
Theoretical Computer Science 109 (1993) 181-224

Elsevier
181

Algebraic approach to single-
pushout graph transformation*

Liiwc. M., Algebraic approach to single-pushout graph transformation, Theoretical Computer

Science 109 (1993) 181-224.

The single-pushout approach to graph transformation interprets a double-pushout transformation

rule of the classical algebraic approach which consists of two rotul graph morphisms as a single

particll morphism from the left- to the right-hand side. The notion of a double-pushout diagram for

the transformation process can then be substituted by a single-pushout diagram in an appropriate

category of partial morphisms.

It can be shown that this kind of transformation generalizes the double-pushout framework.

Hence. the classical approach can be seen as a special (and very important) case of the new concept.

It can be reobtained from the single-pushout approach by imposing an application condition on the

redices which formulates the gluing conditions in the new setting. On the other hand, single-

pushout transformations are always possible even if the gluing conditions for the redex are violated.

The simpler structure of a direct transformation (one pushout diagram instead of two) simplifies

many proofs. Hence, the whole theory for double-pushout transformations including sequential

composition, parallel composition, and amalgamation can be reformulated and generalized in the
new framework.

Some constructions provide new effects and properties which are discussed in detail.

1. Introduction

Graph grammars provide an intuitive description for the manipulation of complex

graph-like structures as they occur in databases, operating systems, and complex

applicative software. Besides that all approaches to graph transformation systems

offer theoretical results which help in the analysis of such systems.

Especially the algebraic approach [S, 9, 121 has been worked out for several years

now and provides results for parallelism analysis [25, 271, efficient evaluation of

Corrrspondmcr fo: M. Liiwe. FR 6-1, Technische Universitgt Berlin, Franklinstrasse 28/29, W-1000 Berlin
10. Germany.

*This work has been partly supported by the ESPRIT Basic Research Workmg Group No. 3299
“Computing by Graph Transformation”.

0304-3975.‘93/$06.00 d‘: 1993-Elsevier Science Publishers B.V. All rights reserved

functional expressions [33, 221, synchronization mechanisms [4], distributed systems

[3, 10, 381, implementation of abstract data types [29], and context-free hyperedge

replacement [18, 193.

A graph transformation rule (L, K, R) conceptually consists of three graphs L, K,

and R. L is the left-hand side of the rule. It formulates the precondition under which

the rule is applicable. K, in most cases a subgraph of L and R, describes the part of the

left-hand side which is going to be preserved by rule application. Thus, L-K is the

part which a rule application is going to delete and R-K is added. Here, the inter-

mediate graph K gets a second role: It describes the context into which added

components are going to be integrated. (K is called “gluing graph”.)

A rule is applicable to a graph G if G contains a homomorphic image of L. The

application of a rule (L, K, R) deletes all items in G which correspond to objects in

L-K in the first step. It results in the so-called context graph D. Second, it adds all

items in R - K to D. The connection between “new” items in R-K and “old” objects

in D is described by the relation of the “new” items in R-K to objects in K. Thus,

application of a rule r = (L, K, R) to a graph G consists of four steps:

(1) Try to find L in G. If there are some images of L in G choose one and continue.

Otherwise, r is not applicable to G. [In some approaches, the matching phase includes

the check of additional application conditions (see below).]

(2) Remove the part of G which corresponds to L-K.
(3) Alld R-K to the result of the last step.

(4) Embed R-K into G-(L- K) as it is given by the corresponding relation

between R-K and K.
This series of four steps seems to be common to all approaches to graph transforma-

tion; cf. 1261.’ The algebraic approach to graph transformation (cf. Appendix A for

basic notions) summarizes these four steps in a single categorical construction of

a double-pushout diagram which facilitates many proofs that would be very hard to

obtain on the more concrete, operational level: A rule is a pair (/ : K + L, Y : K -+ R) of

total graph morphisms and a direct transformation with the rule (1: K+L, r: K-R)
from a graph G to a graph H is possible if there is a context graph D together with

a gluing morphism k : K +D such that G is the pushout of I and k and the graph H is

the pushout of r and k (for more details compare Appendix A). With these definitions,

all operational effects of a direct transformation are encapsulated in a single categori-

cal colimit construction and, therefore, all universal properties known for this con-

struction within category theory are inherited [l, 211. Thus, many proofs do not

bother about operational details but only rely on abstract arguments about colimits.

Since all results about algebraic graph transformation require the rules’ left-hand

sides to be injective,2 the rule concept can be simplified when the pair

I However, there are individual differences in each phase and the formulation of the embedding area by

a subgraph K of L and R is an idealization.

‘With noninjective left-hand sides, the context graph in a transformation from G to H need not be

unique.

(I: K-+L, r: K +R) of total morphisms is seen as a partial morphism (r’ : L-+R) which

is defined on I(K) only and coincides with r on its domain. Now the concept of direct

transformation reduces to a single-pushout construction: G transforms to H using the

rule (r’: L-R) if there is a total matching morphism (or redex) nz: L+G such that H is

the pushout of r’ and ??I (here in the category of graphs and partial morphisms). It is

this single-pushout concept which is comprehensively elaborated below. It turns out

to be more general than the double-pushout framework and that all corresponding

proofs are less complex due to the simpler underlying notion of direct transformation.

Single-pushout transformations in a setting of some sort of partial morphisms have

been investigated in [36, 231.

Raoult [36] introduces two conceptually very different approaches. The first one is

described in the category of sets and partial mappings. A rule is a partial morphism

r : L-tR, i.e. a partial map which respects the graph structure3 on all objects of L it is

defined for.4 A redex 111: L+G in some graph G is a total morphism of this type. The

result of applying r at VI is constructed by two steps. First, the pushout (H, r,,, : G-+H,

m,: R+H) of r and m in the category of sets and partial maps is built. In the second

step, a graph structure is established on H such that the pushout mappings r, and m,

become morphisms. He characterizes the situations in which this graph structure

uniquely exists; double-pushout transformations with their application conditions (cf.

Appendix A) are special cases of these situations.

The second model of graph transformation in [36] uses another kind of partiality

for the morphisms: a rule is a total map r: L +R, which is only partially compatible

with the graph structure. Let rewrite(r) denote the set of objects which are not

homomorphically mapped by r. A redex m: L+G is total which means now re-

write(m)=@ Application of r at m is again defined by two steps. First construct the

pushout (H, r,: G+H, m,:R-+H) of r and m in the category of sets and total

mappings and second impose a graph structure on H such that the pushout mappings

become as compatible as possible, i.e. such that rewrite(r,)=m(rewrite(r)) and

rewrite(m,)=r(rewrite(nz)). Raoult [36] gives sufficient conditions for the unique

existence of this structure. This approach has the major disadvantage that objects

cannot be deleted at all (compare the intuitive graph transformation model

above).

Kennaway [23] provides a categorical description for the second approach of [36].

Graphs are represented the same way. Morphismsf‘: A-+B are pairs (.f; horn). The first

component is a total mapping from A to B. The second component provides a subset

of A on whichf‘respects the graph structure. A rule r: L-+R is any morphism in this

sense and a redex nr : L-G is a total morphism which now means ~OWI, = L. He shows

that under certain conditions the two-step construction of 1361 coincides with the

pushout construction in the category of graphs and the so-defined morphisms.

‘The graph structure is imposed on a set by a successor relation, and a labeling function.

4 We disregard the variable concept for this general discussion.

Unfortunately, only sufficient conditions for the existence of pushouts are given.

Besides that, object deletion remains impossible.

The concept in [23] has been further developed in [17]. They introduce “general-

ized graph rewriting” which uses the same kind of graph morphism. The correspond-

ing transformation concept not only involves a pushout construction but also a co-

equalizer. Since both construction are carried out in different categories (of total resp.

partial morphisms), theoretical results are difficult to obtain.

The idea which is elaborated below is to resume the first approach in [36]. His

concept of partial mappings which are compatible with the graph structure on their

domain can be generalized to a concept of partial homomorphisms on special

categories of algebras such that pushout construction in these categories is always

possible. Hence, we get rid of any application conditions. If, however, the necessary

and sufficient conditions of [36] are satisfied, the construction of pushout objects

coincides with his two-step construction.5

Recently, Kennaway [24] independently started to study graph transformation in

some categories of partial morphisms of this type. His work is based on the categorical

formulation of a partial morphism provided by [37]. While we consider concrete

algebraic categories, 1241 stays in a purely categorical framework. Future research has

to show how both approaches can benefit from each other.

Van den Broek [S] introduces another kind of single-pushout transformations

based on “partial” morphisms. Partiality in this framework is described by total

morphisms which map objects “outside their domain” to marked objects in their

codomain.(’ Single pushout transformations with this type of morphisms corresponds

to transformations in junk- or sink-completed structures described in Appendix B.

The article is organized as follows.’ Section 2 provides the algebraic foundations for

colimit constructions with partial morphisms. Especially we characterize the class of

algebraic structures which has all finite colimits, so-called yraph struc‘tures. Section

3 models graphs, hypergraphs, and other similar structures as graph structures and

introduces the single-pushout transformation concept for all of these objects. It is

shown that the single-pushout approach generalizes the double-pushout framework.

A running example demonstrates the expressive power of the new concept. Sections

4, 5, and 6 are devoted to sequential composition, parallel composition, and amalga-

mation of single-pushout rules and transformations, respectively. They provide

a comprehensive theory of rule composition. All properties that differ from the

double-pushout case are discussed. The conclusion (Section 7) addresses some issues

of further research.

‘Actually, the whole theory presented in the following has been very much motivated and stimulated by

the pushout constructions in the category of sets and partial mappings the author learned about by 1361. In

this paper. these constructions arc generalized to the level of algebras and partial homomorphisms.
‘Marked objects indicate deleted or garbage Items.

‘The results presented in the following have been presented in [IS] for the first time. The basic ideas of

the single-pushout approach used here have been published in 1301.

Algehrak approac~h to sinyle-pushout graph tran$wmation 185

2. Partial morphisms and graph structures

This section provides a general introduction to colimit constructions in algebraic

categories with partial homomorphisms.* The first central result provides necessary

conditions for those categories to be closed w.r.t. colimits, namely that the signature

contains unary operator symbols only. Signatures of this kind are called graph

strucrures. The second main result shows that categories of graph structures and

partial homomorphisms have all finite colimits. Both results characterize the struc-

tures which can be transformed by single-pushout constructions.’ Some examples,

how graphs, labeled graphs, hypergraphs, and more complex graph-like structures

can be seen as graph structures, are given at the beginning of Section 3.

Definition 2.1 (Partial homomorphism). If Sig is signature and A, B are Sig-algebras,

a partial Sig-homomorphism h : A +B is a total homomorphism from some subalgebra

Ah of A to B. A is the domain, B the codomain, and A,, the scope of h.

Since the scope A,, of a partial homomorphism !I : A+ B is a subalgebra of A, we get

h(C)cB for each CGA and, for each DcB, h-‘(D)GA.”

Proposition 2.2 (Category of partial homomorphisms). All Sig-algebras and all par-
tial Sig-homomorphisms~form (1 category AlgP(Sig).

Proof. The compositionf’= q of two homomorphisms g: A+B andf: B-+C is given by

the componentwise composition of the underlying partial mappings. Its scope is

A , y =y- ’ (Bfng(A,)). It is a subalgebra of A since B, and A, are subalgebras of

B and A, respectively and g(A,) and B,ng(A,) are subalgebras of B. That fog is

homomorphic on its scope is implied by the fact that (f’o g)iAl s =,fi~, 0 glAf 9 which are

total Sig-homomorphisms.” Composition of partial mappings is associative. The

identities idA : A+ A for each algebra A in AlgP(Sig) are provided by the correspond-

ing total identity homomorphisms of Alg(Sig).” They satisfy for all partial

homomorphisms g : A-+ B and ,f: B-t A, idA cjf=,f and g 0 idA = g. 0

Note that this definition of partial Sig-homomorphisms coincides with the usual

category-theoretic definition in terms of subobjects and pullbacks as it can be found

e.g. in [37].

“For basic notions and constructions of universal algebra compare 1151.

“Recently, Ehrig et al. [1 I] have provided some results in this direction for the double-pushout
approach.

I0 E denotes the subalgebra relation, h(C)= (h(u)luEC:, and h-‘(D)={.YJ~(.x)ED}.

1 I If f : A + B is a partial homomorphism, C a subalgebra of A, and D a subalgebra of B, f;c denotes the

domain restriction off to C and f w denotes the codomain restriction offto D, i.e. the scope of.flD is given

by f- I(D) and the definition off ID coincides with the definition of fon its scope.

” Alg(Sig) denotes the category of all Sig-algebras together with all total Slg-homomorphisms.

186 M. Lijw

Two r Fiv
9
I

Triv

Diagram I. Pushout situation for Two and Trir.

li-ivL-Empfy
i
I

Three

Diagram 2. Pushout situation for Trir, Three, and Etnpr~

Since we want to use AlgP(Sig) as a basis for graph transformation, we are mainly

interested in pushout constructions in AlgP(Sig). Therefore, it has to be investigated

under which conditions AlgP(Sig) has all pushouts.

Proposition 2.3 (Pushout-incompleteness). AlgP(Sig) is not closed w.r.t. pushouts if

Sig contains constants or operator s~~hols with more than one argument.

Proof. First, suppose Sig =(S, OP) contains a constant c:-+cs. Consider Diagram 1

in which the Sig-algebras and homomorphisms are defined by:

(1) Trio ::= Trio,= { * > for all SES and opTria(*, . . . , *)= * for all operators

0p:S1,...,Sn+Sn+1EOP;13

(2) Two ::= TwoCS=(*,aJ, Two,={*) for sfcs, and opTwO(xl,...,x,)=* for all

operators op:sI ,..., s,+s,,+lEOP;

(3) y: Two-t Tric is the unique total homomorphism from Two to Triv; and

(4) f: Two-t Tric is undefined for a and ,f’(*) = * otherwise.

