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Abstract
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Science 109 (1993) 181-224.

The single-pushout approach to graph transformation interprets a double-pushout transformation
rule of the classical algebraic approach which consists of two otal graph morphisms as a single
partial morphism from the left- to the right-hand side. The notion of a double-pushout diagram for
the transformation process can then be substituted by a single-pushout diagram in an appropriate
category of partial morphisms.

It can be shown that this kind of transformation generalizes the double-pushout framework.
Hence. the classical approach can be seen as a special (and very important) case of the new concept.
It can be reobtained from the single-pushout approach by imposing an application condition on the
redices which formulates the gluing conditions in the new setting. On the other hand, single-
pushout transformations are always possible even if the gluing conditions for the redex are violated.

The simpler structure of a direct transformation (one pushout diagram instead of two) simplifies
many proofs. Hence, the whole theory for double-pushout transformations including sequential
composition, parallel composition, and amalgamation can be reformulated and generalized in the
new framework.

Some constructions provide new effects and properties which are discussed in detail.

1. Introduction

Graph grammars provide an intuitive description for the manipulation of complex
graph-like structures as they occur in databases, operating systems, and complex
applicative software. Besides that all approaches to graph transformation systems
offer theoretical results which help in the analysis of such systems.

Especially the algebraic approach [8, 9, 12] has been worked out for several years
now and provides results for parallelism analysis [25, 27], efficient evaluation of
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functional expressions [ 33, 227, synchronization mechanisms [4], distributed systems

[3, 10, 38], lmnlempnmtmn of abstract data t types 01 and context-free hvnPrPdae

replacement [18, 19].

A graph transformation rule (L, K, R) conceptually consists of three graphs L, K,
and R. L is the left-hand side of the rule. It formulates the precondition under which
the rule is applicable. K, in most cases a subgraph of L and R, describes the part of the
left-hand side which is going to be preserved by rule application. Thus, L — K is the
part which a rule application is going to delete and R — K is added. Here, the inter-
mediate graph K gets a second role: It describes the context into which added
components are going to be integrated. (K is called “gluing graph™.)

A rule is applicable to a graph G if G contains a homomorphic image of L. The

application of a rule (L, K, R) deletes all items in G which correspond to objects in
L— K in the first step. It results in the so-called context graph D. Second, it adds all
items in R— K to D. The connection between “new” items in R — K and “old” objects
in D is described by the relation of the “new” items in R— K to objects in K. Thus,
application of a rule r=(L, K, R) to a graph G consists of four steps:

(1) Try to find L in G. If there are some images of L in G choose one and continue.
Otherwise, r is not applicable to G. [In some approaches, the matching phase inciudes
the check of additional application conditions (see below).]

(N R th t ~F (7 hinh A
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(3) Add R—K to the result of the last step.

(4) Embed R—K into G—(L—K) as it is given by the corresponding relation
between R—K and K.
This series of four steps seems to be common to all approaches to graph transforma-
tion; cf. [26].! The algebraic approach to graph transformation (cf. Appendix A for
basic notions) summarizes these four steps in a single categorical construction of
a double-pushout diagram which facilitates many proofs that would be very hard to
obtain on the more concrete, operational level: A rule is a pair (/: K—L, r: K- R) of
total graph morphisms and a direct transformation with the rule ({: K—L, r: K—R)
from a graph G to a graph H is possible if there is a context graph D together with
a gluing morphism k: K— D such that G is the pushout of / and k and the graph H is
the pushout of  and k (for more details compare Appendix A). With these definitions,
all operational effects of a direct transformation are encapsulated in a single categori-
cal colimit construction and, therefore, all universal properties known for this con-
struction within category theory are inherited [1, 21]. Thus, many proofs do not
bother about operational details but only rely on abstract arguments about colimits.

Smce all results about algebraic graph transformation require the rules’ left-hand
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" However, there are individual differences in each phase and the formulation of the embedding area by
a subgraph K of L and R is an idealization.

2 With noninjective left-hand sides, the context graph in a transformation from G to H need not be
unique.
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(I: K- L, r:K—R) of toral morphisms is seen as a partial morphism (+': L > R) which
nly and co c
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a incides with r on its domain. Now the concept of direct
transformation reduces to a single-pushout construction: G transforms to H using the
rule (' : L— R) if there is a roral matching morphism (or redex) m: L— G such that H is
the pushout of # and m (here in the category of graphs and partial morphisms). It is
this single-pushout concept which is comprehensively elaborated below. It turns out
to be more general than the double-pushout framework and that all corresponding
proofs are less complex due to the simpler underlying notion of direct transformation.

Single-pushout transformations in a setting of some sort of partial morphisms have
been investigated in [36, 23].

Raoult [36] introduces two concep
described in the category of sets and partial mappings. A rule is a partlal morphism

r:L—R, ie. a partial map which respects the graph structure® on all objects of L it is
defined for.* A redex m: L—G in some graph G is a total morphism of this type. The
result of applying r at m is constructed by two steps. First, the pushout (H, r,,: G- H,
m,: R—H) of r and m in the category of sets and partial maps is built. In the second
step, a graph structure is established on H such that the pushout mappings r,, and m,
become morphisms. He characterizes the situations in which this graph structure
uniquely exists; double-pushout transformations with their application conditions (cf.
Appendix A) are special cases of thesc situations.

The second model of graph transformation in [36] uses another kind of partiality
for the morphisms: a rule is a total map r: L— R, which is only partially compatible
with the graph structure. Let rewrite(r) denote the set of objects which are not
homomorphically mapped by r. A redex m:L—G is total which means now re-
write(m)=0. Application of r at m is again defined by two steps. First construct the
pushout (H,r,:G—H, m,:R—-H) of r and m in the category of sets and total
mappings and second impose a graph structure on H such that the pushout mappings
become as compatible as possible, i.e. such that rewrite(r,)=m(rewrite(r)) and
rewrite(m,)=r(rewrite(m)). Raoult [36] gives sufficient conditions for the Uﬁiquc
existence of this structure. This approach has the major disadvantage that objects
cannot be deleted at all (compare the intuitive graph transformation model
above).

Kennaway [23] provides a categorical description for the second approach of [36].
Graphs are represented the same way. Morphisms /. A— B are pairs ( f, hom). The first
component is a total mapping from A to B. The second component provides a subset
of A on which f respects the graph structure. A rule r: L—R is any morphism in this
sense and a redex m: L— G is a total morphism which now means hom,,= L. He shows

LIldl UIIUCI cer Ldlll LUIlUlLlOIlb l[lC two- ble constr ULUUU Ul L)OJ LUIIILIUCD WILI] UlC
pushout construction in the category of graphs and the so-defined morphisms.

3The graph structure is imposed on a set by a successor relation, and a labeling function.

hosed

*We disregard the variable concept for this general discussion.
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Unfortunately, only sufficient conditions for the existence of pushouts are given.
Besides that, object deletion remains impossible.

The concept in [23] has been further developed in [17]. They introduce “general-
ized graph rewriting” which uses the same kind of graph morphism. The correspond-
ing transformation concept not only involves a pushout construction but also a co-
equalizer. Since both construction are carried out in different categories (of total resp.
partial morphisms), theoretical results are difficult to obtain.

The idea which is elaborated below is to resume the first approach in [36]. His
concept of partial mappings which are compatibie with the graph structure on their
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possible. Hence, we get rid of any application conditions. If, however, the necessary
and sufficient conditions of [36] are satisfied, the construction of pushout objects
coincides with his two-step construction.®

Recently, Kennaway [24] independently started to study graph transformation in
some categories of partial morphisms of this type. His work is based on the categorical
formulation of a partial morphism provided by [37]. While we consider concrete
algebraic categories, [ 24] stays in a purely categorical framework. Future research has
to show how both approaches can benefit from each other.

Vanrn den RBrasl T8l intradnces anaothar bind of cingla_miigh e
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based on “partial” morphisms. Partiality in this framework is described by total
morphisms which map objects “outside their domain” to marked objects in their
codomain.® Single pushout transformations with this type of morphisms corresponds
to transformations in junk- or sink-completed structures described in Appendix B.
The article is organized as follows.” Section 2 provides the algebraic foundations for
colimit constructions with partial morphisms. Especially we characterize the class of
algebraic structures which has all finite colimits, so-called graph structures. Section
3 models graphs, hypergraphs, and other similar structures as graph structures and

PO P 3 $aemim o Fimtetnn 2 7 s i e £in i ace anto
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shown that the single-pushout approach generalizes the double-pushout framework.
A running example demonstrates the expressive power of the new concept. Sections
4,5, and 6 are devoted to sequential composition, parallel composition, and amalga-
mation of single-pushout rules and transformations, respectively. They provide
a comprehensive theory of rule composition. All properties that differ from the
double-pushout case are discussed. The conclusion (Section 7) addresses some issues

of further research.

% Actually, the whole theory presented in the following has been very much motivated and stimulated by
the pushout constructions in the category of sets and partial mappings the author learned about by [36]. In
this paper. these constructions are generalized to the level of algebras and partial homomorphisms.

®Marked objects indicate deleted or garbage items.

“The results presented in the following have been presented in [28] for the first time. The basic ideas of
the single-pushout approach used here have been published in [30].
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2. Partial morphisms and graph structures

This section provides a general introduction to colimit constructions in algebraic
categories with partial homomorphisms.® The first central result provides necessary
conditions for those categories to be closed w.r.t. colimits, namely that the signature
contains unary operator symbols only. Signatures of this kind are called graph
structures. The second main result shows that categories of graph structures and
partial homomorphisms have all finite colimits. Both results characterize the struc-
tures which can be transformed by single-pushout constructions.® Some examples,
how graphs labeled graphs, hypergraphs, and more complex graph like structures

r)?‘\]'\ structures. are
ur e

S-
CI‘
e
14
¢}
3
W
13

oiven at the be
gven a be

Definition 2.1 (Partial homomorphism). If Sig is signature and A4, B are Sig-algebras,
a partial Sig-homomorphism h: A— B is a total homomorphism from some subalgebra
A, of A to B. A4 is the domain, B the codomain, and A, the scope of h.

Since the scope A4, of a partial homomorphism h: 4— B is a subalgebra of 4, we get
h(C)< B for each C< A and, for each D& B, hm Y(D)c 4.1°
(ot
wdt
Fphisms form a category Algf(Sig).

2
(.Q
A~
3
=
2
=
S

Proof. The composition f° g of two homomorphisms g: 4 — B and f: B—C is given by
the componentwise composition of the underlying partial mappings. Its scope is
Ar y=y9 '(Bynyg(A,)). It is a subalgebra of A since B, and A, are subalgebras of
B and A, respectively and ¢(4,) and B,ng(A,) are subalgebras of B. That fog is
homomorphic on its scope is implied by the fact that (f=g) 4, ,=/B, g4, , Which are
total Sig—homomorphisms.11 Composition of partial mappings is associative. The

PP e A fav aoah algalaea A AlsPiCim) o vt Aad v tha ~nnraca e A
lUCllLlllCD lU4 ﬂ—’ﬂ vl caull alsctua /1 lll Alg \OIU} arc PlUVlUCU U_y LuIC DUIICDPUIIU'

ing total identity homomorphisms of Alg(Sig).!? They satisfy for all partial
homomorphisms g: A—B and f:B— A, id,of=fand geidy=¢g. 0O

Note that this definition of partial Sig-homomorphisms coincides with the usual
category-theoretic definition in terms of subobjects and pullbacks as it can be found
e.g. in [37].

¥ For basic notions and constructions of universal algebra compare [15].

?Recently, Ehrig et al. [11] have provided some results in this direction for the double-pushout
approach.

'0 < denotes the subalgebra relation, h(C)={h(x)|xeC}, and h™ (D)= {x|h(x)eD}.

