double-pushout 

Diagram 7. Translation of double-pushout diagrams 

G -H %I 

Diagram 8. Transformation of single-pushout diagrams. 

“Note that S(p) is well-defined since I is supposed to be injective in the double pushout setting. 
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rules, respectively, i.e. (I, Y)= D(s) and (1*, r*)=o(s,,,). The rule (1, r) is applicable to 

G at m if and only if m satisfies the gluing conditions identification 2 and dangling of 

Theorem A.5. These conditions are satisfied if and only if m is d-injective and 

d-complete w.r.t. s. 

If m is d-injective and d-complete, Proposition 3.11 provides m(L,) 5 G,_. Thus, we 

can define k = (I *)- ’ 0 m 0 I as a total homomorphism. Since the so-defined morphism 

satisfies k = ml L, = ml7 7 m and we have Y=s~~,=s~~~~ by Definition 3.13 and Proposi- 

tion 3.11, (3) is a pushout diagram of total homomorphisms by Construction 2.6; 

compare also Diagram 5. Square (2) commutes by definition of k, 1 and I* are injective, 

and m is injective outside of I(&). This implies that (2) is a pushout of graph structures 

as well; cf. Construction 2.6. 0 

Theorem 3.14 shows that each transformation of graphs in a double-pushout 

framework corresponds to a single-pushout transformation with the translated rule. 

Vice versa, the whole theory for double-pushout transformations can be reobtained 

by restricting the single-pushout approach to d-injective and d-complete redices. 

3.4. Example: (1 small police database system 

The power of the new concept lies in its ability to perform transformations even if 

the redices are not d-complete and d-injective. Thus, the single-pushout approach is 

free from any other precondition for rule application than finding a homomorphic 

image of the rule’s left-hand side in the actual object that shall be manipulated. 

The following small police database example demonstrates the usefulness of 

this property. It has been inspired by the information processing system of (W-) 

Germany’s police INPOL [31]. This database mainly consists of two types of data, 

namely personal data and case data. Therefore, the initial state (i.e. the empty 

database) is characterized by the number of personal and case databases in the system. 

Having just one of each sort, we obtain the graph in Fig. 1 as initial state.26 The 

following operations manipulate the database states: 

(1) Add person p to the personal database. 

(2) Open a new case c in the database for cases. 

(3) Relate person p in kind k to a case c. (The kind can be s for suspected person, 

w for witness, u for victim, etc.) 

0 0 
Person Data Case Data 

Fig. 1. Initial state. 

26The whole example is based on the graph structure Labeled Graphs of Example 3.3. The type of the 

vertices, i.e. black,‘white or big/small, must be interpreted as part of the label. 
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Fig. 2. Object and relation creation 

(7al /7bl 

Fig. 3. Object deletion. 

(4) Relate person p in kind k to another person q. (Kinds are, for example, f for 

father of, b for brother, etc.) 

(5) Relate case c in kind k to another case d. (s for subcase, etc.) 

(6) Erase a relation. (For example: drop suspect against p in c.) 

(7) Erase database entries. (That is, erase data concerned with person p, close case c, 

etc.) 

(8) More complex operations which combine several basic functions in a single 

step. 

The graph transformation model for the operations of type l-3 is given by the rules 

in Fig. 2.27 

Operations of type 4 and 5 have the same scheme as the rule (3) in Fig. 2 but they 

work on personal or case data exclusively. The erasure operations of type 6 and 7 are 

modeled by the corresponding inverse rules of type l-5. Inverse rules can be construc- 

ted as long as the rule morphism is injective since the inverse of an injective partial 

morphism is itself an (injective) partial morphism. Figure 3 visualizes the rules for 

database entry deletion. More complex operations (type 8) can be built from the basic 

ones (type l--7) using sequential composition, parallel composition, and amalgama- 

tion formally investigated in Sections 4, 5, and 6, respectively. The rule in Fig. 4, for 

example, is a parallel composition constructed from the rules “erase person p” and 

“relate person q in kind “father of” to person Y”. 

Figures 5 and 7 show sorne direct transformations with these rules. Figure 5 demon- 

strates that single-pushout transformations are able to express “deletion in unknown 

contexts”. Due to Construction 2.6(2), the erasure of the q-labeled vertex (representing 

a person in the database) by the corresponding “person data deletion rule” triggers the 

“Partial morphisms are drawn as double arrows. The mapping of the objects is indicated by the 

graphical arrangement: The morphism maps all objects of its domain which occur at the same relative 

position in the codomain. This works as long as the morphisms are injective. Noninjective morphisms will 

be indicated by corresponding natural numbers which are used as object identifiers in these cases. 
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B‘B--” T 
P 

Fig. 4. Derived rule. 

0 &O 

Fig. 6. Database reset 

% 
___c__ 0 

II d ,;;-::, 
Fig. 5. Deletion in unknown contexts. 

Fig. 7. Noninjective redices. 

erasure of all incident edges of this vertex from the domain of the transformation 

morphism ym.28 

This operational behavior of the transformation process enables to describe a com- 

plete reset of a personal database in the system by the rule which is given as the empty 

morphism in Fig. 6. Its application erases all connections of the persons in the 

database to the database root. Hence, no rules for these persons are applicable 

afterwards. 

Figure 7 visualizes a rule application at a redex which is not conflict-free. The 

parallel rule of Fig. 4 is used with both subactions manipulating data concerned with 

person q: delete q’s data and insert the information that q is father of Y. As it is 

described in Construction 2.6(l), deletion is dominant w.r.t. preservation.2g Due to 

‘*Note that the double-pushout translation of this rule is not applicable in the situation of Fig. 5 due to 

a violation of the dangling condition (cf. Section 3.3). Hence, complete person data deletion in our example 

is not directly expressible in the double-pushout framework. But it seems to be mere accident that exactly 

this operation is most problematic in the real INPOL System of the German police. First of all, the police 

tried to prevent this operation from being implemented at all since they always fear that deletion ofdata can 

make “their knowledge of the world” incomplete; a conception they simply hate. Secondly, after they were 

forced to implement it by data protection laws, they persistently refused to apply it or managed to produce 
a new copy before the actual deletion. This behavior and the redundant architecture of the system led to 
a data structure that, thirdly, prohibits any complete deletion of all data concerned with a single person 
even if the official in charge actually wants to erase it (compare 1313 for a detailed discussion). 

29 From the data protection point of view, it is the way it should be in this example. 
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vertex 7 being in the scope of the rule and vertex 6 outside, the identification of these 

vertices by the redex forces vertex (6,7) to be outside the scope of the transformation 

morphism. A side effect is that vertex 7 of the rule’s right-hand side cannot be mapped 

to the transformation result by the corresponding pushout morphism. Hence, the 

embedding of the right-hand side into the transformation result is partial for conflict- 

ing redices. 

4. Sequential composition 

The easiest way to construct new rules from a given rule system RS is to consider 

direct transformations rm : G+H as rules themselves, so-called rule-derived rules. Since 

rules are only required to be (partial) morphisms, direct transformations possess the 

right structure. 

Within the single-pushout approach, we can even do more: If there is a transforma- 

tion of G to H according to Definition 3.12 by a sequence of rules R =I-‘, . . . , r” at 

a sequence of redices M =m’, . . . , m”, G and H are again connected by a partial 

morphism, i.e. the transformation morphism R,. Thus, all transformations in 

AlgP(Sig) have the same structure, the structure of a transformation rule. This allows 

to interpret all transformations with a rule system RS as deriued rules. 