If there was an algebra X and partial homomorphisms& : Triu-+X and gs: Triv-+X

such that gs ~.f=f, t> g, firstly X,,#@ because it must contain cx and secondlyf,(*)=
,fg(cTri~~)=CX=gf(C~ri~~)=gs(*) due to.6 and gr being homomomorphic. This implies

f, 0 g(a)= cx. On the other hand, gJ c~f is undefined for a since f is. The arguments

above lead to a contradiction to the assumption that there is a completion of Diagram

1 making it commute. Hence, there is no X, ,f,: Triv-tX, and gf: Triu-+X with

gf of=& c g which implies that there is no pushout object for f and g.

Second, suppose Sig =(S, OP) contains no constants and at least one operator

symbol f:fsl,...,fsn-tfs,+l with n>2. We construct a situation, depicted in

Diagram 2, which cannot have a pushout completion. The participating algebras and

homomorphisms are defined by:

(1) Triv is again the terminal algebra having Trin, = {*} for all SES;

I3 Trir is the terminal object in Alg(Sig).

Algebraic approach to single-pushout graph transformation 187

(2) since there are no constants, the empty algebra Empty is in AlgP(Sig): Empty,=@

for all SES and opEmptY=@ for all op~0P;‘~

(3) Three is constructed as follows: for all SES, Three, = {*, a, h} and for all oper-

ators (op:s, ,..., s,,+s,+~)EOP, we define

a if for all i= 1, . . . , n: xi=u,

oP 7‘hrc’(.~I, . . . ,xJ= h if for all i= 1, II: xi=h,

* otherwise;

(4) i: Triti+Three is the inclusion of Triv in Three;

(5) 8 : Triu-t Empty denotes the empty, everywhere undefined homomorphism.

The absence of constants guarantees that Three is well-defined.15 If all carriers of

Three are restricted to {a) or to (b], we obtain two subalgebras Triu-one and Triu-two

and two partial homomorphisms ,fi : Three+ Trio-one and ,fi : Three-r Triv-two such

that the scopes are given by ThreefI = Tric-one and Threes2= Triv-two, respectively,

and,f, and,/; are the identities on their scopes. Obviously, there are the unique partial

homomorphisms 8 : Empty + Trio-one and 0 : EmptJ’+ Trio-two such that (1) and (2) in

Diagram 3 commute.

Now assume the existence of pushouts and let (X, io: Empty-+X, @i : Three-+X) be

the pushout of 0 and i. Note that ie=8 since it is the only partial homomorphism from

Empty’ into some other algebra. Since (1) and (2) in Diagram 3 commute, there must be

u1 :X-+Trbo~e and u,:X-+Triz~-two such that (i) u1 c&=f; and (ii) u20&=fz.

(i) requires that the element a in each carrier of Three is contained in Three@,

and (ii) requires that the element h in each carrier of Three is an element of Threefit.

Since the scope of &, i.e. Three@,, must be a subalgebra of Three (cf. Definition 2.1),

,fThrfp(u, h, a, , u) = * E TI Ireegl. This results in 8, oi(*) to be defined on the carriers for

sort fs,, I while io) 0 = 0 T @ = 0 is undefined everywhere. Hence, io d 0 # 8, c i which is

a contradiction to the assumption that (X, io : Empty+X, & : Three-+X) is the pushout

object. Due to the fact that the contradiction occurs for each choice of possible

pushout objects, there cannot be any. 0

The negative result of Proposition 2.3 motivates the following definition. We

distinguish signatures which contain monadic operator symbols only. The theory

presented in the following is the theory of these so-called graph structures.

Triv LL- Empty Triv"- Empty
i

I
il,

I
0 I

I
/.?I

I
0

Three f - Triv-one
T

Three fFiv-two
2

Diagram 3. Commuting diagrams for Trir, Three, and Empty

“‘Note that due to the absence of constants, EntptJ is a subalgebra of each algebra in AlgP(Sig).

I5 Note that op 7 h”““(.x,. . x,,) provides * if some arguments are a and some arguments are h.

188 M.Liiwr

Definition 2.4 (Graph S~YUC~UWS). A signature is a graph structure if it contains unary

operator symbols only.

All terms w.r.t. a graph structure have a very special form:

(1) there are no ground terms due to the absence of constants;

(2) each term contains exactly one variable due to the absence of operators with

more than one argument.

Thus, all terms represent derived unary operators. They can be sorted w.r.t. their value

sort and the sort of the unique variable in them. Hence, we write T:$$ for the following

set of terms {tltETs,s.s,((x)), x~X,j. If t~T”z,‘, XEX, is the variable in t, A is

a Sig-algebra, and UEA,, we write Y’(U) for the evaluation oft in A using the variable

assignment x k+ a.

Lemma 2.5 (Subalgebras). !fSig =(S, OP) is a graph structure and A is a Sig-algebra,

then the set of subalgebras of’ A is closed w.r.t. intersection and union.

Proof. Closure w.r.t. intersection is a general property for all signatures; cf. [15].

If V is a set of subalgebras of A, U% is also a subalgebra of A if we define

UK= UC& C, for all SES and op”” = u cEs opt for all 0peOP. Since all operators

are unary, op “” : uVs-(,j%sr is defined for all XE~%~. It is well-defined because all

CE% are subalgebras of A. Hence, UY?G A. 0

With Lemma 2.5, we immediately obtain the following result for arbitrary graph

structures Sig =(S, OP): If A is a Sig-algebra and B=(BS)SES is a family of subsets of

A, i.e. (B,G AJSES, then there is a greatest subalgebra of A whose carriers are contained

in B, namely U {CG AIC,c B, for all SES}. This implication of Lemma 2.5 is crucial

for the following construction of pushouts in AlgP(Sig).

Construction 2.6 (Pushouts in graph structures). If Sig=(S, OP) is a graph structure

and ,f: A+B and g: A-tC is a pair of (partial) Sig-homomorphisms, the pushout

(O,f,: C-+D, gf: B-+D) off‘and g in AlgP(Sig) can be constructed in four steps. (The

pushout situation is depicted in Diagram 4.)

(1) Construction of the gluing object f’0 g which is a subobject of A: f V g is the

largest subalgebra of A which satisfies

(a) _fVgz A,.nAg and

(b) for all .uE,fVg and y~A,f’(x)=f(y) or g(x)=g(y) implies y~fDg.

f
A-B

Diagram 4. Pushout situation.

189

A
f

-B

:

I
‘9

4
’ f

Diagram 5. Pushout construction for partial homomorphisms

(2) Construction of the scopes of,f, and gs:

(a) The scope off,, i.e. Cfp, is the largest subalgebra of C whose carriers are

contained in (C-g(A))ug(fV g).

(h) Similarly, B,, is the largest subalgebra of B whose carriers are contained in

(B-f(A))uS(f’vg).‘6
(3) Gluing construction of D: D =(B,, + Cfp), _, where x w y if there is an item

z~.fVg such that .u=f(z) and y=g(z).”

(4) Construction of the pushout homornorplzisms: ,f, : C-+D has the scope CJg and is

defined for all XEC~, by&(x) = [x] _ Similarly, gs : B-+D is defined on its scope Bgf.

Note that Construction 2.6 includes a pushout construction for total homomor-

phisms. The first two steps construct subalgebras of A, B, and C, i.e. f V g, B,,, and

C,rx, respectively, such that the domain restrictions off and g w.r.t. f0 g are total

homomorphismsfi, ‘.-,:(f‘V g)+B,, and gIfTs:(fV g)-+C,,, respectively. The object

D, constructed in the third step, coincides with the pushout object offifTY and glfcy in

the category of Sig-algebras and total homorphisms. Also,f, and g,r coincide with the

corresponding total pushout homomorphisms if they are restricted to their scopes.

The whole situation is drawn in Diagram 5.

Theorem 2.7 (Pushouts of graph structures). If f: A-+B and g: A+C is a pair of
morphisms in a category of‘ graph structures AlgP(Sig), the object D together with the

morphisms fg: C+D and g,: B-+D as they are constructed in Construction 2.6 is the

pushout of,f and g in AlgP(Sig).

Proof. Due to Lemma 2.5, D, f,, and gf are uniquely defined. Thus, the two pushout

properties have to be shown, i.e. (1) ,f, J g = gf sf and (2) for each pair of morphisms

“The construction provides that ~J~‘(C,~)=~OS=~‘~‘(B,,).
“Here, + denotes the coproduct operator for arbitrary graph structures: if Sig=(S, OP) is a graph

structure and A and B are Sig-algebras, (A+B),=A,ti& for all SES and for all op:s+s’~OP,

oP A+B(.x)=~pR(~) if -YEA, and opA+’ (x) = op”(x) if XEB,. The operator / k constructs the quotient of its

argument w.r.t. the least congruence which contains the family of relations _ = (- .),sEs.

190 M. Liiwe

f’: C-+E and g’:B+E in AlgP(Sig) such thatf’og=g’cf, there is a unique morphism

u:D+E with uogs=g’ and uofg=,fl.
Due to Construction 2.6, the scope of& 2 g is f D g which is also the scope of gf sf)

and by the identification of f(z) and g(z) for each z~f V g in the third and fourth step

of the construction, f, 0 g = gf 2.f: Hence, (1) holds.

In order to prove (2), suppose that there exist f’: C-+ E and g’ : B+E satisfying

f’o g=g’of: Then B,, must be a subalgebra of B whose carriers are contained in

(B-f (A)) u f (f D g) and C, I must be a subalgebra of C whose carriers are contained

in (C-g(A)) u g(f V g). Since B,, and Cfp are the largest of those algebras, B,, c B,,

and CJ9cC, .
is’a

With the third and fourth step of the construction,f,(x)=f,(y) implies

that there sequence z1, f..) z,,Ef V g with n = 2m+ 1 for some rnEN such that

g(zI)=x, g(z,)=y, f tz2i- l)=f(~2, , ‘1 and g(z,i)=g(Zzi+l) for i= 1, . , m. Thus, if

XECJ,, g(Zi)EC,’ for i= 1, . . . , n since ,f’ 0 g = g’ of: Hence, YEC~ I and .f’(x) =f’(y).

Similarly, gs(x)=gs(y) and XEB,, implies YEI?,, and g’(x)=g’(y).

With these preliminaries, define u : D--+ E by

d(Y) if x=gf(y) and DEB,, ,

4x) = ,f’(Y) if x=&(y) and ygCs, ,

undefined otherwise.

The morphism u is well-defined since x=gs(yl), x=gs(y2) and yr~B,, implies y,eB,,

and g’(yl)=g’(y2) by the remarks above. Similarly, x=f,(yr), x=,fg(y2), and yl~CS,

implies y2~CSZ andf’(yI)=f’(y,). Furthermore, x=gs(y), MEL?,,, x=fy(z), and ZEC,(,

implies that there exists ac.f V g such that .f(a)= y and f, 0 g(a)=x. Hence, by

g’ of=f’ 1 g, g’(y) ‘f’(z). Since B,, is closed w.r.t. the equivalence induced by gf on

B and, vice versa, C, is closed w.r.t. the equivalence induced by f, on C, u 0 gs = g’ and

u of,=f’ by definition of IL Uniqueness of u follows from the observation that each

morphism v : D-+E with L’ 0 gs = g’ and v of, =f’ requires the same definition on objects

as u. 0

Construction 2.6 has some properties which are used intensively in the following

sections.

Corollary 2.8 (Pushout properties). If (D, gf : B+D, f, : C+D) is the pushout object of

f: A-+B and g: A+C in some category AlgP(Sig) of graph structures,

(1) f, und gs are jointly sut-jective.ls

(2) ker(&)cg(ker(f)) and ker(g/)sf (ker(g)).‘”

(3) f,(gf) is injective iff (g) is injective.”

I8 A partial homomorphismf: A+B is surjective if,f(A)= B. Two homomorphismsf: A-+B and y : C-B

are jointly surjective iff(A)uy(C)= B.

19For a partial homomorphism 1: A-B, the kernel of S is a subset of its scope defined by

ker(f)= (xEA/I there exists YEA/ such that xfy andf(y)=S(u)].
“A partial homomorphism f: A-+B is injective if.f(x) =-f(y) implies I =J for all x, YEA,.

A/ygrhraic approach to sing/r-pushout graph transformation 191

(4) f, and gf are total if g and f are total. (Thus, each pushout in the category of total

homomorphisms is also a pushout in the category of partial homomorphisms.)
(5) gs is total if und only if (1) A, 5 A, and (2) g(x) = g(y) implies either x, YEA, or

x, &A,.

Proof. (1) and (2) are direct consequences of Construction 2.6. (3) is implied by (2). If

fand g are total A, = A = A, =,f V g and, therefore, B,, = B and CfR = C which implies

(4). In (5), A,cA, and g(x)=g(y) * x, YEA,. or s, y$Af implies f V g= A,, which

immediately provides B,, = B. Conversely, if A, $ A,, Bqf # B and g, is partial. Also, if

there exist x, y with g(x)=<g(j’), XEA~, and y$ A,, we obtainf V g #A,. This implies,

by Construction 2.6, that B,, #B. Hence, gr is partial. 0

The existence of pushouts in AlgP(Sig) for each graph structure Sig guarantees that

AlgP(Sig) is complete w.r.t. arbitrary finite colimits.

Proposition 2.9 (Initial and final graph structure). If Sig is a graph structure,

AlgP(Sig) has an initial undjinal object.