''If f: A— B is a partial homomorphism, C a subalgebra of A4, and D a subalgebra of B, fj¢ denotes the
domain restriction of f to C and f!” denotes the codomain restriction of fto D, i.e. the scope of f? is given
by £~ '(D) and the definition of f'? coincides with the definition of f on its scope.

2 Alg(Sig) denotes the category of all Sig-algebras together with all total Sig-homomorphisms.
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Two - Triv
!
Triv

Diagram 1. Pushout situation for Two and Triv.

TrI/'v L—-Empfy
Three

Diagram 2. Pushout situation for Triv, Three, and Empty.

Since we want to use Algf(Sig) as a basis for graph transformation, we are mainly
interested in pushout constructions in AlgP(Sig). Therefore, it has to be investigated
under which conditions Alg®(Sig) has all pushouts.

Proposition 2.3 (Pushout-incompleteness). AlgF(Sig) is not closed w.r.t. pushouts if
Sig contains constants or operator symbols with more than one argument.

Proof. First, suppose Sig=(S, OP) contains a constant ¢:—cs. Consider Diagram 1
in which the Sig-algebras and homomorphisms are defined by:

(1) Triv ==Trivy={*} for all seS and op™(x,...,*)=# for all operators
Op:Si,-..,8,—8,.,€0P;1?

(2) Two = Twoes={*, a}, Two,={x} for s#cs, and op™°(xy, ..., x,) == for all
operators op:Sy,...,5,—5,+,0P;

(3) g: Two— Triv is the unique total homomorphism from Two to Triv; and

(4) f: Two— Triv is undefined for a and f{*)== otherwise.

If there was an algebra X and partial homomorphisms f;: Triv—X and g,: TrivoX
such that g, f=f, > g, firstly X s#0 because it must contain ¢* and secondly f,(*)=
LTy =c¥=g,(c"™)=g,(x) due to f, and g, being homomomorphic. This implies
fyegla)=c*. On the other hand, g,/ is undefined for a since f is. The arguments
above lead to a contradiction to the assumption that there is a completion of Diagram
| making it commute. Hence, there is no X, f,:Triv—X, and g,: Triv—>X with
dr°f=f,°g which implics that there is no pushout object for fand g.

Second, suppose Sig=(S, OP) contains no constants and at least one operator
symbol f:fs,,...,fs,—fs,,; with n>2. We construct a situation, depicted in
Diagram 2, which cannot have a pushout completion. The participating algebras and
homomorphisms are defined by:

(1) Trivis again the terminal algebra having Triv,={} for all s€S;

'3 Triv is the terminal object in Alg(Sig).
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(2) since there are no constants, the empty algebra Empty is in AlgP(Sig): Empty,=0

all seS and opE™Py =0 for all opeQP;'4

(3) Three is constructed as follows: for all se€S, Three,={*, a, b} and for all oper-
s (Op:S;,...,S,—Sn+1)€0P, we define

a if for all i=1,...,nx;=a,
op”"”"(»cl,...,x,,)zl b if for ail i=1,...,n x;=b,
*x otherwise;

(4) i: Triv— Three is the inclusion of Triv in Three;

(5) O: Triv—Empty denotes the empty, everywhere undefined homomorphism.

The absence of constants guarantees that Three is well-defined.! If all carriers of
Three are restricted to {a} or to {b}, we obtain two subalgebras Triv-one and Triv-two
and two partial homomorphisms f, : Three— Triv-one and f,: Three— Triv-two such

that the scopes are given by Three, = Triv-one and Three 2 = Triv-two, respectively,

Obvicusly ere are the t

and £ are tha identitiee an thair connag miana nartial
aAlivg /l auu /2 <1 LHIL JUNVIELILIVD ULL LI DUU}IUD. JUYVIVU D )’ l\al alv lll\/ uuu.iu Pal Lial
homomorphisms @: Empty— Triv-one and §: Empty— Trw two such that (1) and (2) in

Diagram 3 commute.

Now assume the existence of pushouts and let (X, ig: Empty— X, 0;: Three— X)) be
the pushout of @ and i. Note that i ={ since it is the only partial homomorphism from
Empry into some other algebra. Since (1) and (2) in Diagram 3 commute, there must be
uy: X - Triv-one and u,:X — Triv-two such that (i) u,=0;=f; and (ii) u,°0;=f;.
(1) requires that the clement a in each carrier of Three is contained in Threeg,
and (ii) requires that the element b in each carrier of Three is an element of Three,.

Qimenn tha chrnimna ~AF A 3o Thusos ot ban o gnnlalealos A Thans fAf TYAR v itine
DHILC LT DLU}J Ul vy, LO. 2 nr C(Oi, HIusStL ve a DUUQIECU a O1 irnree (L«l Uclllllllull L 1)’
fTee(a, b, a, ..., a)=x=€ Threey . This results in 0; °i(x) to be defined on the carriers for

sort fs,,, wh1]e ipe@=0>0=0 is undefined everywhere. Hence, iy ¢ %0, i which is
a contradiction to the assumption that (X, ip: Empty— X, 0;: Three— X ) is the pushout
object. Due to the fact that the contradiction occurs for each choice of possible
pushout objects, there cannot be any. [J

The negative result of Proposition 2.3 motivates the following definition. We
distinguish signatures Wthh contain monadic operator symbols only. The theory
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¢ Note that due to the absence of constants. Empty is a subalgebra of each algebra in Alg®(Sig).
3 Note that op™™*“(x,..... x,) provides # if some arguments are a and some arguments are b.
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All terms w.r.t. a graph structure have a very special form:

(1) there are no ground terms due to the absence of constants;

(2) each term contains exactly one variable due to the absence of operators with
more than one argument.
Thus, all terms represent derived unary operators. They can be sorted w.r.t. their value

nnnnn A tha ort t ~fthn imiaiia yariahls S thame Llaman won weita TOIO s tbn fallaing
DUIL aliu lllC SOTt O1 Ui uuu.luc variaoic lll Lcin. mence WC WTite g g 1UL g lUllUWllls

set of terms {t|teTgao({x}), xeX,}. If teT59%, xeX; is the variable in ¢, 4 is
a Sig-algebra, and ac A, we write rA(a) for the evaluation of r in A using the variable

o

assignment xra.

Lemma 2.5 (Subalgebras). If Sig=(S, OP)is a graph structure and A is a Sig-algebra,
then the set of subalgebras of A is closed w.r.t. intersection and union.

Proof. Closure w.r.t. intersection is a general property for all signatures; cf. [15].
If € is a set of subalgebras of A, | J% is also a subalgebra of A if we define
\%s=ces C; for all s€S and op“* =| ] ccq 0p° for all opeOP. Since all operators
are unary, op““: ( J&,~| )%, is defined for all xe| J%,. It is well-defined because all
Ce% are subalgebras of A. Hence, | j$=4. O

With Lemma 2.5, we immediately obtain the following result for arbitrary graph
structures Sig=(S, OP): If 4 is a Sig-algebra and B=(B),.s 1s a family of subsets of

A,le. (B,S A )es, then there is a greatest subalgebra of A whose carriers are contained
in B, namely | ) {C < A|C,< B, for all seS}. This implication of Lemma 2.5 is crucial
for the following construction of pushouts in Algf(Sig).

Construction 2.6 (Pushouts in graph structures). If Sig=(S, OP) is a graph structure
and f*A—>R and g- 4 -C 10 a nair of (nartial) Sig-homomorphisms. the nushout
and and ¢: A a pair of (partial) Sig-homomorphisms, the pushout
(D, f,:C-D, g;:B-D)of fand g in Alg’(Sig) can be constructed in four steps. (The

pushout situation is depicted in Diagram 4.)
(1) Construction of the gluing object fV g which is a subobject of A: fV g is the
largest subalgebra of A which satisfies
(@) fVgeA;nA4, and
(b) for all xefV g and ye A, f(x)=f(y) or g(x)=g(y) implies yefV g.

r
i
—

g

CZ‘J-'-‘:—Q)

A
|
1
c

£

Diagram 4. Pushout situation.
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A B
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\ f| /,l
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fvg ‘—L—Bgf = I’g
g glfvgj Pushout  |X ,/I f

C ——— ’

i 7 Y
c---"

Diagram 5. Pushout construction for partial homomorphisms.

(2) Construction of the scopes of f, and ¢,:
(a) The scope of f,, ie. Cfg, is the largest subalgebra of C whose carriers are
contained in (C—g(A)ug(fV g).
(b) Similarly, B, is the largest subalgebra of B whose carriers are contained in
(B—f(ANUS(fVg).'°
(3) Gluing construction of D: D=(Bgf+C,g),~, where x ~ y if there is an item
zef V g such that x=/(z) and y=g(z).}7
(4) Construction of the pushout homomorphisms: f,: C—D has the scope C,_and is
defined for all xeC,_ by fy(x)=[x].. Similarly, g,: B—~D is defined on its scope B, .

Note that Construction 2.6 includes a pushout construction for total homomor-
phisms. The first two steps construct subalgebras of 4, B, and C, ie. f Vg, B, , and
Cy,., respectively, such that the domain restrictions of fand g w.r.t. fV g are total
homomorphisms fi; ., :(f V g)— B, and gy 7,:(f V g)—C,,, respectively. The object
D, constructed in the third step, coincides with the pushout object of fy+ ,and g,y v 4 in
the category of Sig-algebras and total homorphisms. Also f; and g, coincide with the
corresponding total pushout homomorphisms if they are restricted to their scopes.
The whole situation is drawn in Diagram 5.

Theorem 2.7 (Pushouts of graph structures). If f:A—B and g: A—C is a pair of
morphisms in a category of graph structures AlgF(Sig), the object D together with the
morphisms f,;: C—»D and g,:B—D as they are constructed in Construction 2.6 is the
pushout of f and g in Alg®(Sig).

Proof. Due to Lemma 2.5, D, f,, and g, are uniquely defined. Thus, the two pushout
properties have to be shown, i.e. (1) f,°g=g,/ and (2) for each pair of morphisms

'®The construction provides that g~ (C, )=fV g=f""(B,)).

'"Here, + denotes the coproduct operator for arbitrary graph structures: if Sig=(S, OP) is a graph
structure and A and B are Sig-algebras, (4+ B),=A,& B, for all s€S and for all op:s—s'€0OP,
op?*8(x)=o0p*(x) if xe A5 and op?*#(x)=o0p®(x) if xeBs. The operator /~ constructs the quotient of its
argument w.r.t. the least congruence which contains the family of relations ~ =(~)ses-
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f":C—E and g': B>E in Alg®(Sig) such that f' o g =g <f, there is a unique morphism
u:D—E withyeg,=g" and uef,=f"

Due to Construction 2.6, the scope of f,> g is f V g which is also the scope of g, f,
and by the identification of f(z) and g(z) for each zef V g in the third and fourth step
of the construction, f,°g=g,°f Hence, (1) holds.

In order to prove (2), suppose that there exist f':C—E and ¢ : B—E satisfying
f'eg=g<f Then B, must be a subalgebra of B whose carriers are contained in
(B—f(A))uf(fVg)and C, must be a subalgebra of C whose carriers are contained
in (C—g(A))ug(fVg). Since B, and C,_are the largest of those algebras, B, € B,,
and C; < C; . With the third and fourth step of the construction, f,(x)=/,(y) implies
that there is a sequence z,,...,z,ef Vg with n=2m+1 for some meN such that
g(z1)=x, g(z,)=y, f(z2i-1)=f(z2:), and g(z3;)=g(z2;4,) for i=1,...,m. Thus, if
xeCy, g(zj)eCy. for i=1,...,n since f'og=g'°f Hence, yeC,. and f'(x)=f"(y).
Similarly, g,(x)=g,(y) and xeB, implies yeB, and g'(x}=g¢'(y).