Definition 4.1 (Rule-derived rule). A rule rd: G+H is a rule-derived rule w.r.t. a rule 

system RS if there is a rule rERS and a redex m for r in G such that rd coincides with 

the direct transformation rm: G-r,(G), i.e. H =r,(G) and rd=r,. The closure w.r.t. 

rule-derived rules RSD is the least rule system which satisfies (1) RS c RSD and (2) if r is 

rule-derived from RSD, rE RSD. 

Theorem 4.2 (Rule-derived rule). If K is directly transformed to M with a rule-derived 
rule rd, there is a direct transformation of K to M with the original rule from which rd is 

derived. 

Proof. Consider Diagram 9. The existence of a direct transformation from K to 

M with the rule-derived rule rd implies that there is a redex n such that (2) is a pushout 

square. The property of rd being rule-derived ensures that there is a rule r and a redex 

m I lli I 4 

G rd=rm -H 

Diagram 9. Application of rule-derived rule. 
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m for r in G such that (1) is a pushout diagram. Since pushouts compose, (1) +(2) is 

a pushout. It is the diagram for the application of r at the redex n 0 m which is total 

because both components are. Thus, K can be transformed to M using r at n 0 m and 

rd, = r@l I m) due to the uniqueness of pushouts. 0 

Corollary 4.3 (Generated language). The language generated by a rule system RS 

coincides with the language generated by the closure RSD for all start objects G, i.e. 

RS(G) = RSD(G). 

Proof. RS(G)zRSD(G) follows directly from RSC RSD. RSD(G)sRS(G) is a direct 

consequence of Theorem 4.2. 0 

General derived rules are more complicated. 

Definition 4.4 (Derived rule). A rule rd : G-H is a derived rule w.r.t. a rule system RS if 

rd = Rw : G-+H for a sequence of rules R = r’, . . . , r”E RS and a sequence of redices 

M=m’, . . . . m” for these rules. The closure w.r.t. derived rules RST is the least rule 

system satisfying (1) RS c RST and (2) if r is derived from RST, rERST. 

Using arbitrary transformations as derived rules, we loose the properties of Corol- 

lary 4.3. 

Example 4.5 (Derived rule). Consider Section 3.4, especially the rule of Fig. 6. Ap- 

plying this rule twice to a graph containing two personal databases provides us with 

the derived rule rd in Fig. 8. 

The derived rule rd can now be applied to a graph with only one person database at 

a noninjective redex. Thus, a system state containing a single personal database can be 

transformed to a graph with two of these databases if all derived rules are allowed for 

transformations. This cannot be done with the original rule system: it is easy to check 

that all rules preserve the number of vertices representing databases. 

Theorem 4.6 (Derived rule). If rd is a derived rule w.r.t. a rule system RS, p is a d- 

injective redex for rd in G, and rd,: G-+H is the corresponding direct transformation, 

then G can be transformed to H using the rules in RS only. 

Fig. 8. Example of a derived rule. 
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Proof. If rd represents a sequence of length 0, it is the identity by definition. Applying 

rd to G in this case results in G which is also the result using the empty sequence of 

rules in RS. 
If rd represents a transformation sequence of length 1, the proposition specializes to 

the case of Theorem 4.2. 

Thus, it remains to consider the case that rd represents a transformation sequence 

whose length is greater or equal 2. If we manage to prove the statement of the theorem 

for derived rules whose corresponding transformation sequence has exactly length 2, 

we are done. All other cases follow by a simple induction on the length of the 

transformation sequence which rd represents. 

The situation that rd has been derived from a transformation of length 2 is depicted 

in Diagram 10. The rules r and s are contained in the rule system RX The derived rule 

rd is given by rd = s, 0 r, : Go +G2. The subdiagrams (1) and (2) are the corresponding 

direct transformations. The rectangle (3) + (4) represents the direct transformation of 

G with rd at the redex p. 

Since rd = s, 0 r,, we can decompose (3) + (4) into two pushouts (3) and (4). The proof 

is completed if it can be shown that w 0 n is a redex for s. Under this premise (l)+(3) 

depicts a direct transformation with the rule r, (2) + (4) visualizes a direct transforma- 

tion with the rule s, and, therefore, G can be transformed to H using rules in RS only. 

The redex p is d-injective w.r.t. s, 0 r, by assumption. Since Gt,nC,m, c G,,, p is 

conflict-free w.r.t. r,,,, which provides by Proposition 3.11 that the morphism w is total. 

Since n is a redex, w 0 n is total and a redex for s in K. 

Uniqueness of colimits guarantees rd,(G)= H = sC,V_n)(rC,C ,,(G)). 0 

A direct consequence of Theorem 4.6 is that each transformation 
r:” 0 . . . or,!,,: G+H can be replayed in bigger contexts K. That is, if there is an 

inclusion i: G+K, there is a transformation rTn,mn 0 ... 0 r:i?,,,t : K+M such that i’ = i 

and for j= 1, . . , n, ij is an inclusion. The final result M of this replay is given by 

applying the corresponding derived rule rLn 0 ... 0 r$ : G-H at the redex i. 

Corollary 4.7 (Generated language). Let RS be a rule system, RST its closure w.r.t. 
derived rules, and G an arbitrary start object. 

(1) RS(G)c RST(G). 

(2) For some systems, RS(G)# RST(G). 

P I 13, Id I III I Y 

G v K -H Y 

Diagram 10. Direct transformation with derived rule 
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(3) If the redices for the construction of derived rules and the redices for direct 
transformations with rules and derived rules are restricted to d-injective ones, RS 
generates the same language as RSr, i.e. RS,(G)= RS:(G). 

Proof. (1) is obvious since RS E RST. (2) is shown by Example 4.5. RS,(G) E RS’(G) in 

(3) is trivial since RSG RST. For the reverse inclusion, we must show that the redices 

p 0 m : L-+ G and w 0 n: M + K constructed in the proof of Theorem 4.6 are d-injective 

(cf. Diagram 10). By the assumption that redices are restricted to d-injective ones, m, n, 

and p in Diagram 10 are d-injective. 

Suppose that x#y and p@m(x)=pom(y). Ifm(x)=m(y), x, YEL, and we are done. If 

m(x)#m(y), m(X), m(y)EG& 1r,) E G,,, since p is d-injective, and Proposition 3.11(l) 

provides x, ycL,. Thus, p 0 m is d-injective. 

Corollary 2.8(2) provides that x#y and w(x)= w(y) implies x, yEr,(ker(p)). Since 

m is d-injective, this means that x, yErm(G$m.rm)) and, therefore, x, y~Gt”. But this 

exactly states d-injectivity of w w.r.t. s,. Thus, n is d-injective w.r.t. s and w is 

d-injective w.r.t. s, and the same argument given for m and p above provides that w 0 n 

is d-injective for s. 0 

Among the derived rules of a rule system, a special set of so-called sequential 
compositions can be distinguished which allows to simulate all transformations in the 

system by appropriate direct transformations. 

Definition 4.8 (Sequential composition). The derived rule s, 0 Y, in Diagram 10 is 

a sequential composition of r and s if m, and n are jointly surjective. 

Theorem 4.9 (Sequential composition). For direct transformations rm : G+H and 

s, : H+ K, there is a sequential composition t : N + T of r and s and a redex i : N-tG such 

that t transforms G to K at i, i.e. K = t,(G). 