Proof. Let Sig =(S, OP) and define @sis by &,a,., =@ for all SES and oposig =@ for all

op~0P. The so-defined empty Sig-algebra is both initial and final in AlgP(Sig). For

initiality, we need a unique partial homomorphism ,f: fl~,~--+A for each A EAlgP(Sig).

There is exactly one, i.e.f= 8. Conversely, there is exactly one partial homomorphism,

namely 8: A--+&+, for each AEAlgP(Sig). U

Corollary 2.10 (Co-completeness). AlgP(Sig) is$nitely co-complete if and only ifSig is
a graph structure.

Proof. Direct consequence of Propositions 2.3 and 2.9, Theorem 2.7, and the fact that

categories which have all pushouts and an initial object are finitely co-complete;

cf. [21]. q

3. Single-pushout transformations

This section introduces the basic notions for single-pushout transformations on

arbitrary graph structures. We first show (in Section 3.1) that all graph-like structures

like graphs, labeled graphs, and hypergraphs and many more complex objects can be

seen as algebras w.r.t. a suitable graph structure. Section 3.2 introduces the funda-

mental notions rule, redex, direct transformation, transformation, and language.

Section 3.3 is dedicated to the comparison of single- and double-pushout transforma-

tions on labeled graphs. It turns out that single-pushout transformations generalize

the classical framework since no application condition is required for redices of

single-pushout rules. The effects which rule application at these unrestricted redices

can produce are investigated by a small database example in Section 3.4.

192 M. Ltiwe

3.1. Sample graph structures

Graph structures are special signatures with the property that the associated

category of algebras and partial homomorphisms is finitely co-complete (cf. Section 2).

For single-pushout constructions in these categories to provide a reasonable trans-

formation concept, it is to show that objects like graphs or hypergraphs can be seen as

graph structures. This is done by presenting the suitable signatures.

Example 3.1 (Unlabeled graphs). Unlabeled graphs consist of a set of vertices V and

a set of edges E. Each edge is connected to its source and target vertex by a monadic

operation. Hence, the associated graph structure is:

Unlabeled Graphs=

Sorts V, E

Operations

source, target : E-tV

Example 3.2 (Edge-labeled graphs). If the edges of a graph are labeled by elements of

a label set L, we obtain a natural decomposition of the edge set into sets of edges with

the same label. Hence, the edge set of edge-labeled graphs is an L-indexed family:

Edge- Labeled Graphs =

Sorts V, (EA,,

Operations

(source, target: E,+V),,,

The family of edges (E,)I,L and the corresponding family of operators can be infinite

if L is. The theory of Section 2, however, is also applicable to these infinite structures

since all operators are monadic.

Note that the Edge-Labeled-Graph-homomorphisms are label-preserving.

Example 3.3 (Labeled graphs). Labeled graphs are constructed from edge-labeled

graphs by sorting the vertices w.r.t. their labels taken from a vertex label set M:

Labeled Graphs=

Sorts (VJmGM, (Esm,rm,l)sm.tmtM,~t~

Operations

(

source : E,,,,,, ,-+Vsm

target : 6,. tm, eVtm > sm,tmsM.I6L

The structure of the operator symbols must be so complex since the associated

homomorphisms shall preserve the labels of the graph elements. Hence, every edge is

not only distinguished by its own label but also by the labels of its source and target

vertex.

Example 3.4 (Unlabeled hypergruphs). Hypergraphs allow their edges to be connec-

ted to more than one source and more than one target. Therefore, the set of

hyperedges H = W,. A. ,nE pi “, is a family of edge sets and each hEH,,, has n sources

and m targets.

Unlabeled Hypergraphs=

Sorts V, (H,,,),.,,~

Operations

(source,,..., source,,, target,, target,: H,,,+V),,,,w

Note that the Unlabeled-Hypergraph-homomorphisms must respect the type of

the edges, i.e. edges can only be mapped to edges with the same number of source and

target connection.

Labeled hypergraphs can be obtained from hypergraphs in the same way we have

constructed labeled graphs from unlabeled graphs.

If the distinction between source and target connections is dropped, we obtain

undirected hypergraphs. If more than two different connection types are used, multi-

dimensional objects as they are applied, for example, in [38] can be represented.

Example 3.5 (Signatwes) Parisi-Presicce [34] applies graph transformation tech-

niques to specify signature manipulations. The aim is to provide a method for rule-

based software design. If signatures, i.e. Sig = (S, OP = (OP,,, Jwes*. ,,s), are con-

sidered as a special type of hypergraphs (see below), single-pushout transformations

can also be applied to these structures.

Signature =

Sorts Sorts, (Operators,,),,~

Operations

(arg,, . . . , arg,, value: Operators,+Sorts),,w

Example 3.6 (Functionul expressions). Functional expressions over a signature Sig

are hyperpaths w.r.t Sig. Sets of these hyperpaths can also be modeled as graph

structures. The graph structure Signature above has to be slightly changed: substitute

for each sort symbol a set of instances of the sort and for each operator symbol a set of

instances of the operator. The signature Sig prescribes which sort instances are

allowed as arguments or values for an operator instance. This relation is expressed by

the graph structure Expressions(Sig) below which can be defined for each signature

Sig =(S, OP):

Expressions(Sig=(S, OP))=

Sorts (Sort Instances&s, (Operator lnstances,,),,,op

Operations

argument, : Operator lnstances,,+Sort Instances,)

argument,: Operator lnstances,,--+Sort Instances,

value: Operator Ir~stances,~-+Sort Instances,

” N denotes the set of natural numbers with zero.

194 M. Liirw

Jungles as they are used in [35, 20, 221 are special expressions. They do not admit

cyclic structures and sort instances which are value of two different operator instances.

Each jungle can be interpreted as a set of finite Sig-terms with variables: The variables

are exactly the sort instances which are not value of any operator instance in the

jungle. If we interpret the value connection of operator instances as the source of

a hyperedge and the argument connections as targets, each sort instance Si in a jungle

represents the term which corresponds to the hyperpath from Si to variables. The term

interpretation of a jungle is the set of these terms. Note that due to different degree of

“sharing” for common subterms, different jungles (and expressions) can represent the

same set of terms.

The same interpretation leads to infinite terms for cyclic expressions. And the

situation that a sort instance Si is value of two different operator instances can be

interpreted as an equation: Take all hyperpaths from Si to variables and interpret

them as possibly infinite terms. The set of equations encoded in the expression at si

consists of all pairs of these terms. The set of equations encoded in an expression is the

union of the equations which are encoded at the sort instances of the expression.

Hence, the interpretation of jungles as sets of terms corresponds to the interpretation

of expressions as sets of equations, i.e. the jungle interpretation is a special case of the

expression interpretation. With these ideas, each expression w.r.t. a signature Sig is an

equational specification w.r.t. Sig (cf. 1341).

Example 3.7 demonstrates that graph structures are flexible enough to represent

very complex objects:

Example 3.7 (Structure of graph transformation implementations). The implementa-

tion of algebraic graph transformation currently being developed at the Technical

University of Berlin uses so-called ALR-graphs as the fundamental data structure [2].

ALR-graphs not only allow to represent arbitrary labeled graphs but also morphisms

between graphs. Since morphisms map vertices to vertices and edges to edges, they are

represented by pairs of vertex assignments and edge assignments.22 In order to keep

track of which assignment belongs to which morphism, an abstraction operator is

introduced in ALR-graphs which allows to group vertices and edges into graphs and

vertex and edge assignments into morphisms. Thus, ALR-graphs as algebras w.r.t. the

graph structure below are able to represent the diagram level (graphs and morphisms)

and the object level (vertices, edges, and assignments) in a single structure.

ALR-Graph =

Sorts V, E, V-Ass, E-Ass, Graph, Morphism

Operations

s, t: E-+V

s, t : V-Ass-*V

” Note that edge assignments are objects on a third level if we think of vertices being primary objects and

edges being secondary items.

Algebraic approach to single-pushout graph transformation 195

s, t: E-Ass-E

s, t : Morphism-tGraph

abstract: V-Graph

abstract: E+Graph

abstract: V-Ass+Morphism

abstract: E-Ass+ Morphism

In the implementation of ALR-graphs, context conditions make sure that the

abstraction relation and the morphisms satisfy the intuitive requirements, for

example:

(1) for all eEE, abstract(e)=abstract(s(e))=abstract(t(e)),

(2) for each SE-ASS, there exist t’, weV-Ass such that abstract(e)=ab-

stract(u)=abstract(w) and s(s(e))=s(c), s(t(e))=t(v), t(s(e))=s(w), and t(t(e))=t(w),

(3) and some more; cf. [2].

Although these conditions are equations in most cases, the graph transformation

approach with partial morphisms cannot be adapted to the full subcategory of all

ALR-graphs which satisfy the requirements. This is due to the fact that every

nontrivial generated congruencez3 on objects cannot be extended to a free construc-

tion in the context of partial morphisms. Thus, the intuitive consistence requirements

above can only be used as correctness criteria for transformations performed in

AlgP(ALR-Graph).

Application of graph transformation rules in such a system means building of some

pushout squares of appropriate morphisms. This is due to the fact that the data

structure of ALR-graphs allows to represent all features of algebraic graph trans-

formation, i.e. graphs, morphisms, and redices.

On the other hand, ALR-graphs are graph structures themselves. Thus, the imple-

mentation of graph transformation on the basis of ALR-graphs can be seen as a graph

transformation system manipulating graph transformation systems.

3.2. Basic notions

Section 3.1 has presented a variety of graph-like structures as graph structures.
Hence, it is worthwhile to formulate the single-pushout transformation concept for

arbitrary graph structures.

General assumption 3.8. In the following definitions and propositions, it is assumed

that all objects and homomorphisms are taken from a fixed category AlgP(Sig) for

some graph structure Sig.

The mathematical basis for rules, redices, and their interaction within a direct

transformation is provided by the pushout construction for partial homomorphisms

in Construction 2.6.

23 The generated congruence is not trivial, if it differs from dG (the least reflexive relation) for at least one

object G.

196

G- r, r,(G)
Dlagram 6. Direct transformation in the single-pushout approach

Definition 3.9 (Rules, redices, und direct transformation). A transformation rule

r: L+R is a partial morphism from the left-hand side of the rule L to the right-hand

side R. A redex for r in some object G is a total morphism m : L+G from the left-hand

side of the rule to G. The application of a rule r : L+R to an object G at a redex

111: L+G transforms G to r,(G) which is the pushout object in Diagram 6.

Note that the graph G and the direct derivation r,,,(G) are connected by the pushout

morphism r,,,: G+r,(G) which is also called direct transformation morphism below. We

distinguish the following types of redices.

Definition 3.10 (Application conditions). Let r: L+R be a transformation rule and

m: L-+G a redex for r in G.

(1) The redex M is co@ict$ree if m(x)=m(y) implies x, YEL, or x, y$L,.

(2) If m(.~)=m(y) implies x = y or x, MEL,, m is called d-injectiue.

(3) The redex nz is d-complete if for each object OEG with op”(o)~m(L- L,) for some

operator opcSig, we have o~m(L- L,).

Redices with these additional features will turn out to impose special properties on

direct transformations which make the whole transformation process more transpar-

ent. But also from the intuitive point of view, these application conditions are natural.

If we reconsider the basic ideas about graph transformation of Section 1 in this

framework of graph structures and partial morphisms, we can again single out three

components of a rule: the part meant to be deleted, i.e. L-L,., the subobject of

L which shall be preserved, i.e. L,, and the added structure R-r(L) (forget about

identification of r for the moment).

With these interpretations, conflict-freeness of a redex guarantees that an element of

G is either meant to be preserved or meant to be deleted. The general concept of

redices allows conflicts in this respect and the transformation process has to solve the

conflict by defining deletion or preservation to be dominant (compare Section 3.4).

The notion of d-injectivity implies conflict-freeness and additionally requires one-

to-one correspondence between candidates for deletion in G and L. Thus, in order to

apply a rule which deletes n items, we have to find n suitable elements in G if

d-injective redices are required.

D-complete redices, on the other hand, make sure that the whole structural context

of the elements of G which are going to be deleted is described in L. Here x is in the

structural context of y if op(u)= y for some operator symbol op in the underlying

graph structure. For example, the structural context of a vertex is given by all incident

edges in the category of directed graphs.

Algebraic approach to single-pushout graph transformation 197

These properties of d-injective or d-complete redices can be summarized as follows:

if L - L,, i.e. the part of the rule’s left-hand side which describes the elements that are

deleted by rule application, has y1 elements, d-injectivity of redices guarantees that at

least n items are deleted in each direct transformation and d-completeness makes sure

that at most n elements are deleted.24

In Definition 3.9 of direct transformation, this intuition is exactly captured as the

following propositions show.

Proposition 3.11 (Direct transformation). Let a direct transformation rm: G-+H be

given us it is dejined by Dejnition 3.9.

(1) [fm is conJict:free, then r V m = L,, the embedding ofthe rule’s right-hund side in

the transformation result m,: R-H is total, m(L,)zG,m, and m(L-L,.)EG-G,_.

(2) !f m is d-injective and d-complete, G-G,,” = m(L- L,).

Proof. Direct consequence of the pushout Construction 2.6 and Corollary 2.8. U

On the basis of the notion for direct transformations, we can give precise meaning

to the notions “rule system”, “ transformation”, and “generated language”.

Definition 3.12 (Rule system, transformation, language). A rule system RS is a finite set

of transformation rules.

An object G can be transformed to H with a rule system RS if there is a sequence of

direct transformations (r’),$: G’- ‘+G’for i=l,...,n such that G=G’, H=G”, and

for i= 1, . . . , n, (r’:L’-+R’)cRS and mi: L’-+G’-’ is a redex for ri in G’-‘.

The language generated by a rule system RS with shart object G is denoted by RS(G)

and defined by RS(G)= jH 1 G can be transformed to H with RS).