With these preliminaries, define u: D—E by

g'(y) if x=g,(y) and yeB, ,
M(X)={f’(y) if x=f,(y) and yeC,.,
undefined otherwise.

The morphism u is well-defined since x=g¢,(y,), x=g,(y,) and y, € B, implies y,€B,,
and ¢'(y;)=¢'(y,) by the remarks above. Similarly, x=f,(y,), x=f,(y,), and y,eC,.
implies y,€C,- and f'(y;)=f"(y,). Furthermore, x=g,(y), yeéB,, x=f,(z), and zeC,.
implies that there exists aef Vg such that f(a)=y and f,°g(a)=x. Hence, by
g ef=f"°g. g(y)=f"(2). Since B, is closed w.r.t. the equivalence induced by ¢, on
B and, vice versa, C; - is closed w.r.t. the equivalence induced by f, on C,u° g,=¢" and
uef,=f" by definition of u. Uniqueness of u follows from the observation that each
morphism v: D—E with veg,=g" and vef,=f" requires the same definition on objects
asu. [

Construction 2.6 has some properties which are used intensively in the following
sections.

Corollary 2.8 (Pushout properties). If(D, g;: B—D, f,: C—D) is the pushout object of
f:A—-B and g: A—C in some category AlgF(Sig) of graph structures,

(1) f, and g, are jointly surjective.'®

(2) ker(f;)=g(ker(f)) and ker(g,)=f (ker(g))."

(3) f;{gy) is injective if f (g) is injective.*®

18 A partial homomorphism f: A— B is surjective if f(4)= B. Two homomorphisms f: A—B and g: C—B
are jointly surjective if f(A)ug(C)=B.

For a partial homomorphism f:A—B, the kernel of f is a subset of its scope defined by
ker(f)={xeA,|there exists ye A, such that x#y and f(y)=f(x)}.

20 A partial homomorphism f: A-» B is injective if f(x)=f(y) implies x =y for all x, yeA,.
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(4) f, and g, are total if g and f are total. (Thus, each pushout in the category of total
homomorphisms is also a pushout in the category of partial homomorphisms.)

(5) g, is total if and only if (1) A;= A, and (2) g(x)=g(y) implies either x, ye A, or
X, y¢A,.

Proof. (1) and (2) are direct consequences of Construction 2.6. (3) is implied by (2). If
fand g are total A,=A=A,=f " g and, therefore, B, =B and C, = C which implies
(4). In (5), A,= A4, and g(x)=¢g{¥) = x, yeA, or x, y¢ A, implies f V g=A,, which
immediately provides B, = B. Conversely, if A, & A,, B, # B and g is partial. Also, if
there exist x, y with g(x)=g(y), xe A, and y¢ A, we obtain f V g# A ,. This implies,
by Construction 2.6, that B, # B. Hence, g, is partial. []

The existence of pushouts in AlgF(Sig) for each graph structure Sig guarantees that
AlgF(Sig) is complete w.r.t. arbitrary finite colimits.

Proposition 2.9 (Initial and final graph structure). If Sig is a graph structure,
Alg®(Sig) has an initial and final object.

Proof. Let Sig=(S, OP) and define Qg by sy ,=9 for all seS and op’$*= for all
opeOP. The so-defined empty Sig-algebra is both initial and final in Alg”(Sig). For
initiality, we need a unique partial homomorphism f:0g,;— A for each 4cAlg®(Sig).
There is exactly one, i.e. f=0. Conversely, there is exactly one partial homomorphism,

—

namely 0: 4—0g;q, for each AeAlg"(Sig). U

Corollary 2.10 (Co-completeness). AlgF(Sig) is finitely co-complete if and only if Sig is
a graph structure.

Proof. Direct consequence of Propositions 2.3 and 2.9, Theorem 2.7, and the fact that
categories which have all pushouts and an initial object are finitely co-complete;
cf. [21]. O

3. Single-pushout transformations

This section introduces the basic notions for single-pushout transformations on
arbitrary graph structures. We first show (in Section 3.1) that all graph-like structures
like graphs, labeled graphs, and hypergraphs and many more complex objects can be
seen as algebras w.r.t. a suitable graph structure. Section 3.2 introduces the funda-
mental notions rule, redex, direct transformation, transformation, and language.
Section 3.3 is dedicated to the comparison of single- and double-pushout transforma-
tions on labeled graphs. It turns out that single-pushout transformations generalize
the classical framework since no application condition is required for redices of
single-pushout rules. The effects which rule application at these unrestricted redices
can produce are investigated by a small database example in Section 3.4.
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3.1. Sample graph structures

Graph structures are special signatures with the property that the associated
category of algebras and partial homomorphisms is finitely co-complete (cf. Section 2).
For single-pushout constructions in these categories to provide a reasonable trans-
formation concept, it is to show that objects like graphs or hypergraphs can be seen as
graph structures. This is done by presenting the suitable signatures.

i . = (=2

t
a set of edges E Each edge is connected to its source and target vertex by a monadic
operation. Hence, the associated graph structure is:
Unlabeled Graphs=
Sorts V., E
Operations
source, target:E—V

Example 3.1 (Unlabeled graphs). Unlabeled graphs consist of a set of vertices I and

Example 3.2 (Edge-labeled graphs). 1If the edges of a graph are labeled by elements of
a label set L, we obtain a natural decomposition of the edge set into sets of edges with
the same label. Hence, the edge set of edge-labeled graphs is an L-indexed family:
Fdnn Labeled (‘rnnhc—

Sorts V, (E))r.
Operations
(source, target: E;— V).,

The family of edges (E, ). and the corresponding family of operators can be infinite
if L is. The theory of Section 2, however, is also applicable to these infinite structures
since all operators are monadic.

Note that the Edge-iLabeied-Graph-homomorphisms are labei-preserving.

Example 3.3 (Labeled graphs). Labeled graphs are constructed from edge-labeled
graphs by sorting the vertices w.r.t. their labels taken from a vertex label set M:
Labeied Graphs=

Sorts (Vy)menrs (Esm, im. sm. imenr. teL

Operations

(source Egm. im. ,—»Vsm>
target: B, i1V Jomotmericr

The structure of the operator symbols must be so complex since the associated
homomorphisms shall preserve the labels of the graph elements. Hence, every edge is
not only distinguished by its own label but also by the labels of its source and target

vertex.

Example 3.4 (Unlabeled hypergraphs). Hypergraphs allow their edges to be connec-
ted to more than one source and more than one target. Therefore, the set of
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hyperedges H = (H,_)u. men ', is @ family of edge sets and each he H, ,, has n sources

and m taroets
ang m targets.

Unlabeled Hypergraphs=
Sorts V., (H, ,.)n men
Operations
(source,, ..., source,, target,, ..., target,: H, .=V men
Note that the Unlabeled-Hypergraph-homomorphisms must respect the type of
the edges, i.e. edges can only be mapped to edges with the same number of source and
target connection.

Labeled hypergraphs can be obtained from hypergraphs in the same way we have
constructed labeled graphs from unlabeled graphs.

If the distinction between source and target connections is dropped, we obtain
undirected hypergraphs. If more than two different connection types are used, multi-
dimensional objects as they are applied, for example, in [38] can be represented.

Example 3.5 (Signatures) Parisi-Presicce [34] applies graph transformation tech-
niques to specify signature manipulations. The aim is to provide a method for rule-
based software design. If signatures, ic. Sig=(S, OP=(0P,, )y cs* sc5), are con-
sidered as a special type of hypergraphs (see below), single-pushout transformations
can also be applied to these structures.

Signature=
/ﬁ A- Y
Soris Sorts, (Operators,j,.n
Operations
(arg., ..., arg,, value: Qperators,— Sorts),

Example 3.6 (Functional expressions). Functional expressions over a signature Sig
are hyperpaths w.r.t Sig. Sets of these hyperpaths can also be modeled as graph
structures. The graph structure Signature above has to be slightly changed: substitute
for each sort symbol a set of instances of the sort and for each operator symbol a set of
instances of the operator. The signature Sig prescribes which sort instances are
allowed as arguments or values for an operator instance. This relation is expressed by
the graph structure Expressions(Sig) below which can be defined for each signature
Sig=(S, OP):
Expressions(Sig=(S, OP))=

Sorts (Sort Instances;)scs. (Operator Instances, Jopeop

Operations

/argument, : Operator Instanceso,— Sort Instances,, \

argument,: Operator Instances,,—Sort Instances,,

value : Operator Instances,,—Sort Instances; /op; S1o....5,—5)0P

21N denotes the set of natural numbers with zero.
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Jungles as they are used in [35, 20, 22] are special expressions. They do not admit
cyclic structures and sort instances which are value of two different operator instances.
Each jungle can be interpreted as a set of finite Sig-terms with variables: The variables
are exactly the sort instances which are not value of any operator instance in the
jungle. If we interpret the value connection of operator instances as the source of
a hyperedge and the argument connections as targets, each sort instance s; in a jungle
represents the term which corresponds to the hyperpath from s; to variables. The term
interpretation of a jungle is the set of these terms. Note that due to different degree of

P Py .

“sharing” for comi

same set of terms.
The same interpretation leads to infinite terms for cyclic expressions. And the

on subterms, different jungles (and expressions) can represent the

situation that a sort instance s; is value of two different operator instances can be
interpreted as an equation: Take all hyperpaths from s; to variables and interpret
them as possibly infinite terms. The set of equations encoded in the expression at s;
consists of all pairs of these terms. The set of equations encoded in an expression is the
union of the equations which are encoded at the sort instances of the expression.
Hence, the interpretation of jungles as sets of terms corresponds to the interpretation
of expressions as sets of equations, 1.e. the jungle interpretation is a special case of the
expression interpretation. With these ideas, each expression w.r.t. a signature Sig is an

eqLatlonal spec cification w.r.t. Sig (r‘f 347,

Example 3.7 demonstrates that graph structures are flexible enough to represent
very complex objects:

ansformation im
tion of algebralc graph transformation currently b ing developed at the Technical
University of Berlin uses so-called ALR-graphs as the fundamental data structure [2].
ALR-graphs not only allow to represent arbitrary labeled graphs but also morphisms
between graphs. Since morphisms map vertices to vertices and edges to edges, they are
represented by pairs of vertex assignments and edge assignments.>? In order to keep
track of which assignment belongs to which morphism, an abstraction operator is
introduced in ALR-graphs which allows to group vertices and edges into graphs and
vertex and edge assignments into morphisms. Thus, ALR-graphs as algebras w.r.t. the

.n-n...L ctriictuire halaw are ahle ta ranrecsant the diaoram level {oranhe and mornhieme)
lal_} 1 Dll u\.tuj\, ULCLIUYY dlIv dULu LV lbl.}l\ao\allt il Ul“slalll AVA A W) § \EIQPIID aliliu AIJUL}JLIIDIIAD}
and the object level (vertices, edges, and assignments) in a single structure.

ALR-Graph=
Sorts V, E, V-Ass, E-Ass, Graph, Morphism
Nnaratinne
Operations

s, t:E-V
s, t:V-Ass—V

22 Note that edge assignments are objects on a third level if we think of vertices being primary objects and
edges being secondary items.
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s, t:E-Ass—E

s, t: Morphism—Graph
abstract: V—Graph
abstract: E— Graph
abstract: V-Ass— Morphism
abstract: E-Ass— Morphism

In the implementation of ALR-graphs, context conditions make sure that the
abstraction relation and the morphisms satisfy the intuitive requirements, for
example:

(1) for all ecE, abstract(e) = abstract(s(e¢)) = abstract(t(e)),

(2) for each ecE-Ass, there exist v, weV-Ass such that abstract(e)=ab-
stract(v) = abstract(w) and s(s(e))=s(v), s(t(e))=t(v), t(s{e)) =s(w), and t(t(e)) =t(w),

(3) and some more; cf. [2].