Proof. Consider Diagram 11. Construct N =m(L)u(rJ’(n(M)). This construction 

provides a subalgebra of G. Let p = m IN be the codomain restriction of m w.r.t. N and 

i the inclusion of N in G. Construct Y as the pushout of p and r. Thereby, square (3) is 

a pushout diagram and x is the unique morphism such that x 0 pI = m,; it is injective 

LL-R M’S 

G 

Diagram 11. Short cut by sequential composition. 
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since i is [cf. Corollary 2.8(3)] and it is total since i is conflict-free [cf. Proposition 

3.11(l)]. 

Since H is the pushout of r and m, Y, and m, are jointly surjective such that 

n(M)cr,(G)um,(R). By definition of N, we get n(M)~r,oi(N)um,(R). The square 

(3) is commutative and m,=x opI which implies n(M) LX 0 r,(N) u x op,(R) = 

x(r,(N) u p,(R)) = x( Y). Hence, n factors through Y, i.e. there is a morphism q such 

that x 0 q = n. Construct square (2) as the pushout of q and s which turns subdiagram 

(4) into a pushout as well. 

The last thing to be shown is that p,. and q are jointly surjective. Since Y is the 

pushout of r and p, pr and rg are jointly surjective, i.e. Y= p,(R) u rp(N). Thus, it is to be 

shown that r,(N) c p,(R) u q(M). We know that x 0 rP(N) = r,,, 0 i(N) and by definition 

of N, r,oi(N)=r,(m(l)u(r,)-‘(n(M)))cr, ~m(L)un(M)=x~p,~r(L)ux~q(M)~ 

x(p,(R)uq(M)). Hence, xor,(N)cx(p,(R)uq(M)) which implies r,(N)cp,(R)u 
q(M) since x is total and injective. 

Now take t =sqorp, which is a sequential composition of r and s. The diagram 

(3)+(4) depicts the direct transformation of G to K with t at i as desired. 0 

In the general case, there are many compositions of rules; in fact, there are several 

different compositions even if we fix the jointly surjective pair of morphisms m, and 

n (cf. Definition 4.8). Nevertheless, the set of compositions for r and s is always finite if 

r and s are finite. But it depends on the actual transformation situation which one is to 

choose in order to simulate a concrete transformation sequence. 

Corollary 4.10 (Abstracting from transformations). For a rule system RS which is 

closed under sequential composition, every transformation in RS coincides with a direct 

transformation in RX 

Proof. Direct consequence of Theorem 4.9. I7 

5. Parallel Composition 

Parallel composition of rules provides a model for simultaneous application of two 

or more rules. The simultaneous application is represented by the application of the 

parallel rule which is given by the disjoint union of some rules. The main question is: 

can the effect of parallel rule transformations be simulated by sequential transforma- 

tions with the components of the parallel rule? The answer in the classical framework 

is an unrestricted “yes” [S]. We show that the answer is positive in the new approach 

only if redices are restricted to d-injective ones. Parallel rule application at arbitrary 

redices, however, produces effects which cannot be captured by sequential trans- 

formations.30 

3” In [ZS], a typical example is presented which shows that these effects model properties of “truly 

parallel systems” in a natural way. 
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The investigations begin with a notion of parallel independence for two direct 

transformations. The Commutativity theorem proves that parallel independence 

implies that the result of the transformation is independent of the sequential order in 

which the two participating rules are applied. 

Definition 5.1 (Parallel independence). Two redices m: L-G and n: M+G for the 

transformation rules r : L+ R and s : M +S, respectively, are parallel-independent if 

they overlap in gluing items only, i.e. m(L)nn(M)sm(r V m)nn(s V n). 

Theorem 5.2 (Commutativity of direct transformations). Ifm : L+G and n: M-+G are 

redices in the object G,for the rules r : L-t R and s: M-+S, respectively, there are redices 

p=s,Om:L+s,(G)andq=r, 0 n: M+r,(G) such that rp(sn(G))=sq(rm(G)) ifand only if 
the redices m and n are parallel-independent. 

Proof. First suppose m and n are parallel-independent. Consider Diagram 12. Square 

(1) depicts the direct transformation of G with r at m and square (2) the direct 

transformation of G with s at n. For p = s, 0 m and q = r,,, 0 n to be redices, it is to show 

that they are total morphisms which means to show (i) m(L) E G,_ and (ii) n(M) c G,_. 

We explicitly show (i); the argument for (ii) is symmetrical. 

Suppose o$G,~. By Construction 2.6, it implies either oEn(s V n)31 or there is a term 

tETSig(x) such that (*)t’(o)En(s V n).32 The first case implies o$m(L) because m and 

n parallel-independent. The second case implies o$m(L), too: Since m is a redex, it is 

a total morphism and its image in G is a subalgebra of G. Thus, the assumption 

oem(L) implies t’(o)Em(L) which is a contradiction to the parallel independence of 

m and n [compare (*)I$. Therefore, if o$G,~, o$m(L), which immediately provides 

that s, 0 m is total. 

Hence, the existence of the redices p and q is guaranteed and we must prove 

rp(sn(G))=sq(r,,,(G)). For this purpose, let square (3) in Diagram 12 be constructed as 

s ,-s,(G) -H 

Diagram 12. Parallel independence and the commutativity property. 

3’ (s V n) is a short notation for L-(s 0 n). 

3* Note that Sig is the underlying graph structure according to General assumption 3.8. 
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the pushout of rm and s,. Now (l)+(3) is the pushout diagram reflecting the direct 

transformation of s,(G) with r at p and (2)+(3) reflects the direct transformation of 

r,,,(G) with s at q. The uniqueness of the pushout construction provides that the 

pushout objects of (3) (1) + (3), and (2) + (3) are isomorphic which completes this part 

of the proof. 

Conversely, suppose p = s, 0 m and q = rm 0 n are redices, i.e. total morphisms. Then, 

n(M)s GVm and m(L)s G,,. By Construction 2.6, we conclude n(M)c m(L- r V m) 
and m(L) E n(M --s V n). By construction of r V m and s V n, this results in 

(*) n(M)nm(L)~[m(L)um(rVm)]n[n(M)un(sVn)]. 

But, obviously, we have that: 
- __ 

(1) Cn(M)nm(L)lnCm(L)nn(M)l=~. 
(2) [n(M)nm(L)]n[m(L)nn(sVn)]=O. 

(3) [n(M)nm(L)]n[m(rVm)nn(M)]=8. 
Thus, (*) implies n(M)nm(L)cm(rVm)nn(sVn). 0 

Hence, parallel independence of two rules implies local confluency. Moreover, the 

effect of applying two parallel-independent rules in any order can be obtained by 

a single direct transformation if the parallel composition of the two rules is used. 

Definition 5.3 (Parallel rule and parallel redex). If r: L+R and s: M+S are two 

transformation rules, the parallel rule r + s is defined as the disjoint union of r and s, i.e. 

r+s=rds:L&M+R&S. 

If RS is a rule system, RS is the parallel closure of RS which exactly contains RS 

and all parallel rules which can be built within RSP. 

The parallel redex m+n for two redices m: L+G and n: M-G is defined by: 

m+n:LtiM-+G such that m+n(x)=m(x) if xEL and m+n(x)=n(x) if xEM. 