R&,(G), RSi(G), and RSi+,(G) denote the sublanguages of RS(G) which are gener-

ated by RS using conflict-free, d-injective, respectively d-injective and d-complete

redices in each direct transformation only.

If G transforms to H with rules in RS, G and H are connected by the partial

morphism Rw = ri,, 0 .. . 3 r,!,l: G+H which is called transformation morphism in the

following.

3.3. Single- versus double-pushout transformations

For the comparison of single- and double-pushout transformations assume that all

constructions in this paragraph are performed in the category of Labeled Graphs-

algebras; cf. Example 3.3. See Appendix A for basic notions of the double-pushout

approach.

Definition 3.13 (Translation of single- and double-pushout rules). If r : L-+R is a trans-

formation rule according to Definition 3.9, D(r)= (1: L,+L, r’ : L,+R) denotes its

24 The application conditions d-injectivity and d-completeness reformulate the gluing conditions of the

double-pushout framework for single-pushout transformations.

198 M. L&e

translation to a double-pushout rule, where 1 is the inclusion of L, in L and r’ is the

domain restriction of r to L,.

Conversely, for a double-pushout rule p = (1: K--f L, r : K+R), S(p) : L-t R denotes

its translation to single-pushout rules, where LscpI= l(K) and S(p) = r 0 1- ‘. 25

Theorem 3.14 (Embedding of the classical approach). If the object H is the result of
transforming an object G with rule p at redex m in the dobule-pushout framework, the

translation of p to a single-pushout rule, i.e. S(p), transforms G to H at the same redex
m in the single-pushout setting.

Conversely, if G can be transformed to H with rule r at redex m by a single-pushout

transformation, the translation of r to a double-pushout rule, i.e. D(r), is applicable to
G at m in the double-pushout framework if and only ifm is d-injective and d-complete. In

this case, the double-pushout transformation of G with D(r) at m results in the same

object H.

Proof. For the first part, consider Diagram 7, where (1) + (2) depicts a direct trans-

formation in the double-pushout setting and s and s* are the translations of (1, r) and

of (I*, r*) to single-pushout rules, i.e. s= S(1, r) and s* = S(l*, r*). We have to show

that (3) is a pushout in the framework of partial morphisms. By Theorem AS,

m satisfies the gluing conditions. Thus, it is d-injective and d-complete w.r.t. s.

Thereby, it is conflict-free providing s D m = L, = l(K) by Proposition 3.11. Further-

more, the pushout morphisms s, and m, satisfy RmS = R and Gsm = G - m(L - L,) = D

by the same proposition. Therefore, SI(, TV) = r and ml(s c m) = k. Since (2) is the pushout

of r and k, H is the pushout of sl, V: m and m/ss m and thereby coincides with the pushout

object of s and m in the framework of partial homomorphisms; cf. Construction 2.6

and Diagram 5. Since 1 * : D-PC is the inclusion of G,$. = D into G and R,. = R, s* and

m* are the pushout morphisms for s and m.

For the second part, consider Diagram 8, where (1) is a direct single-pushout

transformation and (1, r) and (I*, r*) are the translations of s and s, to double-pushout

Diagram 7. Translation of double-pushout diagrams

G -H %I

Diagram 8. Transformation of single-pushout diagrams.

“Note that S(p) is well-defined since I is supposed to be injective in the double pushout setting.

Alyehraic approuch to single-pushout graph transformation 199

rules, respectively, i.e. (I, Y)= D(s) and (1*, r*)=o(s,,,). The rule (1, r) is applicable to

G at m if and only if m satisfies the gluing conditions identification 2 and dangling of

Theorem A.5. These conditions are satisfied if and only if m is d-injective and

d-complete w.r.t. s.

If m is d-injective and d-complete, Proposition 3.11 provides m(L,) 5 G,_. Thus, we

can define k = (I *)- ’ 0 m 0 I as a total homomorphism. Since the so-defined morphism

satisfies k = ml L, = ml7 7 m and we have Y=s~~,=s~~~~ by Definition 3.13 and Proposi-

tion 3.11, (3) is a pushout diagram of total homomorphisms by Construction 2.6;

compare also Diagram 5. Square (2) commutes by definition of k, 1 and I* are injective,

and m is injective outside of I(&). This implies that (2) is a pushout of graph structures

as well; cf. Construction 2.6. 0

Theorem 3.14 shows that each transformation of graphs in a double-pushout

framework corresponds to a single-pushout transformation with the translated rule.

Vice versa, the whole theory for double-pushout transformations can be reobtained

by restricting the single-pushout approach to d-injective and d-complete redices.

3.4. Example: (1 small police database system

The power of the new concept lies in its ability to perform transformations even if

the redices are not d-complete and d-injective. Thus, the single-pushout approach is

free from any other precondition for rule application than finding a homomorphic

image of the rule’s left-hand side in the actual object that shall be manipulated.

The following small police database example demonstrates the usefulness of

this property. It has been inspired by the information processing system of (W-)

Germany’s police INPOL [31]. This database mainly consists of two types of data,

namely personal data and case data. Therefore, the initial state (i.e. the empty

database) is characterized by the number of personal and case databases in the system.

Having just one of each sort, we obtain the graph in Fig. 1 as initial state.26 The

following operations manipulate the database states:

(1) Add person p to the personal database.

(2) Open a new case c in the database for cases.

(3) Relate person p in kind k to a case c. (The kind can be s for suspected person,

w for witness, u for victim, etc.)

0 0
Person Data Case Data

Fig. 1. Initial state.

26The whole example is based on the graph structure Labeled Graphs of Example 3.3. The type of the

vertices, i.e. black,‘white or big/small, must be interpreted as part of the label.

200 M. Ldwe

Fig. 2. Object and relation creation

(7al /7bl

Fig. 3. Object deletion.

(4) Relate person p in kind k to another person q. (Kinds are, for example, f for

father of, b for brother, etc.)

(5) Relate case c in kind k to another case d. (s for subcase, etc.)

(6) Erase a relation. (For example: drop suspect against p in c.)

(7) Erase database entries. (That is, erase data concerned with person p, close case c,

etc.)

(8) More complex operations which combine several basic functions in a single

step.

The graph transformation model for the operations of type l-3 is given by the rules

in Fig. 2.27

Operations of type 4 and 5 have the same scheme as the rule (3) in Fig. 2 but they

work on personal or case data exclusively. The erasure operations of type 6 and 7 are

modeled by the corresponding inverse rules of type l-5. Inverse rules can be construc-

ted as long as the rule morphism is injective since the inverse of an injective partial

morphism is itself an (injective) partial morphism. Figure 3 visualizes the rules for

database entry deletion. More complex operations (type 8) can be built from the basic

ones (type l--7) using sequential composition, parallel composition, and amalgama-

tion formally investigated in Sections 4, 5, and 6, respectively. The rule in Fig. 4, for

example, is a parallel composition constructed from the rules “erase person p” and

“relate person q in kind “father of” to person Y”.

Figures 5 and 7 show sorne direct transformations with these rules. Figure 5 demon-

strates that single-pushout transformations are able to express “deletion in unknown

contexts”. Due to Construction 2.6(2), the erasure of the q-labeled vertex (representing

a person in the database) by the corresponding “person data deletion rule” triggers the

“Partial morphisms are drawn as double arrows. The mapping of the objects is indicated by the

graphical arrangement: The morphism maps all objects of its domain which occur at the same relative

position in the codomain. This works as long as the morphisms are injective. Noninjective morphisms will

be indicated by corresponding natural numbers which are used as object identifiers in these cases.

Algebraic approach to single-pushout graph transformation 201

B‘B--” T
P

Fig. 4. Derived rule.

0 &O

Fig. 6. Database reset

%
___c__ 0

II d ,;;-::,
Fig. 5. Deletion in unknown contexts.

Fig. 7. Noninjective redices.

erasure of all incident edges of this vertex from the domain of the transformation

morphism ym.28

This operational behavior of the transformation process enables to describe a com-

plete reset of a personal database in the system by the rule which is given as the empty

morphism in Fig. 6. Its application erases all connections of the persons in the

database to the database root. Hence, no rules for these persons are applicable

afterwards.

Figure 7 visualizes a rule application at a redex which is not conflict-free. The

parallel rule of Fig. 4 is used with both subactions manipulating data concerned with

person q: delete q’s data and insert the information that q is father of Y. As it is

described in Construction 2.6(l), deletion is dominant w.r.t. preservation.2g Due to

‘*Note that the double-pushout translation of this rule is not applicable in the situation of Fig. 5 due to

a violation of the dangling condition (cf. Section 3.3). Hence, complete person data deletion in our example

is not directly expressible in the double-pushout framework. But it seems to be mere accident that exactly

this operation is most problematic in the real INPOL System of the German police. First of all, the police

tried to prevent this operation from being implemented at all since they always fear that deletion ofdata can

make “their knowledge of the world” incomplete; a conception they simply hate. Secondly, after they were

forced to implement it by data protection laws, they persistently refused to apply it or managed to produce
a new copy before the actual deletion. This behavior and the redundant architecture of the system led to
a data structure that, thirdly, prohibits any complete deletion of all data concerned with a single person
even if the official in charge actually wants to erase it (compare 1313 for a detailed discussion).

29 From the data protection point of view, it is the way it should be in this example.

202 M. LBwe

vertex 7 being in the scope of the rule and vertex 6 outside, the identification of these

vertices by the redex forces vertex (6,7) to be outside the scope of the transformation

morphism. A side effect is that vertex 7 of the rule’s right-hand side cannot be mapped

to the transformation result by the corresponding pushout morphism. Hence, the

embedding of the right-hand side into the transformation result is partial for conflict-

ing redices.

4. Sequential composition

The easiest way to construct new rules from a given rule system RS is to consider

direct transformations rm : G+H as rules themselves, so-called rule-derived rules. Since

rules are only required to be (partial) morphisms, direct transformations possess the

right structure.

Within the single-pushout approach, we can even do more: If there is a transforma-

tion of G to H according to Definition 3.12 by a sequence of rules R =I-‘, . . . , r” at

a sequence of redices M =m’, . . . , m”, G and H are again connected by a partial

morphism, i.e. the transformation morphism R,. Thus, all transformations in

AlgP(Sig) have the same structure, the structure of a transformation rule. This allows

to interpret all transformations with a rule system RS as deriued rules.

Definition 4.1 (Rule-derived rule). A rule rd: G+H is a rule-derived rule w.r.t. a rule

system RS if there is a rule rERS and a redex m for r in G such that rd coincides with

the direct transformation rm: G-r,(G), i.e. H =r,(G) and rd=r,. The closure w.r.t.

rule-derived rules RSD is the least rule system which satisfies (1) RS c RSD and (2) if r is

rule-derived from RSD, rE RSD.

Theorem 4.2 (Rule-derived rule). If K is directly transformed to M with a rule-derived
rule rd, there is a direct transformation of K to M with the original rule from which rd is

derived.

Proof. Consider Diagram 9. The existence of a direct transformation from K to

M with the rule-derived rule rd implies that there is a redex n such that (2) is a pushout

square. The property of rd being rule-derived ensures that there is a rule r and a redex

m I lli I 4

G rd=rm -H

Diagram 9. Application of rule-derived rule.

Algebraic approach to single-pushout graph transformation 203

m for r in G such that (1) is a pushout diagram. Since pushouts compose, (1) +(2) is

a pushout. It is the diagram for the application of r at the redex n 0 m which is total

because both components are. Thus, K can be transformed to M using r at n 0 m and

rd, = r@l I m) due to the uniqueness of pushouts. 0

Corollary 4.3 (Generated language). The language generated by a rule system RS

coincides with the language generated by the closure RSD for all start objects G, i.e.

RS(G) = RSD(G).

Proof. RS(G)zRSD(G) follows directly from RSC RSD. RSD(G)sRS(G) is a direct

consequence of Theorem 4.2. 0

General derived rules are more complicated.

Definition 4.4 (Derived rule). A rule rd : G-H is a derived rule w.r.t. a rule system RS if

rd = Rw : G-+H for a sequence of rules R = r’, . . . , r”E RS and a sequence of redices

M=m’, m” for these rules. The closure w.r.t. derived rules RST is the least rule

system satisfying (1) RS c RST and (2) if r is derived from RST, rERST.

Using arbitrary transformations as derived rules, we loose the properties of Corol-

lary 4.3.

Example 4.5 (Derived rule). Consider Section 3.4, especially the rule of Fig. 6. Ap-

plying this rule twice to a graph containing two personal databases provides us with

the derived rule rd in Fig. 8.

The derived rule rd can now be applied to a graph with only one person database at

a noninjective redex. Thus, a system state containing a single personal database can be

transformed to a graph with two of these databases if all derived rules are allowed for

transformations. This cannot be done with the original rule system: it is easy to check

that all rules preserve the number of vertices representing databases.

Theorem 4.6 (Derived rule). If rd is a derived rule w.r.t. a rule system RS, p is a d-

injective redex for rd in G, and rd,: G-+H is the corresponding direct transformation,

then G can be transformed to H using the rules in RS only.

Fig. 8. Example of a derived rule.

204 M. Ldwe

Proof. If rd represents a sequence of length 0, it is the identity by definition. Applying

rd to G in this case results in G which is also the result using the empty sequence of

rules in RS.
If rd represents a transformation sequence of length 1, the proposition specializes to

the case of Theorem 4.2.

Thus, it remains to consider the case that rd represents a transformation sequence

whose length is greater or equal 2. If we manage to prove the statement of the theorem

for derived rules whose corresponding transformation sequence has exactly length 2,

we are done. All other cases follow by a simple induction on the length of the

transformation sequence which rd represents.