Although these conditions are equations in most cases, the graph transformation
approach with partial morphisms cannot be adapted to the full subcategory of all
ALR-graphs which satisfy the requirements. This is due to the fact that every
nontrivial generated congruence®® on objects cannot be extended to a free construc-
tion in the context of partial morphisms. Thus, the intuitive consistence requirements
above can only be used as correctness criteria for transformations performed in
Alg®(ALR-Graph).

Application of graph transformation rules in such a system means building of some
pushout squares of appropriate morphisms. This is due to the fact that the data
structure of ALR-graphs allows to represent all features of algebraic graph trans-
formation, i.e. graphs, morphisms, and redices.

On the other hand, ALR-graphs are graph structures themselves. Thus, the imple-
mentation of graph transformation on the basis of ALR-graphs can be seen as a graph
transformation system manipulating graph transformation systems.

3.2. Basic notions

Section 3.1 has presented a variety of graph-like structures as graph structures.
Hence, it is worthwhile to formulate the single-pushout transformation concept for
arbitrary graph structures.

General assumption 3.8. In the following definitions and propositions, it is assumed
that all objects and homomorphisms are taken from a fixed category Alg®(Sig) for
some graph structure Sig.

The mathematical basis for rules, redices, and their interaction within a direct
transformation is provided by the pushout construction for partial homomorphisms
in Construction 2.6.

23 The generated congruence is not trivial, if it differs from 4 (the least reflexive relation) for at least one
object G.
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[ —t—=—R

[ |
m‘ fPushout] ‘m,.

6 —=r(G)

Diagram 6. Direct transformation in the single-pushout approach.

Definition 3.9 (Rules, redices, and direct transformation). A transformation rule
r:L—R is a partial morphism from the left-hand side of the rule L to the right-hand
side R. A redex for r in some object G is a total morphism m: L—G from the left-hand
side of the rule to G. The application of a rule r: L—R to an object G at a redex

PPl

m:L-G nans]m ms G to Fpll) which 1s the pUSHOLl[ OD_]CCI in u1agrdm 6.

Note that the graph G and the direct derivation r,,(G) are connected by the pushout
morphism r,,: G- r,(G) which is also called direct transformation morphism below. We
distinguish the following types of redices.

Definition 3.10 (Application conditions). Let r: L—R be a transformation rule and
m:L—G a redex for r in G.

(1) The redex m is conflict-free il m(x)=m(y) implies x, yeL, or x, y¢L,.

(2) If m(x}=m(y) implies x=y or x, yeL,, m is called d-injective.

(3) The redex m is d-complete if for each object 0e G with op®(0)em(L — L,) for some
operator opeSig, we have oem(L—L,).

Redices with these additional features will turn out to impose special properties on
direct transformations which make the whole transformation process more transpar-
ent. But also from the intuitive point of view, these application conditions are natural.
If we reconsider the basic ideas about graph transformation of Section 1 in this
framework of graph structures and partial morphisms, we can again single out three
components of a rule: the part meant to be deleted, i.e. L—L,, the subobject of
L which shall be preserved, i.e. L,, and the added structure R—r{L} {
identification of r for the moment).

With these interpretations, conflict-freeness of a redex guarantees that an element of
G is either meant to be preserved or meant to be deleted. The general concept of
redices allows conflicts in this respect and the transformation process has to solve the
conflict by defining deletion or preservation to be dominant (compare Section 3.4).

The notion of d-injectivity implies conflict-freeness and additionally requires one-
to-one correspondence between candidates for deletion in G and L. Thus, in order to
apply a rule which deletes n items, we have to find n suitable elements in G if
d-injective redices are required.

D-complete redices, on the other hand, make sure that the whole structural context
of the elements of G which are going to be deleted is described in L. Here x is in the
structural context of y if op(x}=y for some operator symbol op in the underlying
graph structure. For example, the structural context of a vertex is given by all incident

edges in the category of directed graphs.
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These properties of d-injective or d-complete redices
W7 -7 ;pﬂ'\pnqrfoft 1

if L—L,, ie. the part
deleted by rule application, has n elements, d-injectivity of redices guarantees tha
least n items are deleted in each direct transformation and d-completeness makes sure
that at most n elements are deleted.>*

In Definition 3.9 of direct transformation, this intuition is exactly captured as the
following propositions show.

e riule’c
v iuIv

eft-hand side which describe
u 51GT LLSLIIoV

i CicTiiaiia Wil

mation rn,.G—H be
given as it is defined by Definition 3.9.

(1) If mis conflict-free, then r V m= L, the embedding of the rule’s right-hand side in
the transformation result m,: R—H is total, m(L,)= G, , and m(L—L,)=G—G, .

(2) If m is d-injective and d-complete, G—G, =m(L—L,).
Proof. Direct consequence of the pushout Construction 2.6 and Corollary 2.8. [

On the basis of the notion for direct transformations, we can give precise meaning

LLINYS

to the notions “rule system”, “transformation”, and “generated language”.

Definition 3.12 (Rule system, transformation, language). A rule system RS is a finite set
of transformation rules.

An object G can be transformed to H with a rule system RS if there is a sequence of
direct transformations (), : G~ =G  for i=1,..., n such that G=G°% H=G", and
fori=1,...,n (+:L'>R)eRS and m': L'>G' ! is a redex for ' in G'~ L.

The language generated by a rule system RS with start object G is denoted by RS(G)
and defined by RS(G)={H|G can be transformed to H with RS}.

RS(G), RS{(G), and RS;, .(G) denote the sublanguages of RS(G) which are gener-
ated by RS using conflict-free, d-injective, respectively d-injective and d-complete
redices in each direct transformation only.

If G transforms to H with rules in RS, G and H are connected by the partial
morphism Ry =r%.° - 2r}i: G—H which is called transformation morphism in the

following

1CLOWIAE.

For the comparison of single- and double-pushout transformations assume that all
constructions in this paragraph are performed in the category of Labeled Grapns-
algebras; cf. Example 3.3. See Appendix A for basic notions of the double-pushout
approach.

Definition 3.13 (Translation of single- and double-pushout rules). If r: L—R is a trans-
formation rule according to Definition 3.9, D(r)=(l.L,— L, ¥: L,—R) denotes its

double-pushout framework for single-pushout transformations.
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translation to a double-pushout rule, where ! is the inclusion of L, in L and ¢’ is the
domain restriction of r to L,.

Conversely, for a double-pushout rule p=(1: K— L, r: K—R), S(p): L—R denotes
its translation to single-pushout rules, where L ,,=I(K) and S(p)=rol"1.%5

Theorem 3.14 (Embedding of the classical approach). If the object H is the result of
transforming an object G with rule p at redex m in the dobule-pushout framework, the
translation of p to a single-pushout rule, i.e. S(p), transforms G to H at the same redex

m in the single-pushout setting.

Conversely, if G can be transformed to H with rule r at redex m by a single-pushout
transformation, the translation of r to a double-pushout rule, i.e. D(r), is applicable to
G at m in the double-pushout framework if and only if m is d-injective and d-complete. In
this case, the double-pushout transformation of G with D(r) at m results in the same
object H.

f. For the first part, consider Diagram 7, where (1)+(2) depicts a dire

roof. For ct trans
formation in the double-pushout setting and s and s* are the translations of ([, r) an

of (I*, r*) to single-pushout rules, i.e. s=S(I, ¥) and s*=S(I*, r*). We have to show
that (3) is a pushout in the framework of partial morphisms. By Theorem A.S,
m satisfies the gluing conditions. Thus, it is d-injective and d-complete w.r.t. s.
Thereby, it is conflict-free providing s V m= L,=I(K) by Proposition 3.11. Further-
more, the pushout morphisms s,, and m; satisfy R,, =R and G, =G—~m(L~L,)=
by the same proposition. Therefore, 57 m=r and m; v . =k. Since (2) is the pushout

of r and k, H is the pushout of s+, and m;v ,, and thereby coincides with the pushout

aw A P ] - [P rSN ~ PRV, VPRI I ol o PRGNS
UUJCL/L Ul S ana m lll lllC ua llCWUll\ Ul pcutn:u nom UlllUlplllbl ClL. \_/UllbLl UbllUll L U

ns;

and Diagram 5. Since [*: D—G is the inclusion of G,.=D into G and R,.=R, s* and
m* are the pushout morphisms for s and m.

For the second part, c0n51der Diagram 8, where (1) is a direct single-pushout

transformation and ([, r) and (! *, r*) are the translations of s and s,, to double-pushout

] =t [o] ! S _n
L " ~ [ I
ml lk Im' m‘ Im'
- _ In] 17 d i1

a 19 n (8} S* -

Diagram 7. Translation of double-pushout diagrams.

[_ S R e __[— LS ta /|?
] ] 1

m 1) mg m (2) oo ms
I T .
G——H G=—— G, —=H

Diagram 8. Transformation of single-pushout diagrams.

25 Note that S(p) is well-defined since ! is supposed to be injective in the double pushout setting.
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rules, respectively, ie. (I, )=D(s) and (I *, r*)=D(s,,). The rule (I, r) is applicable to
G at m if and only if m satisfies the gluing conditions iden.tiﬁcation 2 and dangling of
Theorem A.5. These conditions are satisfied if and only if m is d-injective and

d-complete w.r.t. s.

If m is d-injective and d-complete, Proposition 3.11 provides m(L,) < G,,_. Thus, we
can define k=(/*)"'>mol as a total homomorphism. Since the so-defined morphism
satisfies k=m,; =m|;, and we have r=s;; =s,,v, by Definition 3.13 and Proposi-
tion 3.11, (3) is a pushout diagram of total homomorphisms by Construction 2.6;

compare also u1agram 3. bquare {£) commutes Dy definition of K land [ * are lﬂ]eCIIVC

and m is injective outside of /(L,). This implies that (2) is a pushout of graph structures
s well; cf. Construction 2.6. [

Theorem 3.14 shows that each transformation of graphs in a double-pushout
framework corresponds to a single-pushout transformation with the translated rule.
Vice versa, the whole theory for double-pushout transformations can be reobtained
by restricting the single-pushout approach to d-injective and d-complete redices.

3.4. Example: a small police database system

The power of the new concept lies in its ability to perform transformations even if
the redices are not d-complete and d-injective. Thus, the single-pushout approach is
free from any other precondition for rule application than finding a homomorphic
image of the rule’s left-hand side in the actual object that shall be manipulated.

The following small police database example demonstrates the usefulness of
this property. It has been inspired by the information processing system of (W-)
Germany’s police INPOL [31]. This database mainly consists of two types of data,

namealy nerconal data and cage data Tharafare the initial qtate fie tha amnty
ucuuul_y yquuual udala dliu vdov uaida. L HvIVIVIL, LIV lliuidl dstdle \l.\.«. Liiw blll}ll]

database) is characterized by the number of personal and case databases in the system.
Having just one of each sort, we obtain the graph in FIH 1 as initial state.?® The
following operations manipulate the database states:

(1) Add person p to the personal database.

(2) Open a new case ¢ in the database for cases.

(3) Relate person p in kind k to a case ¢. (The kind can be s for suspected person,
w for witness, v for victim, etc.)

O |

Person Data  (ase Dats

Fig. 1. Initial state.

26 The whole example is based on the graph structure Labeled Graphs of Example 3.3. The type of the
vertices, i.e. black/white or big/small, must be interpreted as part of the label.
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(1) 2) (3]
O o
e—=2> e ol
k
p c p c p (4
Fig. 2. Object and relation creation.