Theorem 5.4 (Parallel independence and parallel rule). 1f redices m : L+G and 
n : M -+G for the transformation rules r : L +R and s : M-S, respectively, are parallel- 

independent, the application of the parallel rule r+s at the parallel redex m+n 
to G results in the same object as any sequential application of r and s, i.e. 

s~,~ 3,)(r,(G)) = r(,.C,&n(G))=(r+s)(,+.)(G). 

Proof. Consider again Diagram 12. Note that the result of the sequential application 

of r and s, i.e. the object H, has been constructed as the colimit of s, n, m, and r.33 These 

morphisms make up the boldface part of Diagram 13. L+ M and R +S are the 

colimits (coproducts) of L and M and of R and S, respectively. The morphisms il-i, 

33 The colimit of a diagram is unique up to isomorphism; cf. [21]. Since we do not distinguish objects if 

they are isomorphic, the colimit of a diagram is unique in our framework. Note that due to Corollary 2.10, 

the underlying category of graph structures and partial homomorphisms is finitely co-complete. 
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Diagram 13. Parallel rule and parallel-independent redices. 

are the universal embeddings. The parallel rule Y + s, as it is constructed in Definition 

5.3, coincides with the universal morphism for coproducts such that the subdiagrams 

(3) and (4) commute. 34 Analogously, the parallel redex m + n is the universal comple- 

tion such that subdiagrams (1) and (2) commute. (5) is the pushout diagram reflecting 

the direct transformation of G with r + s at m + n. 

Thus, Diagram 13 commutes and is thereby a cocone for the boldface part. Since it 

has been constructed as a composition of partial colimits, it is also a colimit of the 

boldface part. Uniqueness of colimits immediately provides that K coincides with 

H which is the colimit of the boldface diagram constructed in the proof of Theorem 

5.2; compare Diagram 12. 0 

The converse of Theorem 5.4 is not true: Applicability of the parallel rule at an 

arbitrary redex p does not imply that p can be decomposed into parallel-independent 

redices for the components of the parallel rule. 

Example 5.5 (Parallel rule and dependent redices). Consider again the rule in Fig. 4. It 

is a parallel rule which is applied in Fig. 7 at a redex which is not d-injective. 

Obviously, the redices for the component rules (i.e. deletion of q and addition of father 

relation) are not independent; cf. Definition 5.1. 

Example 5.5 demonstrates that the addition of parallel rules to a given rule system 

can increase the possible transformations and the set of objects which can be 

generated from some start object. The results of the classical approach can be 

generalized to the single-pushout framework if redices are restricted to d-injective 

ones. 

Proposition 5.6 (Parallel rule and parallel independence). Zf the parallel rule 

r SS: L+ M-R + S is applicable to G at a d-injective redex p: L+ M-G, its 

j“The coproduct A+B in AlgP(Sig) can be constructed as the pushout of 8:0-A and 8:0-B. The 

universal morphisms are then given by Construction 2.6. 
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decomposition to the components, i.e. m=plL:L-tG and n=pIM:M+G, is a pair of 

parallel-independent redices for the rule r : L +R and s : M+S, respectively; therefore, 

s(Y,zn)(rm(G))= r(.Y,l&,(G)) =(r + s),(G). 

Proof. If p is d-injective, p(x) =p(y) implies x = y or x, yE(r + s) V p and by Proposi- 

tion3.11,(r+s)Vp=(L+M)(,+,,= Lr+M,.Thus,x~L, yeM,andm(x)=n(y)implies 

XEL, and REM, which, again by Proposition 3.11, means XET V m and YES V n. Bence, 

parallel independence of m and n is guaranteed which, by Theorem 5.4, immediately 

proves the second part of the proposition. 0 

Corollary 5.7 (Generated language). Zf RS is a rule system, RSP its closure w.r.t. 

parallel rules, and G an arbitrary start object, 

(1) RS(G)z RSP(G), 
(2) RS(G) # RSP(G) for some rule systems, and 

(3) RS generates the same language as RSP ifredices are restricted to d-injective ones, 
i.e. RSi(G)= RS’(G). 

Proof. (1) is obvious since RS G RSP. (2) can easily be shown by e.g. Example 5.5. (3) is 

an immediate consequence of Proposition 5.6 and of the facts that d-injectivity of 

m + n w.r.t. r + s implies d-injectivity of m and s, 0 m w.r.t. r or of n and r, 0 n w.r.t. s. 

The proof is straightforward. 0 

6. Amalgamation 

Sequential and parallel composition of rules is a device to integrate the effects of 

several rules into a single one. Therefore, all results concerning this kind of composi- 

tion are statements of equivalence expressing that there is a one-to-one correspond- 

ence between transformations with or without composed rules. The situation is 

different if we consider gluing of rules, called amalgamation. This concept has been 

introduced in [4] as a synchronization device for graph transformation systems which 

model the behavior of distributed systems. The work in [4] has been motivated by 

Degano and Montanari [7], who first introduced the idea of rule gluing and gave an 

explicit operational description. 

This section reflects the theory presented in [4] for the single-pushout approach. 

We focus on theoretical aspects and refer to [14] for examples. All theorems of this 

section require redices to be d-injective.35 

General assumption 6.1 (Redices). All redices in this section are d-injective. 

The key to amalgamation is the notion of subrule and remainder. 

3s D-injectivity is a sufficient condition for the theorems. It is not necessary in most cases. It is left to 

future research to investigate amalgamations at arbitrary redices. 



Algebraic approach to single-pushout graph transformation 211 

Definition 6.2 (Subrule and remainder). A rule t : N-, T is a subrule of a rule r : L+R if 

there are two total morphisms i : N+ L and j : T-+ R such that (1) j 0 t = r 0 i and (2) i is 

a d-injective redex for t. The (i, j)-remainder of r w.r.t. t is the rule r -(i, j)t: P-R which 

is defined in Diagram 14 as the unique morphism for the pushout (1) of t and i such 

that (r -(i, j) t) 0 i, = j and (r -(i, j) t) 0 ti = r. 

We write r-t for the remainder if the embeddings are obvious from the context. 

The subrule structure of a rule enables the decomposition of direct transformations. 

Theorem 6.3 (Subrule). If t : N--t T is a subrule of r : L+ R with the embeddings i : N -+ L 

and j: T-+R and m : L-+G is a redex for r, there are redices p and q for t and r - t, 

respectively, such that the direct transformation of G with r at m can be decomposed into 
two direct transformations with t at p and with r-t at q. 

Proof. Consider Diagram 15. The square (1) is the pushout constructed for the 

remainder in Definition 6.2; (2) + (3) is the pushout reflecting the direct transformation 

ofGtoHwithratm.Sincer=(r-t)oti,(2)+(3) can be decomposed into two pushout 

diagrams (2) and (3). Compositionality of pushouts guarantees that the diagram 

(1) + (2) reflects a direct transformation of G to K with t at p = m 0 i. The morphism p 

is total and d-injective since m and i are (cf. General assumption 6.1). If q: P+K is 

total and d-injective, (3) is the required direct transformation from K to H with 

r-t. D-injectivity of m means: m(x)=m(y) implies x=y or x, YEL,. Since 

r=(r-t)Oti,L,zLt andm(x)=m(y)impliesx=yorx,y~L,~.Hence,misd-injective 

w.r.t. ti and Proposition 3.1 l(1) guarantees that q is total. Moreover, q is d-injective 

w.r.t. r-t. Square (2) is pushout and Corollary 2.8(2) states that ker(q)E ti(ker(m)). 