The situation that rd has been derived from a transformation of length 2 is depicted

in Diagram 10. The rules r and s are contained in the rule system RX The derived rule

rd is given by rd = s, 0 r, : Go +G2. The subdiagrams (1) and (2) are the corresponding

direct transformations. The rectangle (3) + (4) represents the direct transformation of

G with rd at the redex p.

Since rd = s, 0 r,, we can decompose (3) + (4) into two pushouts (3) and (4). The proof

is completed if it can be shown that w 0 n is a redex for s. Under this premise (l)+(3)

depicts a direct transformation with the rule r, (2) + (4) visualizes a direct transforma-

tion with the rule s, and, therefore, G can be transformed to H using rules in RS only.

The redex p is d-injective w.r.t. s, 0 r, by assumption. Since Gt,nC,m, c G,,, p is

conflict-free w.r.t. r,,,, which provides by Proposition 3.11 that the morphism w is total.

Since n is a redex, w 0 n is total and a redex for s in K.

Uniqueness of colimits guarantees rd,(G)= H = sC,V_n)(rC,C ,,(G)). 0

A direct consequence of Theorem 4.6 is that each transformation
r:” 0 . . . or,!,,: G+H can be replayed in bigger contexts K. That is, if there is an

inclusion i: G+K, there is a transformation rTn,mn 0 ... 0 r:i?,,,t : K+M such that i’ = i

and for j= 1, . . , n, ij is an inclusion. The final result M of this replay is given by

applying the corresponding derived rule rLn 0 ... 0 r$: G-H at the redex i.

Corollary 4.7 (Generated language). Let RS be a rule system, RST its closure w.r.t.
derived rules, and G an arbitrary start object.

(1) RS(G)c RST(G).

(2) For some systems, RS(G)# RST(G).

P I 13, Id I III I Y

G v K -H Y

Diagram 10. Direct transformation with derived rule

Algebraic approach to single-pushout graph transformation 205

(3) If the redices for the construction of derived rules and the redices for direct
transformations with rules and derived rules are restricted to d-injective ones, RS
generates the same language as RSr, i.e. RS,(G)= RS:(G).

Proof. (1) is obvious since RS E RST. (2) is shown by Example 4.5. RS,(G) E RS’(G) in

(3) is trivial since RSG RST. For the reverse inclusion, we must show that the redices

p 0 m : L-+ G and w 0 n: M + K constructed in the proof of Theorem 4.6 are d-injective

(cf. Diagram 10). By the assumption that redices are restricted to d-injective ones, m, n,

and p in Diagram 10 are d-injective.

Suppose that x#y and p@m(x)=pom(y). Ifm(x)=m(y), x, YEL, and we are done. If

m(x)#m(y), m(X), m(y)EG& 1r,) E G,,, since p is d-injective, and Proposition 3.11(l)

provides x, ycL,. Thus, p 0 m is d-injective.

Corollary 2.8(2) provides that x#y and w(x)= w(y) implies x, yEr,(ker(p)). Since

m is d-injective, this means that x, yErm(G$m.rm)) and, therefore, x, y~Gt”. But this

exactly states d-injectivity of w w.r.t. s,. Thus, n is d-injective w.r.t. s and w is

d-injective w.r.t. s, and the same argument given for m and p above provides that w 0 n

is d-injective for s. 0

Among the derived rules of a rule system, a special set of so-called sequential
compositions can be distinguished which allows to simulate all transformations in the

system by appropriate direct transformations.

Definition 4.8 (Sequential composition). The derived rule s, 0 Y, in Diagram 10 is

a sequential composition of r and s if m, and n are jointly surjective.

Theorem 4.9 (Sequential composition). For direct transformations rm : G+H and

s, : H+ K, there is a sequential composition t : N + T of r and s and a redex i : N-tG such

that t transforms G to K at i, i.e. K = t,(G).

Proof. Consider Diagram 11. Construct N =m(L)u(rJ’(n(M)). This construction

provides a subalgebra of G. Let p = m IN be the codomain restriction of m w.r.t. N and

i the inclusion of N in G. Construct Y as the pushout of p and r. Thereby, square (3) is

a pushout diagram and x is the unique morphism such that x 0 pI = m,; it is injective

LL-R M’S

G

Diagram 11. Short cut by sequential composition.

206 M. LCwe

since i is [cf. Corollary 2.8(3)] and it is total since i is conflict-free [cf. Proposition

3.11(l)].

Since H is the pushout of r and m, Y, and m, are jointly surjective such that

n(M)cr,(G)um,(R). By definition of N, we get n(M)~r,oi(N)um,(R). The square

(3) is commutative and m,=x opI which implies n(M) LX 0 r,(N) u x op,(R) =

x(r,(N) u p,(R)) = x(Y). Hence, n factors through Y, i.e. there is a morphism q such

that x 0 q = n. Construct square (2) as the pushout of q and s which turns subdiagram

(4) into a pushout as well.

The last thing to be shown is that p,. and q are jointly surjective. Since Y is the

pushout of r and p, pr and rg are jointly surjective, i.e. Y= p,(R) u rp(N). Thus, it is to be

shown that r,(N) c p,(R) u q(M). We know that x 0 rP(N) = r,,, 0 i(N) and by definition

of N, r,oi(N)=r,(m(l)u(r,)-‘(n(M)))cr, ~m(L)un(M)=x~p,~r(L)ux~q(M)~

x(p,(R)uq(M)). Hence, xor,(N)cx(p,(R)uq(M)) which implies r,(N)cp,(R)u
q(M) since x is total and injective.

Now take t =sqorp, which is a sequential composition of r and s. The diagram

(3)+(4) depicts the direct transformation of G to K with t at i as desired. 0

In the general case, there are many compositions of rules; in fact, there are several

different compositions even if we fix the jointly surjective pair of morphisms m, and

n (cf. Definition 4.8). Nevertheless, the set of compositions for r and s is always finite if

r and s are finite. But it depends on the actual transformation situation which one is to

choose in order to simulate a concrete transformation sequence.

Corollary 4.10 (Abstracting from transformations). For a rule system RS which is

closed under sequential composition, every transformation in RS coincides with a direct

transformation in RX

Proof. Direct consequence of Theorem 4.9. I7

5. Parallel Composition

Parallel composition of rules provides a model for simultaneous application of two

or more rules. The simultaneous application is represented by the application of the

parallel rule which is given by the disjoint union of some rules. The main question is:

can the effect of parallel rule transformations be simulated by sequential transforma-

tions with the components of the parallel rule? The answer in the classical framework

is an unrestricted “yes” [S]. We show that the answer is positive in the new approach

only if redices are restricted to d-injective ones. Parallel rule application at arbitrary

redices, however, produces effects which cannot be captured by sequential trans-

formations.30

3” In [ZS], a typical example is presented which shows that these effects model properties of “truly

parallel systems” in a natural way.

Algebraic approach to single-pushout graph transformation 207

The investigations begin with a notion of parallel independence for two direct

transformations. The Commutativity theorem proves that parallel independence

implies that the result of the transformation is independent of the sequential order in

which the two participating rules are applied.

Definition 5.1 (Parallel independence). Two redices m: L-G and n: M+G for the

transformation rules r : L+ R and s : M +S, respectively, are parallel-independent if

they overlap in gluing items only, i.e. m(L)nn(M)sm(r V m)nn(s V n).

Theorem 5.2 (Commutativity of direct transformations). Ifm : L+G and n: M-+G are

redices in the object G,for the rules r : L-t R and s: M-+S, respectively, there are redices

p=s,Om:L+s,(G)andq=r, 0 n: M+r,(G) such that rp(sn(G))=sq(rm(G)) ifand only if
the redices m and n are parallel-independent.

Proof. First suppose m and n are parallel-independent. Consider Diagram 12. Square

(1) depicts the direct transformation of G with r at m and square (2) the direct

transformation of G with s at n. For p = s, 0 m and q = r,,, 0 n to be redices, it is to show

that they are total morphisms which means to show (i) m(L) E G,_ and (ii) n(M) c G,_.

We explicitly show (i); the argument for (ii) is symmetrical.

Suppose o$G,~. By Construction 2.6, it implies either oEn(s V n)31 or there is a term

tETSig(x) such that (*)t’(o)En(s V n).32 The first case implies o$m(L) because m and

n parallel-independent. The second case implies o$m(L), too: Since m is a redex, it is

a total morphism and its image in G is a subalgebra of G. Thus, the assumption

oem(L) implies t’(o)Em(L) which is a contradiction to the parallel independence of

m and n [compare (*)I$. Therefore, if o$G,~, o$m(L), which immediately provides

that s, 0 m is total.

Hence, the existence of the redices p and q is guaranteed and we must prove

rp(sn(G))=sq(r,,,(G)). For this purpose, let square (3) in Diagram 12 be constructed as

s ,-s,(G) -H

Diagram 12. Parallel independence and the commutativity property.

3’ (s V n) is a short notation for L-(s 0 n).

3* Note that Sig is the underlying graph structure according to General assumption 3.8.

208 M. L&e

the pushout of rm and s,. Now (l)+(3) is the pushout diagram reflecting the direct

transformation of s,(G) with r at p and (2)+(3) reflects the direct transformation of

r,,,(G) with s at q. The uniqueness of the pushout construction provides that the

pushout objects of (3) (1) + (3), and (2) + (3) are isomorphic which completes this part

of the proof.

Conversely, suppose p = s, 0 m and q = rm 0 n are redices, i.e. total morphisms. Then,

n(M)s GVm and m(L)s G,,. By Construction 2.6, we conclude n(M)c m(L- r V m)
and m(L) E n(M --s V n). By construction of r V m and s V n, this results in

(*) n(M)nm(L)~[m(L)um(rVm)]n[n(M)un(sVn)].

But, obviously, we have that:
- __

(1) Cn(M)nm(L)lnCm(L)nn(M)l=~.
(2) [n(M)nm(L)]n[m(L)nn(sVn)]=O.

(3) [n(M)nm(L)]n[m(rVm)nn(M)]=8.
Thus, (*) implies n(M)nm(L)cm(rVm)nn(sVn). 0

Hence, parallel independence of two rules implies local confluency. Moreover, the

effect of applying two parallel-independent rules in any order can be obtained by

a single direct transformation if the parallel composition of the two rules is used.

Definition 5.3 (Parallel rule and parallel redex). If r: L+R and s: M+S are two

transformation rules, the parallel rule r + s is defined as the disjoint union of r and s, i.e.

r+s=rds:L&M+R&S.

If RS is a rule system, RS is the parallel closure of RS which exactly contains RS

and all parallel rules which can be built within RSP.

The parallel redex m+n for two redices m: L+G and n: M-G is defined by:

m+n:LtiM-+G such that m+n(x)=m(x) if xEL and m+n(x)=n(x) if xEM.

Theorem 5.4 (Parallel independence and parallel rule). 1f redices m : L+G and
n : M -+G for the transformation rules r : L +R and s : M-S, respectively, are parallel-

independent, the application of the parallel rule r+s at the parallel redex m+n
to G results in the same object as any sequential application of r and s, i.e.

s~,~ 3,)(r,(G)) = r(,.C,&n(G))=(r+s)(,+.)(G).

Proof. Consider again Diagram 12. Note that the result of the sequential application

of r and s, i.e. the object H, has been constructed as the colimit of s, n, m, and r.33 These

morphisms make up the boldface part of Diagram 13. L+ M and R +S are the

colimits (coproducts) of L and M and of R and S, respectively. The morphisms il-i,

33 The colimit of a diagram is unique up to isomorphism; cf. [21]. Since we do not distinguish objects if

they are isomorphic, the colimit of a diagram is unique in our framework. Note that due to Corollary 2.10,

the underlying category of graph structures and partial homomorphisms is finitely co-complete.

Algebraic approach to single-pushout graph transformation 209

Diagram 13. Parallel rule and parallel-independent redices.

are the universal embeddings. The parallel rule Y + s, as it is constructed in Definition

5.3, coincides with the universal morphism for coproducts such that the subdiagrams

(3) and (4) commute. 34 Analogously, the parallel redex m + n is the universal comple-

tion such that subdiagrams (1) and (2) commute. (5) is the pushout diagram reflecting

the direct transformation of G with r + s at m + n.

Thus, Diagram 13 commutes and is thereby a cocone for the boldface part. Since it

has been constructed as a composition of partial colimits, it is also a colimit of the

boldface part. Uniqueness of colimits immediately provides that K coincides with

H which is the colimit of the boldface diagram constructed in the proof of Theorem

5.2; compare Diagram 12. 0

The converse of Theorem 5.4 is not true: Applicability of the parallel rule at an

arbitrary redex p does not imply that p can be decomposed into parallel-independent

redices for the components of the parallel rule.

Example 5.5 (Parallel rule and dependent redices). Consider again the rule in Fig. 4. It

is a parallel rule which is applied in Fig. 7 at a redex which is not d-injective.

Obviously, the redices for the component rules (i.e. deletion of q and addition of father

relation) are not independent; cf. Definition 5.1.

Example 5.5 demonstrates that the addition of parallel rules to a given rule system

can increase the possible transformations and the set of objects which can be

generated from some start object. The results of the classical approach can be

generalized to the single-pushout framework if redices are restricted to d-injective

ones.

Proposition 5.6 (Parallel rule and parallel independence). Zf the parallel rule

r SS: L+ M-R + S is applicable to G at a d-injective redex p: L+ M-G, its

j“The coproduct A+B in AlgP(Sig) can be constructed as the pushout of 8:0-A and 8:0-B. The

universal morphisms are then given by Construction 2.6.

210 M.Liiwe

decomposition to the components, i.e. m=plL:L-tG and n=pIM:M+G, is a pair of

parallel-independent redices for the rule r : L +R and s : M+S, respectively; therefore,

s(Y,zn)(rm(G))= r(.Y,l&,(G)) =(r + s),(G).