(7a) (76}

. O /. ®

Fig. 3. Object deletion.

p

(4) Relate person p in kind k to another person g. (Kinds are, for example, f for
father of, b for brother, etc.)

(5) Relate case c in kind k to another case d. (s for subcase, etc.)

(6) Erase a relation. (For example: drop suspect against p in c.)

(7) Erase database entries. (That is, erase data concerned with person p, close case ¢,
etc.)

(8) More complex operations which combine several basic functions in a single
step.

The graph transformation model for the operations of type 1-3 is given by the rules
in Fig. 2.27

Operations of type 4 and 5 have the same scheme as the rule (3) in Fig. 2 but they
work on personal or case data exclusively. The erasure operations of type 6 and 7 are
modeled by the corresponding inverse rules of type 1-5. Inverse rules can be construc-
ted as long as the rule morphism is injective since the inverse of an injective partial
morphism is itself an (injective) partial morphism. Figure 3 visualizes the rules for
database entry deletion. More complex operations (type 8) can be built from the basic
onges (type 1-7) using sequential composition, parallel composition, and amalgama-
tion formally investigated in Sections 4, 5, and 6, respectively. The rule in Fig. 4, for
example, is a parallel composition constructed from the rules “erase person p” and
“relate person ¢ in kind “father of ” to person r”.

Figures 5 and 7 show some direct transformations with these rules. Figure 5 demon-
strates that single-pushout transformations are able to express “deletion in unknown
contexts”. Due to Construction 2.6(2), the erasure of the g-labeled vertex (representing
a person in the database) by the corresponding “person data deletion rule” triggers the

27 Partial morphisms are drawn as double arrows. The mapping of the objects is indicated by the
graphical arrangement: The morphism maps all objects of its domain which occur at the same relative
position in the codomain. This works as long as the morphisms are injective. Noninjective morphisms will
be indicated by corresponding natural numbers which are used as object identifiers in these cases.
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Fig. 4. Derived rule. Fig. 5. Deletion in unknown contexts.
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Fig. 6. Database reset. Fig. 7. Noninjective redices.

erasure of all incident edges of this vertex from the domain of the transformation
morphism r,,.28

This operational behavior of the transformation process enables to describe a com-
plete reset of a personal database in the system by the rule which is given as the empty
morphism in Fig. 6. Its appilication erases all connections of the persons in the
database to the database root. Hence, no rules for these persons are applicable

afterwards,

Figure 7 visualizes a rule application at a redex which is not conflict-free. The
parallel rule of Fig. 4 is used with both subactions manipulating data concerned with
person ¢: delete g’s data and insert the information that ¢ is father of r. As it is
described in Construction 2.6(1), deletion is dominant w.r.t. preservation.?® Due to

28 Note that the double-pushout translation of this rule is not applicable in the situation of Fig. 5 due to
a violation of the dangling condition (cf. Section 3.3). Hence, complete person data deletion in our example
is not directly expressible in the double-pushout framework. But it seems to be mere accident that exactly
this operation is most problematic in the real INPOL System of the German police. First of all, the police
tried to prevent this operation from being implemented at all since they always fear that deletion of data can
make “their knowledge of the world” incomplete; a conception they simply hate. Secondly, after they were
forced to implement it by data protection laws, they persistently refused to apply it or managed to produce
a new copy before the actual deletion. This behavior and the redundant architecture of the system led to
a data structure that, thirdly, prohibits any complete deletion of all data concerned with a single person
even if the official in charge actually wants to erase it (compare [31] for a detailed discussion).

29 From the data protection point of view, it is the way it should be in this example.
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vertex 7 being in the scope of the rule and vertex 6 outside, the identification of these

vertices by the redex forces vertex {6, 7) to be outside the scope of the transformation

morphism. A side effect is that vertex 7 of the rule’s right-hand side cannot be mapped
to the transformation result by the corresponding pushout morphism. Hence, the
embedding of the right-hand side into the transformation result is partial for conflict-
ing redices.

4. Sequential composition

The casiest wa
direct transformatrons - G—>H as rules themselves, so-called rule-derived rules. Since
rules are only required to be (partial) morphisms, direct transformations possess the
right structure.

Within the single-pushout approach, we can even do more: If there is a transforma-
tion of G to H according to Definition 3.12 by a sequence of rules R=r!, ..., 1" at
a sequence of redices M=m',...,m", G and H are again connected by a partial
morphism, ie. the transformation morphism R,. Thus, all transformations in

AlgP(Slg) have the same structure the structure of a transformatlon rule. This allows
™~ PR A fmime it 3022
1 < 1 C

Definition 4.1 (Rule-derived rule). A rule rd:G—H is a rule-derived rule w.rt. a rule
system RS if there is a rule re RS and a redex m for r in G such that rd coincides w1th
the direct transformation r,,: G-r,(G), ie. H=r,(G) and rd=r,,. The closure w.r.t.
rule-derived rules RSP is the least rule system which satisfies (1) RS < RSP and (2) if r is
rule-derived from RSP, re RSP. '

Theorem 4.2 (Rule-derived rule). If K is directly transformed to M with a rule-derived

rule ru Lnere lb a alreu lrunbjormau()n UJ N L0 lVI W”I’l Ll'l(:' Ungmat ruwﬂ()m Wﬂl(,’l ru lb
derived.

Proof. Consider Diagram 9. The existence of a direct transformation from K to
M with the rule-derived rule rd implies that there is a redex n such that (2) is a pushout
square. The property of rd being rule-derived ensures that there is a rule r and a redex

Diagram 9. Application of rule-derived rule.
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m for r in G such that (1) is a pushout diagram. Since pushouts compose, (1)+(2) is
a pushout. It is the diagram for the application of r at the redex nom which is total
because both components are. Thus, K can be transformed to M using r at nom and

rd,=ru-m due to the uniqueness of pushouts. [

Corollary 4.3 (Generated language). The language generated by a rule system RS
coincides with the language generated by the closure RS® for all start objects G, i.e.
RS(G)=RSP(G).

General derived rules are more complicated.

Definition 4.4 (Derived rule). A rulerd:G— H is a derived rule w.r.t. a rule system RS if
rd=Ry: G- H for a sequence of rules R=r',...,r"eRS and a sequence of redices
M=m!,...,m" for these rules. The closure w.r.t. derived rules RST is the least rule

s5cT -

system satisfying (1) RSSRST and (2) if r is derived from RS”, reRS™.

Example 4.5 (Derived rule). Consider Section 3.4, especially the rule of Fig. 6. Ap-
plying this rule twice to a graph containing two personal databases provides us with
the derived rule rd in Fig. 8.

The derived rule #d can now be applied to a graph with only one person database at
a noninjective redex. Thus, a system state containing a singie personal database can be
transformed to a graph with two of these databases if all derived rules are allowed for
tranofAarmatinng Thic cannn + lha A~ rith tha ~ n. +nal rnla guotama- o Al

=S . Qy to an
I.l aumuuuauuua 1111 \./allllUI. OC Q01 wiln (991w ot 5 idi Fuic Dybtblll lL 1> Cab_y LU VLU

that all rules preserve the number of vertices representing databases.

Theorem 4.6 (Derived rule). If rd is a derived rule w.r.t. a rule system RS, p is a d-
injective redex for rd in G, and rd,: G—H is the corresponding direct transformation,
then G can be transformed to H using the rules in RS only.

O-2t=0 O==0Q
I \ / N

ﬂ & “
S
I P O \
= S

O 0O
Oj P O

(A

Fig. 8. Example of a derived rule.
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Proof. If rd represents a sequence of length 0, it is the identity by definition. Applying
rd to G in this case results in G which is also the result using the empty sequence of
rules in RS.

If rd represents a transformation sequence of length 1, the proposition specializes to
the case of Theorem 4.2.

Thus, it remains to consider the case that rd represents a transformation sequence
whose length is greater or equal 2. If we manage to prove the statement of the theorem
for derived rules whose corresponding transformation sequence has exactly length 2,
we are done. All other cases follow by a simple induction on the length of the
transformation sequence which rd represents.

The situation that rd has been derived from a transformation of length 2 is depicted
in Diagram 10. The rules r and s are contained in the rule system RS. The derived rule
rd is given by rd=s, > r,,: G° - G2 The subdiagrams (1) and (2) are the corresponding
direct transformations. The rectangle (3) +(4) represents the direct transformation of
G with rd at the redex p.

Since rd=s, o r,,, we can decompose (3} +(4) into two pushouts (3) and (4). The proof
is completed if it can be shown that weon is a redex for s. Under this premise (1) +(3)
depicts a direct transformation with the rule r, (2) +(4) visualizes a direct transforma-
tion with the rule s, and, therefore, G can be transformed to H using rules in RS only.

The redex p is d-injective w.r.t. s,°r, by assumption. Since G,., =G, ,p is
conflict-free w.r.t. r,,, which provides by Proposition 3.11 that the morphism w is total.
Since n is a redex, wen is total and a redex for s in K.

Uniqueness of colimits guarantees rd (G)=H = sgpopy(Fp-m(G)). 0

A direct consequence of Theorem 4.6 is that each transformation
thwo--orli:G—H can be replayed in bigger contexts K. That is, if there is an
inclusion i: G—K, there is a transformation rh.so ---orh. 1 : K—M such that i'=i
and for j=1,...,n ¥ is an inclusion. The final result M of this replay is given by
applying the corresponding derived rule riso---orp1: G—H at the redex i.

Corollary 4.7 (Generated language). Let RS be a rule system, RST its closure w.r.t.
derived rules, and G an arbitrary start object.

(1) RS(G)=RS"(G).

(2) For some systems, RS(G)# RST(G).

L—t—R M —eS
ml 1 Vf /n 12! l”s
G —= G’ 2w (77
P‘ 3) tw ) Iy
6 — K —— H

Diagram 10. Direct transformation with derived rule.
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(3) If the redices for the construction of derived rules and the redices for direct
transformations with rules and derived rules are restricted to d-injective ones, RS
generates the same language as RST, i.e. RS;(G)=RST(G).

Proof. (1)is obvious since RS < RS™. (2) is shown by Example 4.5. RS;(G)< RST(G) in
(3) is trivial since RS< RS™. For the reverse inclusion, we must show that the redices
pem:L—Gand wen: M—K constructed in the proof of Theorem 4.6 are d-injective
(cf. Diagram 10). By the assumption that redices are restricted to d-injective ones, n, n,
and p in Diagram 10 are d-injective.

Suppose that x#y and p e m(x)=peom(y). lf m(x)=m(y), x, ye L, and we are done. If
m(x)#m(y), m(x), m(y)eGg, .., < G, since p is d-injective, and Proposition 3.11(1)
provides x, yeL,. Thus, pom is d-injective.

Corollary 2.8(2) provides that x#y and w(x)=w(y) implies x, yer,(ker(p)). Since
m is d-injective, this means that x, yer,(G§, .,,) and, therefore, x, ye G, . But this
exactly states d-injectivity of w w.r.t. s,. Thus, n is d-injective w.r.t. s and w is
d-injective w.r.t. s, and the same argument given for m and p above provides that weon
is d-injective for s. O

Among the derived rules of a rule system, a special set of so-called sequential
compositions can be distinguished which allows to simulate all transformations in the
system by appropriate direct transformations.

Definition 4.8 (Sequential composition). The derived rule s,or, in Diagram 10 is
a sequential composition of r and s if m, and n are jointly surjective.

Theorem 4.9 (Sequential composition). For direct transformations r,:G—H and
sp: H— K, there is a sequential composition t: N—T of r and s and a redex i: N—G such
that t transforms G to K at i, ie. K=1,(G).