But ti(ker(m)) z t,(L,) since m is d-injective. The remainder r-t is constructed as 

a universal morphism such that PCl_r) = i,(Tj)u ti(L,j; cf. proof of Theorem 2.7. Thus, 

ker(q)c PCrmt) stating d-injectivity of q w.r.t. r-t. 0 

Diagram 14. Construction of Remainder 

Diagram 15. Transformation decomposition. 
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The rest of the section considers the synchronized behavior of two rules which share 

a common subrule t. In a synchronized behavior, the effect of the shared rule t is 

produced only once, which models a handshake at t. 

Definition 6.4 (Related rules, amalgamable redices, synchronized e&x?). Two rules 

r : L-t R and s : M -+S are related w.r.t. a third rule r : N+ T if t is a subrule of r and s. In 

this case, we say that r and s are t-related. 

Let (i, j): t+r and (e,f): t-+s be the corresponding embeddings. Two redices 

m : L-+G and n : M +G for r and s, respectively, are t-amalgamable if m 0 i = n 0 e and 

m(L)nn(M)~m~i(N)u[m(rDm)nn(sVn)]. 

Application of the subrule t at m 0 i = n 0 e produces an object X and induced redices 

p and q in X for the remainders r-t and s-t, respectively; cf. Theorem 6.3. The 

t-synchronized efSect r,,, Ilf s, : G-+H is defined to be the transformation from G via X to 

H given by t,.i:G+X and ((r-t)+(s-t)),+,:X-+H. 

Proposition 6.5 (Synchronized effect). Let r and s be t-related and m and n be t- 

amalgamable redices for them, the induced redices p and q for the remainders as defined 
in Dejinition 6.4 are parallel-independent. 

Proof. The whole situation is depicted in Diagram 16. Diagram (2)+(3) is the direct 

transformation of G with the rule t at the redex n 0 e. Diagram (5)-t(4) reflects the 

direct transformation of G with t at m 0 i. The redices m and n are amalgamable such 

that m 0 i = n 0 e. Therefore, the diagrams (2) + (3) and (5) + (4) depict the same pushout 

which is indicated in the diagram by the fact that the diagrams (2)+(3) and (5)+(4) 

overlap in the morphism a. (2) is the transformation of M with t at e and (5) the 

transformation of L with t at i according to Definition 6.2. 

Diagram 16. Remainder redices in synchronized effect. 
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Parallel independence of p and q, i.e. p(P) n q(Q) c p(u V p) n q(u Q q), remains to be 

shown. Since p and q are d-injective, we must prove that 

p(x)=q(y) implies XEP,, and YEQ”. 

The morphism u =r- t and v=s- t are constructed as universal morphisms in 

Definition 6.2 and j and fare total such that 

(*I P,=i,(T)uti(L,) and Qr=et(T)ut,(M,). 

Since P and Q are pushout objects, i, and ti and e, and t, are jointly surjective, 

respectively, such that there are four cases to be considered: 

Case I: x~i,(T) and y&T):(x) immediately implies that x and y are gluing points. 

Case 2: x~i,(T) and y~tJA4): x~i,(T) means that there exists ZET such that 

i,(z)=x. Since diagram (2)+(3) coincides with diagram (5) +(4), poi,=qoe,. Thus, 

q 0 e,(z)=q(y). If et(z)=y, y has a preimage w.r.t. e, and is gluing item by (*). If 

e,(z) #y, q identifies y and e,(z) which implies that y is gluing item since q is d-injective. 

Case 3: x~ti(L) and yEe,(T): Follows from an argument similar to case 2. 

Case 4: xEti(L) and yet,: In this case there exists CEL such that ti(c)=x and 

there exists deM with t,(d)=y. Since the subdiagrams (3) and (4) commute, 

p(x) = a 0 m(c) and q(y) = a 0 n(d). 

Suppose as a first case m(c) = n(d). Since the redices m and n are amalgamable and 

d-injective either c and d are gluing point w.r.t. r and s, respectively, or there exists 

bg N with i(b) = c and e(b) = d. The former immediately results in x and y being gluing 

points by (*). The latter results in x = Ii 0 i(b) and y = t, 0 e(b) which implies that x and 

y have preimages w.r.t. i, and e,, respectively, and we are done. 

Suppose as the second case m(c)#n(d). Then m(c), n(d)Eker(a). This implies that 

both c and d have preimages w.r.t. both morphisms n and m because (3) and (4) are 

pushouts [cf. Corollary 2.8(2)]. These preimages must be elements of the kernel oft, 

and ti. Thus, they must have preimages w.r.t. n 0 e and rno i and we are back to the 

arguments in cases l-3, which completes the proof. 0 

Proposition 6.5 shows that the synchronized effect of two rules as defined in 

Definition 6.4 models shared behavior exactly on the part affected by the shared rule. 

The local operational effects of both rules, i.e. those parts not in the subrule, are 

independent. 

The synchronized effect of two rules can be obtained by simple direct transforma- 

tions if amalgamated rules are constructed and applied. 

Definition 6.6 (Amalgamated rule). If r : L-+ R and s : M-S are (t : N-r T)-related via 

embeddings (i, j) : t-r and (e, f) : t-s, respectively, the amalgamated rule r 0, s : U-t V 
is constructed in Diagram 17. U and V are pushouts of i and e and of j and f; 

respectively. r 0, s is the unique morphism such that (r 0, s) 0 ei=Jo r and 

(r 0, s) “i,=jfos. 
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Diagram 17. Construction of the amalgamated rule 

Note that r Ots is the colimit of (i,j) and (e, f) in the category of arrows over 

AlgP(Sig). The short notation Y Ors for the amalgamated rule is not precise because 

the result of the amalgamation construction depends on the actual embeddings. Thus, 

we assume in the sequel that the involved embeddings are obvious from the context. 

Theorem 6.7 (Amalgamation). There are amalgamable redices m and n for the rules 
r : L-+R and s : M-+S such that the corresponding synchronized effect transforms G to H, 

i.e. r, lIf s, : G+H if and only if there is a redex o for the amalgamated rule r 0, s such 
that (r 0, s)~: G-H is a direct transformation. 

Proof. Suppose (r @r~)O: G+H is a direct transformation. Construct the redices 

m:L+G and n:M+G by defining m=ooe, and n=ooi,. 

They are both d-injective: i and e are d-injective w.r.t. t such that 

ker(ei)Ei(ker(e))ci(N,) and ker(i,)ce(ker(i))‘e(N,). Since t is a subrule of r and s, 

r 0 i =j 0 t and s 0 e=fo t. Thus, e(N,)c M, and i(N,) G L,. Therefore, i, and ei are 

d-injective w.r.t. s and r, respecively. The redex o is d-injective and U(, @,$)= ei(L(f;,,)) 

u i,(M,,,. ,,) = ei(L,)u i,(M,). Hence, o 0 ei and o 0 i, are d-injective w.r.t. r and s. 

They are also amalgamable since m(x)=n(y) implies 00 ei(x)=oo i,(y). If 

ei(x) = i,(y), et(x) must be an image of eio i since U is a pushout of e and i. But 

then m(x)Emo i(N). If ci(x)#i,(y), o identifies two different items which implies 

x, YE Ut,O,s)=ei(L,)u i,(M,). Hence, XEL, and REM, due to d-injectivity of ei and i,. 
Therefore, m(x)Em(L,) u n(M,) = m(r V m) u n(s V n). 