Proof. If p is d-injective, p(x) =p(y) implies x = y or x, yE(r + s) V p and by Proposi-

tion3.11,(r+s)Vp=(L+M)(,+,,= Lr+M,.Thus,x~L, yeM,andm(x)=n(y)implies

XEL, and REM, which, again by Proposition 3.11, means XET V m and YES V n. Bence,

parallel independence of m and n is guaranteed which, by Theorem 5.4, immediately

proves the second part of the proposition. 0

Corollary 5.7 (Generated language). Zf RS is a rule system, RSP its closure w.r.t.

parallel rules, and G an arbitrary start object,

(1) RS(G)z RSP(G),
(2) RS(G) # RSP(G) for some rule systems, and

(3) RS generates the same language as RSP ifredices are restricted to d-injective ones,
i.e. RSi(G)= RS’(G).

Proof. (1) is obvious since RS G RSP. (2) can easily be shown by e.g. Example 5.5. (3) is

an immediate consequence of Proposition 5.6 and of the facts that d-injectivity of

m + n w.r.t. r + s implies d-injectivity of m and s, 0 m w.r.t. r or of n and r, 0 n w.r.t. s.

The proof is straightforward. 0

6. Amalgamation

Sequential and parallel composition of rules is a device to integrate the effects of

several rules into a single one. Therefore, all results concerning this kind of composi-

tion are statements of equivalence expressing that there is a one-to-one correspond-

ence between transformations with or without composed rules. The situation is

different if we consider gluing of rules, called amalgamation. This concept has been

introduced in [4] as a synchronization device for graph transformation systems which

model the behavior of distributed systems. The work in [4] has been motivated by

Degano and Montanari [7], who first introduced the idea of rule gluing and gave an

explicit operational description.

This section reflects the theory presented in [4] for the single-pushout approach.

We focus on theoretical aspects and refer to [14] for examples. All theorems of this

section require redices to be d-injective.35

General assumption 6.1 (Redices). All redices in this section are d-injective.

The key to amalgamation is the notion of subrule and remainder.

3s D-injectivity is a sufficient condition for the theorems. It is not necessary in most cases. It is left to

future research to investigate amalgamations at arbitrary redices.

Algebraic approach to single-pushout graph transformation 211

Definition 6.2 (Subrule and remainder). A rule t : N-, T is a subrule of a rule r : L+R if

there are two total morphisms i : N+ L and j : T-+ R such that (1) j 0 t = r 0 i and (2) i is

a d-injective redex for t. The (i, j)-remainder of r w.r.t. t is the rule r -(i, j)t: P-R which

is defined in Diagram 14 as the unique morphism for the pushout (1) of t and i such

that (r -(i, j) t) 0 i, = j and (r -(i, j) t) 0 ti = r.

We write r-t for the remainder if the embeddings are obvious from the context.

The subrule structure of a rule enables the decomposition of direct transformations.

Theorem 6.3 (Subrule). If t : N--t T is a subrule of r : L+ R with the embeddings i : N -+ L

and j: T-+R and m : L-+G is a redex for r, there are redices p and q for t and r - t,

respectively, such that the direct transformation of G with r at m can be decomposed into
two direct transformations with t at p and with r-t at q.

Proof. Consider Diagram 15. The square (1) is the pushout constructed for the

remainder in Definition 6.2; (2) + (3) is the pushout reflecting the direct transformation

ofGtoHwithratm.Sincer=(r-t)oti,(2)+(3) can be decomposed into two pushout

diagrams (2) and (3). Compositionality of pushouts guarantees that the diagram

(1) + (2) reflects a direct transformation of G to K with t at p = m 0 i. The morphism p

is total and d-injective since m and i are (cf. General assumption 6.1). If q: P+K is

total and d-injective, (3) is the required direct transformation from K to H with

r-t. D-injectivity of m means: m(x)=m(y) implies x=y or x, YEL,. Since

r=(r-t)Oti,L,zLt andm(x)=m(y)impliesx=yorx,y~L,~.Hence,misd-injective

w.r.t. ti and Proposition 3.1 l(1) guarantees that q is total. Moreover, q is d-injective

w.r.t. r-t. Square (2) is pushout and Corollary 2.8(2) states that ker(q)E ti(ker(m)).

But ti(ker(m)) z t,(L,) since m is d-injective. The remainder r-t is constructed as

a universal morphism such that PCl_r) = i,(Tj)u ti(L,j; cf. proof of Theorem 2.7. Thus,

ker(q)c PCrmt) stating d-injectivity of q w.r.t. r-t. 0

Diagram 14. Construction of Remainder

Diagram 15. Transformation decomposition.

212 M. Liiwe

The rest of the section considers the synchronized behavior of two rules which share

a common subrule t. In a synchronized behavior, the effect of the shared rule t is

produced only once, which models a handshake at t.

Definition 6.4 (Related rules, amalgamable redices, synchronized e&x?). Two rules

r : L-t R and s : M -+S are related w.r.t. a third rule r : N+ T if t is a subrule of r and s. In

this case, we say that r and s are t-related.

Let (i, j): t+r and (e,f): t-+s be the corresponding embeddings. Two redices

m : L-+G and n : M +G for r and s, respectively, are t-amalgamable if m 0 i = n 0 e and

m(L)nn(M)~m~i(N)u[m(rDm)nn(sVn)].

Application of the subrule t at m 0 i = n 0 e produces an object X and induced redices

p and q in X for the remainders r-t and s-t, respectively; cf. Theorem 6.3. The

t-synchronized efSect r,,, Ilf s, : G-+H is defined to be the transformation from G via X to

H given by t,.i:G+X and ((r-t)+(s-t)),+,:X-+H.

Proposition 6.5 (Synchronized effect). Let r and s be t-related and m and n be t-

amalgamable redices for them, the induced redices p and q for the remainders as defined
in Dejinition 6.4 are parallel-independent.

Proof. The whole situation is depicted in Diagram 16. Diagram (2)+(3) is the direct

transformation of G with the rule t at the redex n 0 e. Diagram (5)-t(4) reflects the

direct transformation of G with t at m 0 i. The redices m and n are amalgamable such

that m 0 i = n 0 e. Therefore, the diagrams (2) + (3) and (5) + (4) depict the same pushout

which is indicated in the diagram by the fact that the diagrams (2)+(3) and (5)+(4)

overlap in the morphism a. (2) is the transformation of M with t at e and (5) the

transformation of L with t at i according to Definition 6.2.

Diagram 16. Remainder redices in synchronized effect.

Algebraic approach to single-pushout graph transfbrmation 213

Parallel independence of p and q, i.e. p(P) n q(Q) c p(u V p) n q(u Q q), remains to be

shown. Since p and q are d-injective, we must prove that

p(x)=q(y) implies XEP,, and YEQ”.

The morphism u =r- t and v=s- t are constructed as universal morphisms in

Definition 6.2 and j and fare total such that

(*I P,=i,(T)uti(L,) and Qr=et(T)ut,(M,).

Since P and Q are pushout objects, i, and ti and e, and t, are jointly surjective,

respectively, such that there are four cases to be considered:

Case I: x~i,(T) and y&T):(x) immediately implies that x and y are gluing points.

Case 2: x~i,(T) and y~tJA4): x~i,(T) means that there exists ZET such that

i,(z)=x. Since diagram (2)+(3) coincides with diagram (5) +(4), poi,=qoe,. Thus,

q 0 e,(z)=q(y). If et(z)=y, y has a preimage w.r.t. e, and is gluing item by (*). If

e,(z) #y, q identifies y and e,(z) which implies that y is gluing item since q is d-injective.

Case 3: x~ti(L) and yEe,(T): Follows from an argument similar to case 2.

Case 4: xEti(L) and yet,: In this case there exists CEL such that ti(c)=x and

there exists deM with t,(d)=y. Since the subdiagrams (3) and (4) commute,

p(x) = a 0 m(c) and q(y) = a 0 n(d).

Suppose as a first case m(c) = n(d). Since the redices m and n are amalgamable and

d-injective either c and d are gluing point w.r.t. r and s, respectively, or there exists

bg N with i(b) = c and e(b) = d. The former immediately results in x and y being gluing

points by (*). The latter results in x = Ii 0 i(b) and y = t, 0 e(b) which implies that x and

y have preimages w.r.t. i, and e,, respectively, and we are done.

Suppose as the second case m(c)#n(d). Then m(c), n(d)Eker(a). This implies that

both c and d have preimages w.r.t. both morphisms n and m because (3) and (4) are

pushouts [cf. Corollary 2.8(2)]. These preimages must be elements of the kernel oft,

and ti. Thus, they must have preimages w.r.t. n 0 e and rno i and we are back to the

arguments in cases l-3, which completes the proof. 0

Proposition 6.5 shows that the synchronized effect of two rules as defined in

Definition 6.4 models shared behavior exactly on the part affected by the shared rule.

The local operational effects of both rules, i.e. those parts not in the subrule, are

independent.

The synchronized effect of two rules can be obtained by simple direct transforma-

tions if amalgamated rules are constructed and applied.

Definition 6.6 (Amalgamated rule). If r : L-+ R and s : M-S are (t : N-r T)-related via

embeddings (i, j) : t-r and (e, f) : t-s, respectively, the amalgamated rule r 0, s : U-t V
is constructed in Diagram 17. U and V are pushouts of i and e and of j and f;

respectively. r 0, s is the unique morphism such that (r 0, s) 0 ei=Jo r and

(r 0, s) “i,=jfos.

214 M. L&e

Diagram 17. Construction of the amalgamated rule

Note that r Ots is the colimit of (i,j) and (e, f) in the category of arrows over

AlgP(Sig). The short notation Y Ors for the amalgamated rule is not precise because

the result of the amalgamation construction depends on the actual embeddings. Thus,

we assume in the sequel that the involved embeddings are obvious from the context.

Theorem 6.7 (Amalgamation). There are amalgamable redices m and n for the rules
r : L-+R and s : M-+S such that the corresponding synchronized effect transforms G to H,

i.e. r, lIf s, : G+H if and only if there is a redex o for the amalgamated rule r 0, s such
that (r 0, s)~: G-H is a direct transformation.

Proof. Suppose (r @r~)O: G+H is a direct transformation. Construct the redices

m:L+G and n:M+G by defining m=ooe, and n=ooi,.

They are both d-injective: i and e are d-injective w.r.t. t such that

ker(ei)Ei(ker(e))ci(N,) and ker(i,)ce(ker(i))‘e(N,). Since t is a subrule of r and s,

r 0 i =j 0 t and s 0 e=fo t. Thus, e(N,)c M, and i(N,) G L,. Therefore, i, and ei are

d-injective w.r.t. s and r, respecively. The redex o is d-injective and U(, @,$)= ei(L(f;,,))

u i,(M,,,. ,,) = ei(L,)u i,(M,). Hence, o 0 ei and o 0 i, are d-injective w.r.t. r and s.

They are also amalgamable since m(x)=n(y) implies 00 ei(x)=oo i,(y). If

ei(x) = i,(y), et(x) must be an image of eio i since U is a pushout of e and i. But

then m(x)Emo i(N). If ci(x)#i,(y), o identifies two different items which implies

x, YE Ut,O,s)=ei(L,)u i,(M,). Hence, XEL, and REM, due to d-injectivity of ei and i,.
Therefore, m(x)Em(L,) u n(M,) = m(r V m) u n(s V n).

For the implication in the reverse direction, amalgamable, d-injective redices m and

n are given. We have to show that o : U-+G constructed as the unique morphism such

that o 0 ei = m and o 0 i, = n is d-injective. The proof is routine. It can be achieved

straightforward by a complete case analysis for x and y if 0(x)=0(y) is given.

That the synchronized effect r,,, (If s, : G+ H coincides with the direct transformation

(r 0, s), : G+ H is a direct consequence of the fact that the synchronized effect of r and

s is the colimit of the left part in Diagram 18 (cf. Definition 6.4 and Proposition 6.5)

and direct transformations with amalgamated rules are defined to be colimits of the

right part in Diagram 18. Since o 0 ei = m and o 0 i,= n and U is a colimit itself, both

colimits coincide up to isomorphism; cf. [21]. 0

Note that Proposition 5.6 and Theorem 5.4 are special cases of Theorem 6.7 since

parallel rules are amalgamations w.r.t. the empty shared subrule.

Algebraic approach to single-pushout graph transformation 215

Diagram 18. Amalgamation is colimit construction.

7. Conclusion

The single-pushout approach to graph transformation presented in this article

emerged from the observation that a transformation rule in the double-pushout

framework [S] can be interpreted as a partial morphism in an appropriate category.

The rigorous investigations of algebraic categories with partial homomorphisms in

Section 2 led to the notion of graph structures. It is exactly these yraph-like structures

which are closed w.r.t. finite colimits. These results seem to be analogous to the results

in [131, where a detailed analysis of graph pushouts in the total case is provided. Ehrig

and Kreowski [131 show that pushouts of graphs have certain properties which do

not hold in arbitrary categories. These special properties are reflected in the partial

case by the incompleteness w.r.t. colimits if the objects considered do not resemble

graphs. Some hints that there is a tied connection between categories of total and

partial homomorphisms are also given by [37,24]. Future research shall focus on the

details of this connection for algebraic categories.