Proof. Consider Diagram 11. Construct N=m(L)u(r,)” ' (n(M)). This construction
provides a subalgebra of G. Let p=m!" be the codomain restriction of m w.r.t. N and
i the inclusion of N in G. Construct Y as the pushout of p and r. Thereby, square (3) is
a pushout diagram and x is the unique morphism such that x ¢ p,=m,; it is injective

[—L—=pR M——=S
p it B ql 121
nl N—2 y =
] mr\l/n
i 13) x
6—

H

——

1)
sﬂ

K

Diagram 11. Short cut by sequential composition.
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since i is [cf. Corollary 2.8(3)] and it is total since i is conflict-free [cf. Proposition
311

Since H is the pushout of r and m, r, and m, are jointly surjective such that
n(M)<r,(Gyum(R). By definition of N, we get n(M)<r,,°i(N)um,(R). The square
(3) is commutative and m,=xcp, which implies n(M)cxeor,(N)uxep,(R)=
x(rp(N)up(R))=x(Y). Hence, n factors through 7, i.e. there is a morphism g such
that x o g=n. Construct square (2) as the pushout of ¢ and s which turns subdiagram
(4) into a pushout as well.

The last thing to be shown is that p, and g are jointly surjective. Since Y is the
pushout of r and p, p, and r, are jointly surjective, i.e. Y =p,(R)ur,(N). Thus, it is to be
shown thatr (’V)Cp,(R)uq{M} We know that x<r,(N)=r,°i(N) and by definitio
of N, 1o i(N)=rmn(m(LY0 ()" (M) Sryem(L)yun(M)=xcp,or(L)uxeg(M)<
x(p,(R)ug(M)). Hence, x°r,N)=x(p.(R ) g(M)) which implies r,(N)<p,(R)u
q(M) since x is total and injective.

Now take t=s,°r,, which is a sequential composition of r and s. The diagram

(3)+(4) depicts the direct transformation of G to K with r at i as desired. [

:3

Tiw thn gatmaral rocs thavn owun teac gy cmsastm ottt ~f wiilane T fant thaovn nwn cavaral
LIl LIIC 5C11Clal LddL, LIIUIU 410 1lidlly LUl lpUbll.lU 1> UL TUICS, 111 lall, LIICIC alC dCvildl
different compositions even if we ﬁ the Jomtly surjectlve pair of morphisms m, and
S, .

n (cf. Definition 4.8). Nevertheles 11y
r and s are finite. But it depends on the actual transformatlon situation which one is to
choose in order to simulate a concrete transformation sequence.

Corollary 4.10 (Abstracting from transformations). For a rule system RS which is

cwbeu unaer bequemlal LUmpUblLlU’l euery Lrunajurmulwn H'l l‘n.) cumuaeb WlLﬂ a UIICLL
transformation in RS.

Proof. Direct consequence of Theorem 4.9. [J

5. Parallel Composition

Parallel composition of rules provides a model for simultaneous application of two
or more rules. The simultaneous application is represented by the application of the
parallel rule which is given by the disjoint union of some rules. The main question is:
can the effect of parallel rule transformations be simulated by sequential transforma-

af thoe marallal +1:1a? Tha answer in the classic
1 UL pa raiiel ruie? 1 nc answer in tnc ciassic

inme uith tha A~

tions with the COmponcr cents o
is an unrestricted “yes” [8]. We show that the answer is positive in the new approach
only if redices are restricted to d-injective ones. Parallel rule application at arbitrary
redices, however, produces effects which cannot be captured by sequential trans-
formations.3°

301n [28], a typical example is presented which shows that these effects model properties of “truly
parallel systems” in a natural way.
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The investigations begin with a notion of parallel independence for two direct
transformations. The Commutativity theorem proves that parallel independence
implies that the result of the transformation is independent of the sequential order in
which the two participating rules are applied.

Definition 5.1 (Parallel independence). Two redices m:L—G and n: M—G for the
transformation rules r: L—>R and s: M —S, respectively, are parallel-independent if
they overlap in gluing items only, i.e. m(Lynn(M)Sm(r Vm)nn(s V n).

Theorem 5.2 (Commutativity of direct transformations). Ifm:L—-G and n: M—G are
redices in the object G for the rules r: L—»R and s: M — S, respectively, there are redices
p=s,om:L—s,(G)and g=r,°n: M—r,(G) such that r(5,(G))=s,(ru(G)) if and only if
the redices m and n are parallel-independent.

Proof. First suppose m and n are parallel-independent. Consider Diagram 12. Square
(1) depicts the direct transformation of G with r at m and square (2) the direct
transformation of G with s at n. For p=s,°m and g=r,, 2 n to be redices, it is to show
that they are total morphisms which means to show (i) m(L) = G, and (i) n(M) <= G, .
We explicitly show (i); the argument for (ii) is symmetrical.

Suppose 0¢ G, . By Construction 2.6, it implies either oen(s ¥V n)*! or there is a term
teTS9(x) such that (*)t(0)en(s V n).32 The first case implies o¢m(L) because m and
n parallel-independent. The second case implies o¢m(L), too: Since m is a redex, it is
a total morphism and its image in G is a subalgebra of G. Thus, the assumption
oem(L) implies t%(0)em(L) which is a contradiction to the parallel independence of
m and n [compare (*)]}. Therefore, if 0¢G, , o¢m(L), which immediately provides
that s,°m is total.

Hence, the existence of the redices p and ¢ is guaranteed and we must prove
rp(54(G))=s5,(r.(G)). For this purpose, let square (3) in Diagram 12 be constructed as

I

ml ") 1/77,

ML e ()

51 12) snl (3) l

S —=s,(6) ——H

Diagram 12. Parallel independence and the commutativity property.

31 (s Vn) is a short notation for L—(s ¥ n).
32 Note that Sig is the underlying graph structure according to General assumption 3.8.
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the pushout of r,, and s,. Now (1) +(3) is the pushout diagram reflecting the direct
transformation of ¢, (G) with r at p and (2} +(3) reflects the direct transformation of
rm(G) with s at ¢. The uniqueness of the pushout construction provides that the
pushout objects of (3), (1) +(3), and (2} +(3) are isomorphic which completes this part
of the proof.

Conversely, suppose p=s,°om and g=r,, °n are redices, i.c. total morphisms. Then,
n(M)=G,, and m(L)=G, . By Construction 2.6, we conclude n(M)cm(L—r ¥ m)
and m(L)=n(M —s V n). By construction of r V m and sV n, this results in

*)  aM)am(L)s[m(L)umr Vm)]n[n(M)un(s V n)].
But, obviously, we have t_ha_t: L

(1) [n(M)ynm(L)]In[m(L)nn(M)]=0.

2) [n(M)Am(L)ALm(L)An(s ¥ n)]=0.

) [M)m(L)In[m(r Vm)nn(M)]=
Thus, (%) implies n(M)nm{L)=m(r V m)n (sVn) O

A\_/\-/\_/

Hence, parallel independence of two rules implies local confluency. Moreover, the
effect of applymg two parallel mdependent rules in any order can be obtained by

It Ofi A maealla l —~ PO PR ~
OrT lldl o1 C pardlc LUlIlpUsltlUll O

Definition 5.3 (Parallel rule and parallel redex). If r :
transformation rules, the parallel rule r + s is defined as the dlSjOln union of r an
r+s=ryvs:LoM-RS.

If RS is a rule system, RSF is the parallel closure of RS which exactly contains RS
and all parallel rules which can be built within RS®.

The parallel redex m+n for two redices m: L—G and n:M—G is defined by:

m+n: Lo MG such that m+n(x)=m(x) if xeL and m+n(x)=n(x) if xeM.

Q. ¢

s, l.e.

Theorem 5.4 (Parallel independence and parallel rule). If redices m:L—G and

nM-G fnr the frnncfnrmnhnn rules ri:L—R and s: M-S, rocnor‘ryw]w are pgﬂral!gl-

independent, the application of the parallel rule r+s at the parallel redex m+n
to G results in the same object as any sequential application of r and s, ie.
Str,, un)(rm(G)) =¥(s,e m)(sn(G)) = (T’ + S)(m +n)(G)-

Proof. Consider again Diagram 12. Note that the result of the sequential application
of r and s, i.e. the object H, has been constructed as the colimit of s, #, m, and r.3* These

morpmsms deC Up [ﬂC DOl(lldCC pdf[ 01 u1dgrdm 1.) L‘i‘IVl dIl(.l 1"1—0 are LIlC
colimits (coproducts) of L and M and of R and S, respectively. The morphisms i;—i,

33 The colimit of a diagram is unique up to isomorphism; cf. [21]. Since we do not distinguish objects if
they are isomorphic, the colimit of a diagram is unique in our framework. Note that due to Corollary 2.10,
the underlying category of graph structures and partial homomorphisms is finitely co-complete.



Algebraic approach to single-pushout graph transformation 209

L—=R

m iy (3) i3
{2)

M Lo G-men M _rts JRuS

#W \ -

Diagram 13. Parallel rule and paraliel-independent redices.

are the universal embeddings. The parallel rule r+s, as it is constructed in Definition
5.3, coincides with the universal morphism for coproducts such that the subdiagrams
(3) and (4) commute.** Analogously, the parallel redex m+ n is the universal comple-
tion such that subdiagrams (1) and (2) commute. (5) is the pushout diagram reflecting
the direct transformation of G with r+s at m+n.

Thus, Diagram 13 commutes and is thereby a cocone for the boldface part. Since it
has been constructed as a composition of partial colimits, it is also a colimit of the
boldface part. Uniqueness of colimits immediately provides that K coincides with
H which is the colimit of the boldface diagram constructed in the proof of Theorem
5.2; compare Diagram 12. [J

The converse of Theorem 5.4 is not true: Applicability of the parallel rule at an
arbitrary redex p does not imply that p can be decomposed into parallel-independent
redices for the components of the parallel rule.

Example 5.5 (Parallel rule and dependent redices). Consider again the rule in Fig. 4. It
is a parallel rule which is applied in Fig. 7 at a redex which is not d-injective.
Obviously, the redices for the component rules (i.e. deletion of g and addition of father
relation) are not independent; cf. Definition 5.1.

Example 5.5 demonstrates that the addition of parallel rules to a given rule system
can increase the possible transformations and the set of objects which can be
generated from some start object. The results of the classical approach can be
generalized to the single-pushout framework if redices are restricted to d-injective
ones.

Proposition 5.6 (Parallel rule and parallel independence). If the parallel rule
r+s:L+M—-R+S is applicable to G at a d-injective redex p:L+M-G, its

34 The coproduct 4+ B in Alg®(Sig) can be constructed as the pushout of §:p—4 and 9:0—B. The
universal morphisms are then given by Construction 2.6.
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decomposition to the components, i.e. m=p | :L—>G and n=p|y: M—>G, is a pair of
parallel-independent redices for the rule r: L—R and s: M-S, respectively; therefore,

s(rm'»‘n)(rm(G)): r(sn°m)(sn(G)) =(r + S)p(G)

Proof. If p is d-injective, p(x)=p(y) implies x=y or x, ye(r+s) vV p and by Proposi-
tion 3.11,(r+s) Vp=(L+M)(,+s)=L + M. Thus, xe L, ye M, and m(x)=n{(y) implies
xel, and th which, agam Uy rroposmon 3.11, means xer V m and yeEs V n. fence,
parallel independence of m and »n is guaranteed which, by Theorem 5.4, immediately

nroves the second part of the n prop ositinn_; |

Prave Q6 LIC IO L1O1

Corollary 5.7 (Generated language). If RS is a rule system, RSF its closure w.r.t.
parallel rules, and G an arbitrary start object,

(1) RS(G)=RS*(G),

(2) RS(G)# RS¥(G) for some rule systems, and

(3) RS generates the same language as RS® if redices are restricted to d-injective ones,
i.e. RS,(G)=RSF(G).