For the implication in the reverse direction, amalgamable, d-injective redices m and 

n are given. We have to show that o : U-+G constructed as the unique morphism such 

that o 0 ei = m and o 0 i, = n is d-injective. The proof is routine. It can be achieved 

straightforward by a complete case analysis for x and y if 0(x)=0(y) is given. 

That the synchronized effect r,,, (If s, : G+ H coincides with the direct transformation 

(r 0, s), : G+ H is a direct consequence of the fact that the synchronized effect of r and 

s is the colimit of the left part in Diagram 18 (cf. Definition 6.4 and Proposition 6.5) 

and direct transformations with amalgamated rules are defined to be colimits of the 

right part in Diagram 18. Since o 0 ei = m and o 0 i,= n and U is a colimit itself, both 

colimits coincide up to isomorphism; cf. [21]. 0 

Note that Proposition 5.6 and Theorem 5.4 are special cases of Theorem 6.7 since 

parallel rules are amalgamations w.r.t. the empty shared subrule. 
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Diagram 18. Amalgamation is colimit construction. 

7. Conclusion 

The single-pushout approach to graph transformation presented in this article 

emerged from the observation that a transformation rule in the double-pushout 

framework [S] can be interpreted as a partial morphism in an appropriate category. 

The rigorous investigations of algebraic categories with partial homomorphisms in 

Section 2 led to the notion of graph structures. It is exactly these yraph-like structures 

which are closed w.r.t. finite colimits. These results seem to be analogous to the results 

in [ 131, where a detailed analysis of graph pushouts in the total case is provided. Ehrig 

and Kreowski [ 131 show that pushouts of graphs have certain properties which do 

not hold in arbitrary categories. These special properties are reflected in the partial 

case by the incompleteness w.r.t. colimits if the objects considered do not resemble 

graphs. Some hints that there is a tied connection between categories of total and 

partial homomorphisms are also given by [37,24]. Future research shall focus on the 

details of this connection for algebraic categories. 

Many results known from the double-pushout framework can be generalized if the 

transformation process is based on partial pushouts. A typical example is the embed- 

ding of transformation sequences. In the new approach, it is always possible to replay 

a transformation sequence in bigger contexts. On the other hand, the more general 

applicability of single-pushout rules produces new effects w.r.t. composition. For 

example, a transformation with parallel rules cannot always be decomposed into 

transformations with the components of the parallel rule as it is possible in the 

double-pushout setting; compare Section 5. Analogous results hold for amalgamated 

rules (Section 6). The one-to-one correspondence between composition of rules and 

composition of transformations can only be reobtained if the redices for the rules are 

properly restricted. The central properties in this respect are confict-freeness and 

d-injectivity. With d-injective redices, all results of the algebraic approach carry over 

to the new framework. D-injectivity is the analog of the identljkation condition known 

from double-pushout transformations. These results disclose an asymmetry of the 
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gluing conditions dangling and identijication in the double-pushout approach. While 

the identification condition is cruicial for almost all results about composition of rules 

and transformations, the dangling condition can easily be dropped in the operational 

semantics without changing the statements of the central results. 

Not only many results can be generalized for single-pushout transformations, but 

the proofs are also shorter, the constructions simpler, and there are less technical side 

conditions. A typical example is the notion of a subrule which needs no technical extra 

requirements at all in the approach presented above. The technical easiness on the 

level of direct transformation and rule composition, however, has been purchased by 

more complex constructions on the fundamental categorical level of morphisms and 

pushouts. Some of the aspects which have to be handled explicitly on the level of rules 

and transformations in the double-pushout approach have been hidden in the basic 

constructions of the new framework. Future research must show if the new level of 

abstraction is sound w.r.t. further extensions of the theory, for example w.r.t. distrib- 

uted transformations. 

Many of the new effects which can be observed in the general single-pushout 

approach are due to redices which are not d-injective or conflict-free. These redices are 

able to model certain aspects of amalgamation. Amalgamation and redices which are 

not d-injective are both models for rule applications overlapping in nongluing items. 

The precise relationship between these two concepts needs further theoretical invest- 

igations. An important question in this respect is whether redices can be restricted to 

injective ones if arbitrary amalgamation of rules is admitted, i.e. can noninjective 

redices or all interesting noninjective redices be modeled by amalgamation? A positive 

answer to this question would be very valuable. It would reduce all concepts which 

model aspects of parallelism to a single, central one, i.e. amalgamation. 

From the practical point of view, implementations of graph transformation systems 

should be available in order to prove the usefulness of graph-rewriting methods in 

system design. We are currently developing a prototype system based on single- 

pushout transformations at the Technical University of Berlin; cf. [Z]. Experiments 

with this system shall show which extensions of the pure single-pushout approach 

presented in this article are necessary for practical applications and software engineer- 

ing (for example, a concept for variables or attributes). 

Appendix A. Basic notions of the double-pusbout approach 

The algebraic graph grammar approach of [S] is based on the category of Labeled 

Graphs, compare Example 3.3, and total morphisms, i.e. Alg(Labeled Graphs). 

Definition A.1 (Graph transformation rule). A graph transformation rule p = (1: K +L, 

r: K+R) consists of two graph morphisms 1 and r from the gluing graph K to the 

left-hand side L and to the right-hand side R, respectively. The left-hand morphism 1 is 

required to be injective. 
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Diagram 19. Direct transformation (classical approach). 

Definition A.2 (Direct tran.yformation). A graph G can be directly transformed to 

another graph H using rule p = (I : K -+ L, r : K +R) if there are two diagrams (1) and (2) 

(cf. Diagram 19) which are pushout diagrams in the category of graphs and graph 

morphisms.3h 

In a direct transformation situation, the morphism m: L+G is called a redex or 

match of p in G. The constructive version of the direct transformation builds the 

context graph D and the result graph H if a redex is given. For the description of the 

construction, we need some operations on graphs. 

Definition A.3 (Operations on graphs). For graphs G and H, G+H denotes the 

disjoint union of G and H, i.e. the disjoint union of the vertex and edge sets with the 

operations sG+H given by s~+~(.x)=s~(.x) if XEG and sGfW(x)=sH(x) otherwise and 

tG+H, defined by the same scheme. 

If H is a graph and (V, E) a pair of subsets of its vertices and its edges, H -( V, E) 

denotes the largest subgraph of H whose vertex and edge sets are contained in HV - V 

and HE - E, respectively, i.e. 

(H-(V, E)),=H,- P’, 

sHm (Y.E), tH-c”.E’, and the labeling functions are the restrictions of the corresponding 

functions of H to the smaller vertex and edge sets of H -( V, E). 

If - ‘(“V, - E) is a pair of relations on the vertex and edge sets of some graph H, 

H, _ denotes the quotient of H w.r.t. the smallest congruence which contains -. The 

corresponding natural morphism is denoted by - : H+H, _ 

With these prerequisites, we can construct the result graph H of a direct transforma- 

tion from a graph G using rule p=(l: K-+L, r: K+R) at redex m:L-+G. 

Construction A.4 (Direct transformation). The direct transformation of a graph G with 

the rule p=(l: K+L, r: K+R) at a redex m:L +G results in a graph H which can be 

constructed in three steps: 

(1) Remove: D:=G-(mV(L,-I,,(K,,)), mE(LE-I,(K,))). Let lD:D+G denote the 

obvious inclusion morphism. 