Many results known from the double-pushout framework can be generalized if the

transformation process is based on partial pushouts. A typical example is the embed-

ding of transformation sequences. In the new approach, it is always possible to replay

a transformation sequence in bigger contexts. On the other hand, the more general

applicability of single-pushout rules produces new effects w.r.t. composition. For

example, a transformation with parallel rules cannot always be decomposed into

transformations with the components of the parallel rule as it is possible in the

double-pushout setting; compare Section 5. Analogous results hold for amalgamated

rules (Section 6). The one-to-one correspondence between composition of rules and

composition of transformations can only be reobtained if the redices for the rules are

properly restricted. The central properties in this respect are confict-freeness and

d-injectivity. With d-injective redices, all results of the algebraic approach carry over

to the new framework. D-injectivity is the analog of the identljkation condition known

from double-pushout transformations. These results disclose an asymmetry of the

216 M. Ldwe

gluing conditions dangling and identijication in the double-pushout approach. While

the identification condition is cruicial for almost all results about composition of rules

and transformations, the dangling condition can easily be dropped in the operational

semantics without changing the statements of the central results.

Not only many results can be generalized for single-pushout transformations, but

the proofs are also shorter, the constructions simpler, and there are less technical side

conditions. A typical example is the notion of a subrule which needs no technical extra

requirements at all in the approach presented above. The technical easiness on the

level of direct transformation and rule composition, however, has been purchased by

more complex constructions on the fundamental categorical level of morphisms and

pushouts. Some of the aspects which have to be handled explicitly on the level of rules

and transformations in the double-pushout approach have been hidden in the basic

constructions of the new framework. Future research must show if the new level of

abstraction is sound w.r.t. further extensions of the theory, for example w.r.t. distrib-

uted transformations.

Many of the new effects which can be observed in the general single-pushout

approach are due to redices which are not d-injective or conflict-free. These redices are

able to model certain aspects of amalgamation. Amalgamation and redices which are

not d-injective are both models for rule applications overlapping in nongluing items.

The precise relationship between these two concepts needs further theoretical invest-

igations. An important question in this respect is whether redices can be restricted to

injective ones if arbitrary amalgamation of rules is admitted, i.e. can noninjective

redices or all interesting noninjective redices be modeled by amalgamation? A positive

answer to this question would be very valuable. It would reduce all concepts which

model aspects of parallelism to a single, central one, i.e. amalgamation.

From the practical point of view, implementations of graph transformation systems

should be available in order to prove the usefulness of graph-rewriting methods in

system design. We are currently developing a prototype system based on single-

pushout transformations at the Technical University of Berlin; cf. [Z]. Experiments

with this system shall show which extensions of the pure single-pushout approach

presented in this article are necessary for practical applications and software engineer-

ing (for example, a concept for variables or attributes).

Appendix A. Basic notions of the double-pusbout approach

The algebraic graph grammar approach of [S] is based on the category of Labeled

Graphs, compare Example 3.3, and total morphisms, i.e. Alg(Labeled Graphs).

Definition A.1 (Graph transformation rule). A graph transformation rule p = (1: K +L,

r: K+R) consists of two graph morphisms 1 and r from the gluing graph K to the

left-hand side L and to the right-hand side R, respectively. The left-hand morphism 1 is

required to be injective.

Alyehraic approach to single-pushout yruph transjbmation 217

Diagram 19. Direct transformation (classical approach).

Definition A.2 (Direct tran.yformation). A graph G can be directly transformed to

another graph H using rule p = (I : K -+ L, r : K +R) if there are two diagrams (1) and (2)

(cf. Diagram 19) which are pushout diagrams in the category of graphs and graph

morphisms.3h

In a direct transformation situation, the morphism m: L+G is called a redex or

match of p in G. The constructive version of the direct transformation builds the

context graph D and the result graph H if a redex is given. For the description of the

construction, we need some operations on graphs.

Definition A.3 (Operations on graphs). For graphs G and H, G+H denotes the

disjoint union of G and H, i.e. the disjoint union of the vertex and edge sets with the

operations sG+H given by s~+~(.x)=s~(.x) if XEG and sGfW(x)=sH(x) otherwise and

tG+H, defined by the same scheme.

If H is a graph and (V, E) a pair of subsets of its vertices and its edges, H -(V, E)

denotes the largest subgraph of H whose vertex and edge sets are contained in HV - V

and HE - E, respectively, i.e.

(H-(V, E)),=H,- P’,

sHm (Y.E), tH-c”.E’, and the labeling functions are the restrictions of the corresponding

functions of H to the smaller vertex and edge sets of H -(V, E).

If - ‘(“V, - E) is a pair of relations on the vertex and edge sets of some graph H,

H, _ denotes the quotient of H w.r.t. the smallest congruence which contains -. The

corresponding natural morphism is denoted by - : H+H, _

With these prerequisites, we can construct the result graph H of a direct transforma-

tion from a graph G using rule p=(l: K-+L, r: K+R) at redex m:L-+G.

Construction A.4 (Direct transformation). The direct transformation of a graph G with

the rule p=(l: K+L, r: K+R) at a redex m:L +G results in a graph H which can be

constructed in three steps:

(1) Remove: D:=G-(mV(L,-I,,(K,,)), mE(LE-I,(K,))). Let lD:D+G denote the

obvious inclusion morphism.

(2) Add: E:= D + R. Let iD : D+ E and iR : R+ E denote the obvious inclusions.

(3) Emhed: H:=E _, where N-Y if .x=iRcr(z) and y=iDa(lD)-’ om”l(z).

3h The rtlyrhrnic rrpprouch to graph trumfiwmation [S. 9, 161 is based on this notion for direct transforma-
tions. Due to its form. it is called the double-pushout approuc,h.

218 M. Lib

Diagram 20. Definition of direct transformation.

Diagram 21. Construction of a direct transformation

Theorem A.5 (Direct transformation). The definition and the construction of direct

transformations are related as follows:
(1) Let Diagram 20 represent a direct transformation of G to H with rule p = (1: K + L,

r: K+R) at redex m: L-+G as defined in Definition A.2.
(a) H is uniquely determined by G, p, and m.

(b) m satisfies the gluing conditions dangling and identification 2.
(c) D and H coincide with the graphs constructed in Construction A.4.

(2) Let Diagram 21 depict a construction as in Construction A.4.

(a) k = (In) ’ 0 m 0 1: K +D is total tf the gluing condition identification 1 is satis-
fied. In this case, subdiagram (2) is u pushout.
(b) [f m satisfies dangling and identification 2, also diagram (1) is a pushout.

Identijication 1: m(x)=m(y) implies x, y~l(K) or x, y$l(K).

Identification 2: m(x)=m(y) implies x, ye/(K) or x= y.
Dangling: si(e) or tj(e)Em,,(Lv-lv(Kv))for some eEGE implies eem,(L,).

Appendix B. Completion of partial morphisms

For a big class of graph structures, so-called hierarchical graph structures, partiality

of a homomorphism can be modeled by a total homomorphism which maps unde-

fined objects to some special I-items. The corresponding completion with the neces-

sary I-structure is presented below. It relates the approach to single-pushout trans-

formations presented above to the one in [S].

Definition B.1 (Hierarchical graph structures). A graph structure (S, OP) is hierarchical
ifthereisnoinfinitesequenceop,:~,js,,op~:~~~~3,...,Op~:S~~Si+~,Op~+~:Si+~-t

si+z, ... of operator symbols.

If Sig=(S, OP) is a hierarchical graph structure, the relation 5 on S defined by

s’ 5 s if Tz!&, #8 is a well-f ounded partial order. Thus, noetherian induction can be

used if statements have to be proven for all sorts.

Note that all examples in Section 3.1 are hierarchical.

Algebraic approach to single-pushout graph wan&-mation 219

Definition B.2 (Junk completion). If Sig =(S, OP) is a hierarchical graph structure,

(1) opns(s)=(opns(s)i)iElc denotes the vector of operator symbols in OP which take

arguments of sort s, i.e. for all iel,, opns(s),=opi:s-+si.

(2) sorts(s) = (sorts(s)i)iEr, is the corresponding list of sort symbols such that

sorts(is the value sort of opns(s)i for all iEl,.

(3) the junk completion Junk(Sig) is the following equational specification, where

2 is a vector of variables such that ~i~Xsorts(s), for all iEZS:37

Junk(Sig)=

Use Sig

Operations

(I, : sorts(s)-+s)sEs

Equations

(oPnS(s)i(l,((.~))=~i),,S, isl,

Note that in case of an infinite vector opns(s) for some sort s, we have to handle

signatures and algebras with operators which take infinitely many arguments. Hier-

archical signatures, however, guarantee that we do not run into trouble with “in-

finitely deep” terms, i.e. each term w.r.t. the signature Junk(Sig) is of possibly infinite

width but of finite height.

Junk(Sig)-algebras help in the analysis of AlgP(Sig). First, consider the relation of

Alg(Sig) and AlgP(Sig). Obviously, they coincide on objects and each total homomor-

phism is a special partial one. Hence, Alg(Sig)sAlgP(Sig), and with the aid of

Junk(Sig), the inclusion G : Alg(Sig)+Alg’(Sig) turns out to be a left adjoint functor.

Proposition B.3 (Inclusion functor). If Sig is a hierarchical graph structure, the inclu-

sion E : Alg(Sig)+Algp(Sig) is a left adjointfunctor.

Proof. We construct a mapping PH(F(P), up : F(P)-+P) which assigns to each object

PEAlgP(Sig) another object F(P)EAlg(Sig) and a partial homomorphism up, and

show that the so-defined mapping is a co-free construction, i.e. for each partial

homomorphism f: B-+P, there is a unique total homomorphism f* : B+F(P) such

that up l,f* =f: The situation is depicted in Diagram 22.

Define F(P)= [Free(P)]s,a, where Free: Alg(Sig)-+Alg(Junk(Sig)) is the free

construction between equationally defined classes of algebras (cf. [15]) and

s IF(P))= F(P)

Diagram 22. Co-free situation.

37The phrase “Use Sig” in the specification below indicates that Sig is a subsignature of the defined
signature.

[]sia: Alg(Junk(Sig))-Alg(Sig) is its right adjoint. Since Free is consistent, we

obtain an injective universal homomorphism v’: P+[Free(P)]sia and define

uP=(vP)-1.

Now it needs to be proved that the assignment P++(F(P), up : P-F(P)) satisfies the

co-universal property above. Let f:B+P be a partial homomorphism. Define

f* : B+F(P) for all SES by f:(x)=v%~~,~(x) if XEB~~ and ,f:(x)=

l_sF,ee(p)(7*(opns(s)B(x))) otherwise.” f* is well-defined by definition. It is to be

shown that it is totally defined and homomorphic. We use noetherian induction w.r.t.

the partial order 5. If s is a minimal element w.r.t. -& there is no operator

op: s+s’EOP. Hence, I,:-+s is a constant which immediately implies thatf* is total

and homomorphic for s.

Now consider a nonminimal sort s. Since for all s’Esorts(s): s’<s,f* is totally

defined on all these sorts by induction hypothesis, we immediately obtain that f’* is

totally defined on s. It is homomorphic on Bfs since fs and VP are and for x$Bf,, we

have that each operation op: ~+s’=opns(s)~:s+s’ for some ill,. Since the opera-

tions satisfy the equations of Junk(Sig):

opF~p~(f*(x))=opF(P)(_L~ree~P~(~*(opns(s)B(x))))

=opns(~)~~~~(I,F”‘~~~(~*(opns(s)”(x))))

=f*(opns(s)B(x))=f*(opB(x)).

The definition of ,f* immediately guarantees BUp f* = B, and up o,f* = (v’)- ' :f* =
(VP)-' ovp, f=f: f* is unique since each total g : B-+F(P) must coincide on B, with f *
due to up0 g =J: Outside B,, g must map x homomorphically to elements outside

v’(P). There is exactly one such element, namely _L(f*(opns(s)B(x))).

The assignment on objects P-F(P) can be canonically extended to a functor

F: Alg’(Sig)-+Alg(Sig) which is right adjoint to E : Alg(Sig)-+AlgP(Sig). 0

For hierarchical graph structures, the junk completion of Definition B.2 provides

some further information about colimits and how they can be constructed if the

following uniqueness constraint is additionally required in the completion process.

Definition B.4 (Sink completion). If Sig is a hierarchical graph structure, its sink
completion Sink(Sig) is the following specification with conditional equations:

Sink(Sig)=

Use Junk(Sig)

Equations

(oPns(s)i(Y)= ~,,@I *Y = L(oPns(s)(Y)))s6s, iE1,

The categories AlgP(Sig) and Alg(Sink(Sig)) are closely related by the following

pair of functors.

38 - f* is the extension of ,f* to vectors and opns(.s)B(x) is the vector such that for all igl,,

opns(s)B(x)i= opns(s)“(x).

Algebraic upproach to single-pushout graph transformation 221

Definition and Proposition B.5 (Completionfunctor). If Sig = (S, OP) is a hierarchical

graph structure and Sink(Sig) its sink completion, the completion functor
T: Alg’(Sig)+Alg(Sink(Sig)) can be defined as follows:

(1) On objects. T(A)=Free(A), where Free(A) is the free Sink(Sig)-algebra over

A39 Since Free: Alg(Sig)-Alg(Sink(Sig)) is consistent, T can be chosen such that for

all SES, A,ET(A),.

(2) On morphisms, T(f: A+B)=fT: T(A)+T(B) is given for all SES by

if x~.4~,

IT’“‘(,TT(opns(s)T’A’(x))) otherwise.

Proof. Noetherian induction on the sort relation 5 shows thatfT is a family of total

mappings; compare proof of Proposition B.3. ForfT to be homomorphic, it is to be

shown that

(1) ,fT(opT’“‘(x))=opT@‘(,fT(x)) for all opeOP and

(2) _fT(_LT’“‘(.?))= IT”‘(~(5J)) for all i-operators.

In the first case, two subcases can be distinguished, i.e. either XGA~ or x$As. If the

former is true,jT is homomorphic since fis. If the latter is true, the definition offT

provides: ~p”~‘(fT(.u)) = opTtB’(_Lf’B’(jT(opns(s)T’“‘(x)))). Since op = opns(s)j for

some FEZ,, the equations in Junk(Sig) make sure that

opT’B)(I~‘B’(,~T(opns(s)T’A’ (x))))= opns(s)j”“(I~‘B’(Q’(opns(s)T’“‘(x))))

=fT(opns(s)T’A’(x))=fT(opT’A’(x)).