...... PASS

Proof. (1)is obvious since RS < RS®. (2) can easily be shown by e.g. Example 5.5. (3) is
an immediate consequence of Proposition 5.6 and of the facts that d-injectivity of
m+n w.r.t. r+s implies d-injectivity of m and s,em w.r.t. r or of n and r,,on wrt. s
The proof is straightforward. [J

6. Amalgamation

Sequential and parallel composition of rules is a device to integrate the effects of
several rules into a single one. Therefore, all results concerning this kind of composi-
tion are statements of equivalence expressing that there is a one-to-one correspond-
ence between transformations with or without composed rules. The situation is
different if we consider gluing of rules, called amaigamation. This concept has been
introduced in [4] as a synchronization device for graph transformation systems which

madel the hehaviar of digctrihuted qvgtems The waork in 471 hae hean maoti vated by
MmoGe: il OCindviol O1 GISTIoUCa SYSICIIS. 1148 WOIK 1 |4 d4dd OCCH MOuUvVaild oY

Degano and Montanari [7], who first introduced the idea of rule gluing and gave an
explicit operational description.

This section reflects the theory presented in [4] for the single-pushout approach.
We focus on theoretical aspects and refer to [14] for examples. All theorems of this
section require redices to be d-injective.?®

The key to amalgamation is the notion of subrule and remainder.

35 D-injectivity is a sufficient condition for the theorems. It is not necessary in most cases. It is left to
future research to investigate amalgamations at arbitrary redices.
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Definition 6.2 (Subrule and remainder). A rule t: N—T'is a subrule of a rule r: LR if
there are two total morphisms i: N— L and j: T— R such that (1) jet=rciand (2) i is
a d-injective redex for ¢. The (i, j)-remainder of r w.r.t. tis the rule r —; ;,t: P— R which
is defined in Diagram 14 as the unique morphism for the pushout (1) of ¢ and i such
that (r —; jt)ei,=jand (r —; jt)ot;=r.

We write r—t for the remainder if the embeddings are obvious from the context.
The subrule structure of a rule enables the decomposition of direct transformations.

Theorem 6.3 (Subrule). Ift: N— T is a subrule of r: L— R with the embeddings i: N— L
and j: T—R and m:L—G is a redex for r, there are redices p and q for t and r—t,
respectively, such that the direct transformation of G with r at m can be decomposed into
two direct transformations with t at p and with r—t at gq.

Proof. Consider Diagram 15. The square (1) is the pushout constructed for the
remainder in Definition 6.2; (2) +(3) is the pushout reflecting the direct transformation
of G to H with r at m. Since r=(r—t) ¢ t;, (2) + (3) can be decomposed into two pushout
diagrams (2) and (3). Compositionality of pushouts guarantees that the diagram
(1) +(2) reflects a direct transformation of G to K with ¢ at p=m~<i. The morphism p
is total and d-injective since m and i are (cf. General assumption 6.1). If g: P—K is
total and d-injective, (3) is the required direct transformation from K to H with
r—t. D-injectivity of m means: m(x)=m(y) implies x=y or x,yel,. Since
r=(r—t)ot;, L,< L, and m(x)=m(y)implies x=y or x, ye L,. Hence, m is d-injective
w.r.t. t; and Proposition 3.11(1) guarantees that g is total. Moreover, g is d-injective
w.r.t. r—t. Square (2) is pushout and Corollary 2.8(2) states that ker(q) =t;(ker(m)).
But t;(ker(m))<=t;(L,) since m is d-injective. The remainder »—t is constructed as
a universal morphism such that P, _,,=i,(T;)ut;(L,); cf. proof of Theorem 2.7. Thus,
ker(q) < P, -, stating d-injectivity of ¢ w.r.t. r—t. [

/lv T \

Diagram 14. Construction of Remainder

1

;Cix,?
)

e thy

Diagram 15. Transformation decomposition.
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The rest of the section considers the synchronized behavior of two rules which share
a common subrule t. In a synchronized behavior, the effect of the shared rule ¢ is
produced only once, which models a handshake at ¢.

Definition 6.4 (Related rules, amalgamable redices, synchronized effect). Two rules
r:L—Rand s: M-S are related w.r.t. a third rule t : N> Tif t is a subrule of r and s. In
this case, we say that r and s are t-related.

Let (i,j):t—r and (e,f):t—s be the corresponding embeddings. Two redices
m:L—-G and n: M—G for r and s, respectively, are t-amalgamable if mei=n-e and
m(L)ynn(M)smei(NYu[m(rV m)ynn(sV n)].

Application of the subrule t at mei=n- e produces an object X and induced redices
p and ¢ in X for the remainders r—t and s—t, respectively; cf. Theorem 6.3. The
t-synchronized effect v, ||, s, G— H is defined to be the transformation from G via X to
H given by t,,.;:G—>X and ((r—t)+(s—1)),+ . X —>H.

Proposition 6.5 (Synchronized effect). Let r and s be t-related and m and n be t-
amalgamable redices for them, the induced redices p and q for the remainders as defined
in Definition 6.4 are parallel-independent.

Proof. The whole situation is depicted in Diagram 16. Diagram (2)+(3) is the direct
transformation of G with the rule ¢ at the redex nee. Diagram (5)+(4) reflects the
direct transformation of G with t at mei. The redices m and n are amalgamable such
that moi=no e. Therefore, the diagrams (2) +(3) and (5) + (4) depict the same pushout
which is indicated in the diagram by the fact that the diagrams (2)+(3) and (5)+(4)
overlap in the morphism a. (2) is the transformation of M with t at ¢ and (5) the
transformation of L with ¢ at i according to Definition 6.2.

Diagram 16. Remainder redices in synchronized effect.
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d ,1e. p(P) Nng(@Q)spu ¥V p)ng(v V g), remains to be
17 11t T

p(x)=q(y) implies xeP, and yeQ,.

(*)  P=i(T)ut(L,) and Q,=e(T)uUt(M,).

Since P and Q are pushout objects, i, and t; and ¢, and t, are jointly surjective,
respectively, such that there are four cases to be considered:

Case I: xei(T)and yee,(T): (*) immediately implies that x and y are gluing points.

Case 2: xei(T) and yet (M): xei,(T) means that there exists zeT such that
i,(z)=x. Since diagram (2)+(3) coincides with diagram (5)+(4), pei,=qce,. Thus,
goe(z)=q(y). If e(z)=y,y has a preimage w.r.t. ¢, and is gluing item by (x). If
e,(z) #y, q identifies y and e,(z) which implies that y is gluing item since q is d-injective.

Case 3: xet;(L) and yee,(T): Follows from an argument similar to case 2.

Case 4: xeti(L) and yet.(M): In this case there exists ce L such that t;(c)=x and
there exists deM with t.(d)=y. Since the subdiagrams (3) and (4) commute,
p(x)y=a°>mic) and g(y)=a - n(d).

Suppose as a first case m(c)=n(d). Since the redices m and n are amalgamable and
d- mlecnve either ¢ and d are olumo nmnt_ w.r.t. r and s respec_:nvelv or there exists
beN with i(b)=c and e(b)=d. The former immediately results in x and y being gluing
points by (x). The latter results in x=¢;°i(b) and y =t e(b) which implies that x and
y have preimages w.r.t. i, and e,, respectively, and we are done.

Suppose as the second case m(c)#n(d). Then m(c), n(d)eker(a). This implies that
both ¢ and d have preimages w.r.t. both morphisms n and m because (3) and (4) are
pushouts [cf. Corollary 2.8(2)]. These preimages must be elements of the kernel of ¢,

and t;. Thus, they must have preimages w.r.t. n°e and mei and we are back to th
arguments in cases 1-3, which completes the proof.

._
[¢!]

Proposition 6.5 shows that the synchronized effect of two rules as defined in
Definition 6.4 models shared behavior exactly on the part affected by the shared rule.
The local operational effects of both rules, i.e. those parts not in the subrule, are
independent.

The synchronized effect of two rules can be obtained by simple direct transforma-
tions if amalgamated rules are constructed and applied.

Definition 6.6 (Amalgamated rule). If r: L—R and s: M-S are (t: N— T)-related via
embeddings (i, j): t—rand (e, f):t—s, respectively, the amalgamated ruler ®,s: U—V
is constructed in Diagram 17. U and V are pushouts of i and e and of] and f,
respectively. r@®,s is the unique morphism such that (r@®,s)ee;=f,or and

(r®;s)ci,=js°s.
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Diagram 17. Construction of the amalgamated rule.

Note that r @, s is the colimit of (i, j) and (e, f) in the category of arrows over
Alg®(Sig). The short notation r @, s for the amalgamated rule is not precise because
the result of the amalgamation construction depends on the actual embeddings. Thus,
we assume in the sequel that the involved embeddings are obvious from the context.

Theorem 6.7 (Amalgamation). There are amalgamable redices m and n for the rules
T 1 d oo AL C casnhs that tha anewacnan A3 v grvie Lienioa Ao + fx1m o fs
’ LJ—7‘.\ wuriu L7 Samdh) DMLIL Lllul L’lC LUI’CO‘/UIlul’ly Dyll«blllu’“,étu CJJCLL L,

ie. ryls,:G—H if and only if there is a redex o for the amalgamated ru
that (r @,5): G—H is a direct transformation.

Proof. Suppose (r ®,s)o:G—H is a direct transformation. Construct the redices
m:L—G and n: M—G by defining m=oce; and n=o001i,.

They are both d-injective: i and e are d-injective w.rt. t such that
ker rie; ysilker (e ))CL(IAVT[) and ker{i J<e(k 61'(1))26(1\11).

roi=jot and sce=fot. Thus, e(N,)= M, and i(N,)=L,. Therefore, i, and
d-iniective w.r.t. s and r, respecively. The red@, 0 is d-injective and Uy, g o= e;(
Vi(M,.n)=edL,)wi(M;). Hence, 0°e; and o0-1i, are d-injective w. rt r and s.

They are also amalgamable since m(x)=n(y) implies ocei(x)=0°i(y). If
ei(x)=1i,(y), e;(x) must be an image of ¢;°i since U is a pushout of e and i. But
then m(x)emoi(N). If e;(x)#i.(y), o identifies two different items which implies
X, yeUp @, g =ei(L,) i .(M,). Hence, xeL, and ye M, due to d-injectivity of ¢; and i..
Therefore, m(x)em(L,)un(M,)= m(er)un(sVn)

P I I .‘A,‘ P T T Uy PU- PSRy N~

1u i€ reverse Ll lCL/l.lUll, alualgaummc, U lllJCL/llVC ICUILCb m dllU

AT Ch..,.,\ PRy S
DI1IVC L lb a bLlUl uw o1 r auu
= e;
Lic.n)
l vy

For the implication
n are given. We have to show that o: —+G constructed as the unique morphism such
0oi =n is d-injective. The proof is routine. It can be achieved

that oce;=m and ne
straightforward by a complete case analysis for x and y if o(x)=o0(y) is given.

That the synchronized effect r,, ||, s,,: G— H coincides with the direct transformation
(r ®,5),: G- H is a direct consequence of the fact that the synchronized effect of r and
s is the colimit of the left part in Diagram 18 (cf. Definition 6.4 and Proposition 6.5)
and direct transformations with amalgamated rules are defined to be colimits of the
rlght part in Diagram 18. Since 0ce¢;=m and oci,=n and U is a colimit itself, both

+Q MPREN-Pe Y u A sertmevrim i caaas
bULlllllLb COINnciac up to DUINVIPILSIL, L

Note that Proposition 5.6 and Theorem 5.4 are special cases of Theorem 6.7 since
parallel rules are amalgamations w.r.t. the empty shared subrule.
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G G

Diagram 18. Amalgamation is colimit construction.