(2) Add: E:= D + R. Let iD : D+ E and iR : R+ E denote the obvious inclusions. 

(3) Emhed: H:=E _, where N-Y if .x=iRcr(z) and y=iDa(lD)-’ om”l(z). 

3h The rtlyrhrnic rrpprouch to graph trumfiwmation [S. 9, 161 is based on this notion for direct transforma- 
tions. Due to its form. it is called the double-pushout approuc,h. 
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Diagram 20. Definition of direct transformation. 

Diagram 21. Construction of a direct transformation 

Theorem A.5 (Direct transformation). The definition and the construction of direct 

transformations are related as follows: 
(1) Let Diagram 20 represent a direct transformation of G to H with rule p = (1: K + L, 

r: K+R) at redex m: L-+G as defined in Definition A.2. 
(a) H is uniquely determined by G, p, and m. 

(b) m satisfies the gluing conditions dangling and identification 2. 
(c) D and H coincide with the graphs constructed in Construction A.4. 

(2) Let Diagram 21 depict a construction as in Construction A.4. 

(a) k = (In) ’ 0 m 0 1: K +D is total tf the gluing condition identification 1 is satis- 
fied. In this case, subdiagram (2) is u pushout. 
(b) [f m satisfies dangling and identification 2, also diagram (1) is a pushout. 

Identijication 1: m(x)=m(y) implies x, y~l(K) or x, y$l(K). 

Identification 2: m(x)=m(y) implies x, ye/(K) or x= y. 
Dangling: si(e) or tj(e)Em,,(Lv-lv(Kv))for some eEGE implies eem,(L,). 

Appendix B. Completion of partial morphisms 

For a big class of graph structures, so-called hierarchical graph structures, partiality 

of a homomorphism can be modeled by a total homomorphism which maps unde- 

fined objects to some special I-items. The corresponding completion with the neces- 

sary I-structure is presented below. It relates the approach to single-pushout trans- 

formations presented above to the one in [S]. 

Definition B.1 (Hierarchical graph structures). A graph structure (S, OP) is hierarchical 
ifthereisnoinfinitesequenceop,:~,js,,op~:~~~~3,...,Op~:S~~Si+~,Op~+~:Si+~-t 

si+z, ... of operator symbols. 

If Sig=(S, OP) is a hierarchical graph structure, the relation 5 on S defined by 

s’ 5 s if Tz!&, #8 is a well-f ounded partial order. Thus, noetherian induction can be 

used if statements have to be proven for all sorts. 

Note that all examples in Section 3.1 are hierarchical. 



Algebraic approach to single-pushout graph wan&-mation 219 

Definition B.2 (Junk completion). If Sig =(S, OP) is a hierarchical graph structure, 

(1) opns(s)=(opns(s)i)iElc denotes the vector of operator symbols in OP which take 

arguments of sort s, i.e. for all iel,, opns(s),=opi:s-+si. 

(2) sorts(s) = (sorts(s)i)iEr, is the corresponding list of sort symbols such that 

sorts( is the value sort of opns(s)i for all iEl,. 

(3) the junk completion Junk(Sig) is the following equational specification, where 

2 is a vector of variables such that ~i~Xsorts(s), for all iEZS:37 

Junk(Sig)= 

Use Sig 

Operations 

(I, : sorts(s)-+s)sEs 

Equations 

(oPnS(s)i(l,((.~))=~i),,S, isl, 

Note that in case of an infinite vector opns(s) for some sort s, we have to handle 

signatures and algebras with operators which take infinitely many arguments. Hier- 

archical signatures, however, guarantee that we do not run into trouble with “in- 

finitely deep” terms, i.e. each term w.r.t. the signature Junk(Sig) is of possibly infinite 

width but of finite height. 

Junk(Sig)-algebras help in the analysis of AlgP(Sig). First, consider the relation of 

Alg(Sig) and AlgP(Sig). Obviously, they coincide on objects and each total homomor- 

phism is a special partial one. Hence, Alg(Sig)sAlgP(Sig), and with the aid of 

Junk(Sig), the inclusion G : Alg(Sig)+Alg’(Sig) turns out to be a left adjoint functor. 

Proposition B.3 (Inclusion functor). If Sig is a hierarchical graph structure, the inclu- 

sion E : Alg(Sig)+Algp(Sig) is a left adjointfunctor. 

Proof. We construct a mapping PH(F(P), up : F(P)-+P) which assigns to each object 

PEAlgP(Sig) another object F(P)EAlg(Sig) and a partial homomorphism up, and 

show that the so-defined mapping is a co-free construction, i.e. for each partial 

homomorphism f: B-+P, there is a unique total homomorphism f* : B+F(P) such 

that up l,f* =f: The situation is depicted in Diagram 22. 

Define F(P)= [Free(P)]s,a, where Free: Alg(Sig)-+Alg(Junk(Sig)) is the free 

construction between equationally defined classes of algebras (cf. [15]) and 

s IF(P))= F(P) 

Diagram 22. Co-free situation. 

37The phrase “Use Sig” in the specification below indicates that Sig is a subsignature of the defined 
signature. 



[ ]sia: Alg(Junk(Sig))-Alg(Sig) is its right adjoint. Since Free is consistent, we 

obtain an injective universal homomorphism v’: P+[Free(P)]sia and define 

uP=(vP)-1. 

Now it needs to be proved that the assignment P++(F(P), up : P-F(P)) satisfies the 

co-universal property above. Let f:B+P be a partial homomorphism. Define 

f* : B+F(P) for all SES by f:(x)=v%~~,~(x) if XEB~~ and ,f:(x)= 

l_sF,ee(p)(7*(opns(s)B(x))) otherwise.” f* is well-defined by definition. It is to be 

shown that it is totally defined and homomorphic. We use noetherian induction w.r.t. 

the partial order 5. If s is a minimal element w.r.t. -& there is no operator 

op: s+s’EOP. Hence, I,:-+s is a constant which immediately implies thatf* is total 

and homomorphic for s. 

Now consider a nonminimal sort s. Since for all s’Esorts(s): s’<s,f* is totally 

defined on all these sorts by induction hypothesis, we immediately obtain that f’* is 

totally defined on s. It is homomorphic on Bfs since fs and VP are and for x$Bf,, we 

have that each operation op: ~+s’=opns(s)~:s+s’ for some ill,. Since the opera- 

tions satisfy the equations of Junk(Sig): 

opF~p~(f*(x))=opF(P)(_L~ree~P~(~*(opns(s)B(x)))) 

=opns(~)~~~~(I,F”‘~~~(~*(opns(s)”(x)))) 

=f*(opns(s)B(x))=f*(opB(x)). 

The definition of ,f* immediately guarantees BUp f* = B, and up o,f* = (v’)- ' :f* = 
(VP)-' ovp, f=f: f* is unique since each total g : B-+F(P) must coincide on B, with f * 
due to up0 g =J: Outside B,, g must map x homomorphically to elements outside 

v’(P). There is exactly one such element, namely _L(f*(opns(s)B(x))). 

The assignment on objects P-F(P) can be canonically extended to a functor 

F: Alg’(Sig)-+Alg(Sig) which is right adjoint to E : Alg(Sig)-+AlgP(Sig). 0 

For hierarchical graph structures, the junk completion of Definition B.2 provides 

some further information about colimits and how they can be constructed if the 

following uniqueness constraint is additionally required in the completion process. 