In the second case, we have by construction of T(A) that IT’A’(?)#A. Therefore, we

obtain by definition off’ :fT(_LTCA’(?)) = I~‘B’(~(opns(s)T’“‘(IT’A’(~)))). The equa-

tions of Junk(Sig) guarantee, for all jEZ,, that: opns(S)jT’A’(_LT’A’(Z))=?j. Hence, it

can be concluded: _LJ’B’(~T(opns(s)T’“‘(IT’A’(Z))))= I,‘@‘(fT(?)), which completes

the proof that ,fT:T(A)-+T(B) is a total homomorphism. By definition, the functor

T preserves identities and respects morphism composition. 0

Definition and Proposition B.6 (Restrictionfunctor). If Sig =(S, OP) is a hierarchical

graph structure and Sink(Sig) its sink completion, the restriction jiinctor

P: Alg(Sink(Sig))-+AlgP(Sig) can be defined as follows:

(1) On objects, P(A),={y~A,1~#19(2)} for SES and for OPEOP, ~p~(~‘=opf~(~).
(2) On morphisms, P(J‘: A+B)=fP: P(A)+P(B) is given by

f’(x) = .f@)

i

if f(x) E P(B),

undefined otherwise.

Proof. The conditional equations of Sink(Sig) guarantee that P(A) is a Sig-algebra

for each A~Alg(Sink(Sig)) as the following argument demonstrates: The assumption

39 Free constructions for specifications with conditional equations always exist; cf. [32,6]. The construc-

tions of [6] can be easily extended to handle operators with infinitely many arguments.

222 M.Ldwe

xeP(A), and for some operation op: s’s’, o~~‘~‘(x)$P(A)~, implies opA(x)= Ii(j).

But A satisfies the equations in Sink(Sig). Hence, x= l:(Z) and, therefore, x$P(A),

which is a contradiction to the assumption. By definition, f’ is a family of partial

mappings. The same argument as above provides that x~P(A)fp implies

~p~(~‘(x)~P(Ahp for all op: s -+s’. Thus, P(A)fp is a subalgebra of P(A). f‘P is

homomorphic on its scope sincef is.

The definition of P immediately provides that identities and compositions of

morphisms are preserved. 0

Theorem B.7 (Completion). The categories AlgP(Sig) and Alg(Sink(Sig)) are equim-
lent for hierarchical graph structures Sig.

Proof. The definition of the completion functor T and of the restriction functor

P immediately provides P 0 T = id.

For the equivalence, it remains to be shown that T 0 Paid. The construction of

P(A) for a Sink(Sig)-algebra A provides a total inclusion homomorphism

i: P(A)+[A], where [] : Alg(Sink(Sig))-Alg(Sig) is the forgetful functor induced by

the specification inclusion of Sig in Sink(Sig). The completion functor T is the free

Sink(Sig)-construction on objects. Hence, we obtain a unique extension of i, i.e. a total

homomorphism i*: Free(P(A))+A such that the Diagram 23 commutes. Note that

uPcA’ has been chosen to be the inclusion; cf. Definition B.5. By induction on the sort

order 5, it can be shown that i* is an isomorphism. For a minimal sort s w.r.t. 5, I,

is a constant. Hence, A,= Pi &J {I%} and i: is surjective and injective.

Now consider a sort s and assume that i,” is bijective for ~‘5s. By Definition B.6,

A,= P(A),& (Ii(Z) (for all vectors .? with XiEA,, for iel,}.

Thus, A, is generated by P(.4)s and i: is surjective. For the proof that if is injective,

suppose that i:(x)=i:(y) for some x,y~Free(P(A)),. If if(x)EP(A),, we obtain

x, JIEP(A), and x=y since Diagram 23 commutes. If i:(x)#P(A),, we obtain
x= ~FrWW”($ Y= ~FrMW”($), and

I,A(T*(~))=is*(lFree(P(A)) (iJ))=if(x)=i~(y)=i,*(J_F’“‘(P(A”(G))=I~(l*(it)).

Since A satisfies the equations of Sink(Sig), it follows that, for all kgl,,

i*(Uk)=opns(s):(IP(t*(~)))=opns(s):(I,A(i*(~)))=i*(w,).

By induction hypothesis, i: is injective for all sorts s’ 5 s. Hence, for all kgl,, i$ = GJ~
and, therefore, x= lFree(P(A)J(ij)= ~Free(P(A))($)=y.

IFreelP(AIIl FreelPIAll

Diagram 23. Extension of restriction inclusion.

Algehruic approal,h to single-pushout graph transformation

FreelPW Top’f’ - FreelPlBII

I

1

= 4

A
f _I

B

Diagram 24. Natural transformation for completion

223

With this result on objects, it is obvious that Diagram 24 commutes for each total

homomorphism f: 0

Many graph structures which provide an algebraic model for some relational or

graphical structures are hierarchical (compare examples in Section 3). For these graph

structures, the whole theory presented in this article could have been described as

a theory of sink-completed algebras due to Theorem B.7 (cf. [S]).

References

111
M

131

M

IIs1

C61

171

PI

c91

Cl01

1111

[I21

1131

M. Arbib and E.G. Manes, Arrows, Strucrures, and Funrtors (Academic Press, New York, 1975).

R. Arlt and M. Roeder. Grundlegende Datenstrukturen und Algorithmen zur Implementierung von

algebraischen Graph Grammatiken, Studienarbeit, Fachbereich 20, Technische Universitlt Berlin,

1989.

P. Boehm, H. Ehrig, U. Hummert and M. Liiwe, Towards distributed graph grammars, in: H. Ehrig,

M. Nagl, G. Rozenberg and A. Rosenfeld, eds., Graph Grammars and Their Application to Computer

Science, Lecture Notes in Computer Science, Vol. 291 (Springer, Berlin, 1987) 86-98.

P. Boehm, H.-R. Fonio and A. Habel. Amalgamation of graph transformations: a synchronization

mechanism, J. Cnmput. System SC;. 34 (1987) 377-408.

P.M. van den Broek, Algebraic graph rewriting using a single pushout, in: Proc. Internat. Joint Conf.

on Theory and Practice of Software Drvelopment (TAP-SOFT ‘91); Lecture Notes in Computer

Science, Vol. 493 (Springer, Berlin, 1991) 9@102.
I. ClaBen, Algebraische Grundlagen der Termersetzung mit bedingten Gleichungen, Tech. Report

88-04, Technische Universitat Berlin, 1988.

P. Degano and U. Montanari, A model of distributed systems based on graph rewriting, J. ACM 34

(2) (1987) 411449.

H. Ehrig, Introduction to the algebraic theory of graph grammars (a survey), in: Proc. 1st Graph

Grummar Workshop, Lecture Notes in Computer Science, Vol. 73 (Springer, Berlin, 1979).
H. Ehrig, Tutorial introduction to the algebraic approach of graph grammars, in: Graph Grammars

and Their Application to Computer Science, Lecture Notes in Computer Science, Vol. 291 (Springer,

Berlin, 1987) 3-14.

H. Ehrig, P. Boehm, U. Hummert and M. Liiwe, Distributed parallelism of graph transformation, in:
Proc. 13th Internat. Workship on Graph-theoretic Concepts in Computer Science. Lecture Notes in

Computer Science, Vol. 314 (Springer, Berlin, 1988) l-19.
H. Ehrig, A. Habel, H.-J. Kreowski and F. Parisi-Presicce, From graph grammars to high-level

replacement systems, in: Proc. 4th Workshop on Graph Grammars und Their Application to Computer

Science, Lecture Notes in Computer Science, Vol. 532 (Springer, Berlin, 1990) 269-291.

H. Ehrig, M. Korff and M. Liiwe, Tutorial introduction to the algebraic approach ofgraph grammars
based on double and single pushouts, in: Proc. 4th Internal. Workshop on Graph Grammars and Their

Application to Computer Science. Lecture Notes in Computer Science, Vol. 532 (Springer, Berlin,
1991) 24-37.

H. Ehrig and H.-J. Kreowski, Pushout-properties: an analysis of gluing constructions for graphs,

Math. Nachr. 91 (1979) 1355149.

[14] H. Ehrig and M. Lowe, Parallel and distributed derivations in the single pushout approach. Tech.

Report 91,‘01, Department of Computer Science, Technical University of Berlin, 1991.

[IS] H. Ehrig and B. Mahr, Fundamentals of AIgehraic Specijications 1, Monographs in Computer Science

(Springer, Berlin, 1985).

1163 H. Ehrig, M. Pfender and H.J. Schneider. Graph grammars: an algebraic approach, in: Proc. 14th Ann.

IEEE Symp. on SnYtching and Automuta Theory (1973) 1677180.

1171 J. Glauert, R. Kennaway and R. Sleep, A categorical construction for generalised graph rewriting.

Tech. Report, School of Information Systems, University of East Anglia, Norwich NR4 7TJ, UK,

1989.

[18] A. Habel, Hyperedge replacement: grammars and languages, Ph.D. Thesis, University of Bremen, 1989.

[19] A. Habel and H.-J. Kreowski, May we introduce to you: hyperedge replacement, in: Proc. 3rd

Internat. Workshop on Graph Grammars and Their Application to Computer Science, Lecture Notes in

Computer Science, Vol. 291 (Springer, Berlin, 1987) 15-26.

[ZO] A. Habel, H.-J. Kreowski and D. Plump, Jungle evaluation, in: Proc. 5th Workshop on Specification of

Abstract Data rvprs, Lecture Notes in Computer Science, Vol. 332 (Springer, Berlin, 1988) 922112.

[21] H. Herrlich and G. Strecker. Category Theory (Allyn and Bacon, Rockleigh, NJ, 1973).

[22] B. Hoffmann and D. Plump, Jungle evaluation for efficient term rewriting, in: J. Grabowski, P.
Lescanne and W. Wechler, eds., Proc. 1st Internat. Workshop on Algebraic and Logic Programming

(Akademie-Verlag, Berlin, 1988) 191l203.

1231 R. Kennaway, On “on graph rewriting”, Theoret. Comput. Sci. 52 (1987) 37758.

1241 R. Kennaway, Graph rewriting in some categories of partial maps, Tech. Report, University of East

Anglia, 1990; also in: Proc. 4th Workshop on Graph Grammars and Their Application to Computer

Science, Lecture Notes in Computer Science, Vol. 532 (Springer, Berlin, 1991) 490-504.

[25] H.-J. Kreowksi, Is parallelism already concurrency? part 1: derivations in graph grammars, in: Proc.

3rd Internat. Workshop on Gruph Grammars and Their Applicution to Computer Science, Lecture

Notes in Computer Science, Vol. 291 (Springer, Berlin, 1987) 343-360.

1261 H.-J. Kreowski and G. Rozenberg. On structured graph grammars: Parts I and II, Tech. Report 3/88,

Universitat Bremen, 1988.

1271 H.-J. Kreowski and A. Wilharm, Is parallelism already concurrency? part 2: non-sequential processes

in graph grammars, in: Proc. 3rd Internat. Workshop on Graph Grammars and Their Application to

Computer Science, Lecture Notes in Computer Science, Vol. 291 (Springer, Berlin, 1987) 361-377.

[28] M. Lowe, Algebraic approach to graph transformation based on single pushout derivations with

partial morphisms, Tech. Report 9015, Department of Computer Science, Technical University of

Berlin, 1990.

[29] M. Lowe, Implementing algebraic specifications by graph transformations, J. rnjbrm. Process.

Cybernet. (EIK) 26 (11,112) (1990) 615-641; also Tech. Report TU Berlin 89/26, Technical University

of Berlin, Berlin, 1989.

[30] M. Lowe and H. Ehrig, Algebraic approach to graph transformation based on single pushout

transformations, in: R.H. Mohring, ed., in: Proc. 16th Internat. Workshop on Graph-theoretic Concepts

in Computer Science, Lecture Note in Computer Science, Vol. 484 (Springer, Berlin, 1991) 338-353.

1311 M. Lowe and R. Wilhelm, Risiken polizeilicher Datenverarbeitung, in: R. Kitzing, U. Linder and

F. Obermaier. eds., Schiine neue Computerweh (Verlag fur Ausbildung und Studium (VAS) in der

Elefantenpress, Berlin, 1988) 216-252.

1321 B. Mahr and J.A. Makowski, Characterizing specification languages which admit initial semantics,

Tech. Report 232, Technion Haifa, 1982; also in Theoret. Comput. Sci. 31 (1984) 49-59.

1331 P. Padawitz, Graph grammars and operational semantics, Theoret. Comput. Sci. 19 (1982) 37-58.

1341 F. Parisi-Presicce, Modular system design applying graph grammar techniques. in: ICALP’89,

Lecture Notes in Computer Science, Vol. 372 (Springer, Berlin, 1989) 621-636.
1351 D. Plump, Im Dschungel: Ein neuer Graph-Grammatik-Ansatz zur effizienten Auswertung rekursiv

definierter Funktionen, Diplomarbeit, University of Bremen, 1986.
[36] J.C. Raoult, On graph rewriting, Theoret. Comput. Sci. 32 (1984) l-24.

[37] E. Robinson and G. Rosolino, Categories of partial maps, Inform. and Comput. 79 (1988) 95-130.

[38] H.J. Schneider, Describing distributed systems by categorial graph grammars, in: Proc. ISth Internat.

Workshop on Gruplz-theoretic Concepts in Computer Science, Lecture Notes in Computer Science,

Vol. 411 (Springer, Berlin, 1990) 121-135.