Definition B.4 (Sink completion). If Sig is a hierarchical graph structure, its sink 
completion Sink(Sig) is the following specification with conditional equations: 

Sink(Sig)= 

Use Junk(Sig) 

Equations 

(oPns(s)i(Y)= ~,,@I *Y = L(oPns(s)(Y)))s6s, iE1, 

The categories AlgP(Sig) and Alg(Sink(Sig)) are closely related by the following 

pair of functors. 

38 - f* is the extension of ,f* to vectors and opns(.s)B(x) is the vector such that for all igl,, 

opns(s)B(x)i= opns(s)“(x). 
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Definition and Proposition B.5 (Completionfunctor). If Sig = (S, OP) is a hierarchical 

graph structure and Sink(Sig) its sink completion, the completion functor 
T: Alg’(Sig)+Alg(Sink(Sig)) can be defined as follows: 

(1) On objects. T(A)=Free(A), where Free(A) is the free Sink(Sig)-algebra over 

A39 Since Free: Alg(Sig)-Alg(Sink(Sig)) is consistent, T can be chosen such that for 

all SES, A,ET(A),. 

(2) On morphisms, T(f: A+B)=fT: T(A)+T(B) is given for all SES by 

if x~.4~, 

IT’“‘(,TT(opns(s)T’A’(x))) otherwise. 

Proof. Noetherian induction on the sort relation 5 shows thatfT is a family of total 

mappings; compare proof of Proposition B.3. ForfT to be homomorphic, it is to be 

shown that 

(1) ,fT(opT’“‘(x))=opT@‘(,fT(x)) for all opeOP and 

(2) _fT(_LT’“‘(.?))= IT”‘(~(5J)) for all i-operators. 

In the first case, two subcases can be distinguished, i.e. either XGA~ or x$As. If the 

former is true,jT is homomorphic since fis. If the latter is true, the definition offT 

provides: ~p”~‘(fT(.u)) = opTtB’( _Lf’B’(jT(opns(s)T’“‘(x)))). Since op = opns(s)j for 

some FEZ,, the equations in Junk(Sig) make sure that 

opT’B)(I~‘B’(,~T(opns(s)T’A’ (x))))= opns(s)j”“( I~‘B’(Q’(opns(s)T’“‘(x)))) 

=fT(opns(s)T’A’(x))=fT(opT’A’(x)). 

In the second case, we have by construction of T(A) that IT’A’(?)#A. Therefore, we 

obtain by definition off’ :fT( _LTCA’(?)) = I~‘B’(~(opns(s)T’“‘(IT’A’(~)))). The equa- 

tions of Junk(Sig) guarantee, for all jEZ,, that: opns(S)jT’A’(_LT’A’(Z))=?j. Hence, it 

can be concluded: _LJ’B’(~T(opns(s)T’“‘( IT’A’(Z))))= I,‘@‘(fT(?)), which completes 

the proof that ,fT:T(A)-+T(B) is a total homomorphism. By definition, the functor 

T preserves identities and respects morphism composition. 0 

Definition and Proposition B.6 (Restrictionfunctor). If Sig =(S, OP) is a hierarchical 

graph structure and Sink(Sig) its sink completion, the restriction jiinctor 

P: Alg(Sink(Sig))-+AlgP(Sig) can be defined as follows: 

(1) On objects, P(A),={y~A,1~#19(2)} for SES and for OPEOP, ~p~(~‘=opf~(~). 
(2) On morphisms, P(J‘: A+B)=fP: P(A)+P(B) is given by 

f’(x) = .f@) 

i 

if f(x) E P(B), 

undefined otherwise. 

Proof. The conditional equations of Sink(Sig) guarantee that P(A) is a Sig-algebra 

for each A~Alg(Sink(Sig)) as the following argument demonstrates: The assumption 

39 Free constructions for specifications with conditional equations always exist; cf. [32,6]. The construc- 

tions of [6] can be easily extended to handle operators with infinitely many arguments. 
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xeP(A), and for some operation op: s’s’, o~~‘~‘(x)$P(A)~, implies opA(x)= Ii(j). 

But A satisfies the equations in Sink(Sig). Hence, x= l:(Z) and, therefore, x$P(A), 

which is a contradiction to the assumption. By definition, f’ is a family of partial 

mappings. The same argument as above provides that x~P(A)fp implies 

~p~(~‘(x)~P(Ahp for all op: s -+s’. Thus, P(A)fp is a subalgebra of P(A). f‘P is 

homomorphic on its scope sincef is. 

The definition of P immediately provides that identities and compositions of 

morphisms are preserved. 0 

Theorem B.7 (Completion). The categories AlgP(Sig) and Alg(Sink(Sig)) are equim- 
lent for hierarchical graph structures Sig. 

Proof. The definition of the completion functor T and of the restriction functor 

P immediately provides P 0 T = id. 

For the equivalence, it remains to be shown that T 0 Paid. The construction of 

P(A) for a Sink(Sig)-algebra A provides a total inclusion homomorphism 

i: P(A)+[A], where [ ] : Alg(Sink(Sig))-Alg(Sig) is the forgetful functor induced by 

the specification inclusion of Sig in Sink(Sig). The completion functor T is the free 

Sink(Sig)-construction on objects. Hence, we obtain a unique extension of i, i.e. a total 

homomorphism i*: Free(P(A))+A such that the Diagram 23 commutes. Note that 

uPcA’ has been chosen to be the inclusion; cf. Definition B.5. By induction on the sort 

order 5, it can be shown that i* is an isomorphism. For a minimal sort s w.r.t. 5, I, 

is a constant. Hence, A,= Pi &J {I%} and i: is surjective and injective. 

Now consider a sort s and assume that i,” is bijective for ~‘5s. By Definition B.6, 

A,= P(A),& (Ii(Z) (for all vectors .? with XiEA,, for iel,}. 

Thus, A, is generated by P(.4)s and i: is surjective. For the proof that if is injective, 

suppose that i:(x)=i:(y) for some x,y~Free(P(A)),. If if(x)EP(A),, we obtain 

x, JIEP(A), and x=y since Diagram 23 commutes. If i:(x)#P(A),, we obtain 
x= ~FrWW”($ Y= ~FrMW”($), and 

I,A(T*(~))=is*(lFree(P(A)) (iJ))=if(x)=i~(y)=i,*(J_F’“‘(P(A”(G))=I~(l*(it)). 

Since A satisfies the equations of Sink(Sig), it follows that, for all kgl,, 

i*(Uk)=opns(s):(IP(t*(~)))=opns(s):(I,A(i*(~)))=i*(w,). 

By induction hypothesis, i: is injective for all sorts s’ 5 s. Hence, for all kgl,, i$ = GJ~ 
and, therefore, x= lFree(P(A)J(ij)= ~Free(P(A))($)=y. 

IFreelP(AIIl FreelPIAll 

Diagram 23. Extension of restriction inclusion. 
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FreelPW Top’f’ - FreelPlBII 

I 

1 

= 4 

A 
f _I 

B 

Diagram 24. Natural transformation for completion 
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With this result on objects, it is obvious that Diagram 24 commutes for each total 

homomorphism f: 0 

Many graph structures which provide an algebraic model for some relational or 

graphical structures are hierarchical (compare examples in Section 3). For these graph 

structures, the whole theory presented in this article could have been described as 

a theory of sink-completed algebras due to Theorem B.7 (cf. [S]). 
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