7. Conclusion

The single-pushout approach to graph transformation presented in this article
emerged from the observation that a transformation rule in the double-pushout
framework [8] can be interpreted as a partial morphism in an appropriate category

The rigorous investigations of algebraic categories with partial homomorphismis in
Section 2 led to the notion of graph structures. It is exactly these graph-like structures
which are closed w.r.t. finite colimits. These results seem to be analogous to the results
in [13], where a detailed analysis of graph pushouts in the total case is provided. Ehrig
and Kreowski [13] show that pushouts of graphs have certain properties which do
not hold in arbitrary categories. These special properties are reflected in the partial
case by the incompleteness w.r.t. colimits if the objects considered do not resemble
graphs. Some hints that there is a tied connection between categories of total and
partial homomorphisms are also given by [37, 24]. Future research shall focus on the

UCLdllb ()l this LOHIICLLIUII IOI dlgCDrdlL LdngUrle
Many results known fro he double-pushout framework can be generalized if the

transformation process is h d on nnrhal pus shouts. A tvplr‘nl mmmnlp is the embed-

ding of transformation sequences. In the new approach, it is always poss1ble to replay
a transformation sequence in bigger contexts. On the other hand, the more general
applicability of single-pushout rules produces new effects w.r.t. composition. For
example, a transformation with parallel rules cannot always be decomposed into
transformations with the components of the parallel rule as it is possible in the
double-pushout setting; compare Section 5. Analogous results hold for amalgamated

rules (DCL[IOI’I 0). 1n¢ one- to-one (.OI"I'GprIlQCHCC DC[WGCII COl’I]pOSIUOIl ()I rules dn(l
composition of transformations can only be reobtained if the redices for the rules are

nrnnprlv restricted. The central nrnnPthe in this respnect are conflict-freeness and

properly restricted. centra perties in this respect conflict-freeness and
d-injectivity. With d-injective redices, all results of the algebraic approach carry over
to the new framework. D-injectivity is the analog of the identification condition known
from double-pushout transformations. These results disclose an asymmetry of the
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11 resu ilte ahout com
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tha |r‘ ntification condition 18 crulc}ﬁl ults about

the igentification condqition

and transformations, the dangling condition can easily be dropped in the operational
semantics without changing the statements of the central results.

Not only many results can be generalized for single-pushout transformations, but
the proofs are also shorter, the constructions simpler, and there are less technical side
conditions. A typical example is the notion of a subrule which needs no technical extra
requirements at all in the approach presented above. The technical easiness on the
ievel of direct transformation and ruie composition, however, has been purchased by
more complex constructions on the fundamental categorical level of morphisms and
b handlad aunlicitly on the leve f +la

nanaiea CApuULILy Ul u 1€ 18VEL O1 TUies

.._.

and transformations in the double-pushout approach have been hidden in the basic
constructions of the new framework. Future research must show if the new level of
abstraction is sound w.r.t. further extensions of the theory, for example w.r.t. distrib-
uted transformations.

Many of the new effects which can be observed in the general single-pushout
approach are due to redices which are not d-injective or conflict-frec. These redices are
able to model certain aspects of amalgamation. Amalgamation and redices which are
not d-injective are both models for rule applications overlapping in nongluing items.
The precise relationship between these two concepts nceds further theorctical invest
igations. An important question in this respect is whether redices can be restricted to
injective ones if arbitrary amalgamation of rules is admitted, i.e. can noninjective
redices or all interesting noninjective redices be modeled by amalgamation? A positive
answer to this question would be very valuable. It would reduce all concepts which
model aspects of parallelism to a single, central one, i.c. amalgamation.

From the practical point of view, implementations of graph transformation systems
should be available in order to prove the usefulness of graph-rewriting methods in
system design. We are currently developing a prototype system based on single-

[N SRR SN s Ta~lZan TTu' P ,.J‘ D._ PPV A e 1 T 0 Vv By

publlUUl uaumuuuauuua dt Le Cblllllbdl U1l Clb i‘hi'i Ll L4 ). LAPCLIIICIIW
with this system shall show which extensions of the pure single-pushout approach
presented in this article are necessary for practical applications and software engineer-

} ofniade e b e =

ing (for example, a concept for variables or attrlbutes).

'*<3
Q

Appendix A. Basic notions of the double-pushout approach

The algebraic graph grammar approach of [8] is based on the

Graphs, compare Example 3.3, and total morphisis, ic. A}g(La
Definition A.1 (Graph transformation rule). A graph transformation rule p=(1: K— L,
r: K—R) consists of two graph morphisms ! and r from the gluing graph K to the
left-hand side L and to the right-hand side R, respectively. The left-hand morphism / is
required to be injective.
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another graph H using rule :(l:K—»L r: —»R) if there are
(cf. Diagram 19) which are
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In a direct transformation situation, the morphism m: L—G is called a redex or
match of p in G. The constructive version of the direct transformation bu1ld the
t

ranh H if a redex is siven. For the descri
X aescrn

aph D tgraph Hifa

n
¢ is giv or the o
construction, we need some operations on graphs.

Definition A.3 (Operations on graphs). For graphs G and H, G+ H denotes the
disjoint union of G and H, i.e. the disjoint union of the vertex and edge sets with the
operations s¢ " given by s #(x)=s%(x) if xeG and s%*#(x)=s"(x) otherwise and
t9*H defined by the same scheme.

If H is a graph and (V, E) a pair of

and Hy— E, respectively, i.e.
(H—-(V,E))y=Hy—V,
(H—(V. E))g={eeHg—E|s"(e), t"(e)e(H ~(V, E))y .

sHZULE) (H-(V-E) and the labeling functions are the restrictions of the corresponding
functions of H to the smaller vertex and edge sets of H—(V, E).

If ~=(~, ~§)is a pair of relations on the vertex and edge sets of some graph H,
H; . denotes the quotient of H w.r.t. the smallest congruence which contains ~. The
corresponding natural morphism is denoted by ~:H—H, .

With these prerequisites, we can construct the resuit graph H of a direct transforma-
tion from a graph G using rule p=(l: K— L, r: K—R) at redex m: L—>G.

Construction A.4 (Direct transformation). The direct transformation of a graph G with
the rule p=(/: K— L, r: K—>R) at a redex m: L—G results in a graph H which can be
constructed in three steps:
(1) Remove: D:=G—(my(L, —1,,(Ky)), mg(Lg—I:(Kg))). Let I,: D—G denote the
obvious inciusion morphism.
(2) Add: E=D+R. Let ip:D>E and iR' — E denote the obvious inclusions.
)

(Y Embed: H=F where y~ v and v=i, (.Y " Yomol(z)
(3) tmbed: H:=F,_, where x~y1 and ! ip) 1o {z).

=N
,-(

36 The algebraic approach to graph transformation 8.9, 16] is based on this notion for direct transforma-
tions. Due to its form, it is called the double-pushout approach.
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Diagram 20. Definition of direct transformation.

——f(

L | R
mi .k 2) ~oliy
|
Gt 00—t

Diagram 21. Construction of a direct transformation.

Theorem A.S (Direct transformation). The definition and the construction of direct
transformations are related as follows:
(1) Let Diagram 20 represent a direct transformation of G to H withrule p=(l: K> L,
r:K—R) at redex m: L—G as defined in Definition A.2.
(a) H is uniquely determined by G, p, and m.
(b) m satisfies the gluing conditions dangling and identification 2.
(¢) D and H coincide with the graphs constructed in Construction A.4.
(2) Let Diagram 21 depict a construction as in Construction A.4.
(@) k=(lp) *emel:K—D is total if the gluing condition identification 1 is satis-
fied. In this case, subdiagram (2) is a pushout.
(b) If m satisfies dangling and identification 2, also diagram (1) is a pushout.
Identification 1. m(x)=m(y) implies x, yel(K) or x, y¢l(K).
Identification 2: m(x)=m(y) implies x, yel(K) or x=y.
Dangling: si(e) or ti(e)emy(Ly—1,(Ky)) for some ee G implies eemg(Lg).

Appendix B. Completion of partial morphisms

For a big class of graph structures, so-called hierarchical graph structures, partiality
of a homomorphism can be modeled by a total homomorphism which maps unde-
fined objects to some special L-items. The corresponding completion with the neces-
sary L-structure is presented below. It relates the approach to single-pushout trans-
formations presented above to the one in [5].

Definition B.1 (Hierarchical graph structures). A graph structure (S, OP) is hierarchical
if there is no infinite sequence op, :$; —S,, 0P, :$:—S3, ..., OP; 1S$;—S;+1, OPj+1:Si+1—>
Si+2,... of operator symbols.

If Sig=(S, OP) is a hierarchical graph structure, the relation < on S defined by
s <sif TS9 #0 is a well-founded partial order. Thus, noetherian induction can be
used if statements have to be proven for all sorts.

Note that all examples in Section 3.1 are hierarchical.
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Definition B.2 (Junk completion).

(1Y onncldd={(onngici.}) denot
(1] OPNS(S) ={0OPNs{S); )ic1, GENOL

arguments of sort s, i.e. for all iel, opns(s),=o0p;:s—s;.

(2) sorts(s)=(sorts(s););c;. is the corresponding list of sort symbols such that
sorts(s); is the value sort of opns(s); for all iel,.

(3) the junk completion Junk(Sig) is the following equational specification, where
X is a vector of variables such that X;& X ops), for all iel:?”

p—
—
2

«©Q

Il

w
o

=
1
=Y}
=

ierarchical raph structure

Junk(Sig)=
Use Sig
Operations
(Ls:sorts(s)—s).s
Equations
(opns(s)i(L((X)=X)ses. ie1,

Note that in case of an infinite vector opns(s) for some sort s, we have to handle
signatures and algebras with operators which take infinitely many arguments. Hier-
archical signatures, however, guarantee that we do not run into trouble with “in-
finitely deep” terms, 1.e. each term w.r.t. the signature Junk(Sig) is of possibly infinite
width but of finite height.

Junk(Sig)-aigebras help in the analysis of Alg®(Sig). First, consider the relation of
Alg(Sig) and Alg?(Sig). Obviously, they coincide on objects and each total homomor-

nhism is a special nartial one. Hence A]a(an\C AloP(le\ and with the aid of

Prirsiii spolia: p wiar OLC, TICHCC, Aupyt Qi e

Junk(Sig), the inclusion < : Alg(Sig)— AlgP(Sig) turns out to be a left adjoint functor.

Proposition B.3 (Inclusion functor). If Sig is a hierarchical graph structure, the inclu-
sion < : Alg(Sig)—Alg¥(Sig) is a left adjoint functor.

Proof. We construct a mapping Pr—(F(P), u”: F(P)— P) which assigns to each object
PeAlgh(Sig) another object F(P)eAlg(Sig) and a partial homomorphism u®, and
show that the so-defined mapping is a co-free construction, i.e. for each partial
homomorphism f: B— P, there is a unique total homomorphism f*: B—F{P) such
that u”-f*=J. The situation is depicted in Diagram 22.

Define F(P)=[Free(P)]lsiy, where Free:Alg(Sig)—Alg(Junk(Sig)) i

construction between pnnahnna]]v defined classes of al

[84
LLSWRLUI0Nn DOUWOLI CyuauOilany GUunvG Giassis [0} 5

4 C(B} B

P
oA
|

S(F(P)=F(P)

Diagram 22. Co-free situation.

37 The phrase “Use Sig” in the specification below indicates that Sig is a subsignature of the defined
signature.
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[ JIsig: Alg(Junk(Sig))—Alg(Sig) is its right adjoint. Since Free is consistent, we
obtain an injective universal homomorphism v”:P—[Free(P)]siq and define
uf =)L

Now it needs to be proved that the assignment P+—(F(P), u”: P—F(P)) satisfies the
co-universal property above. Let f:B—P be a partial homomorphism. Define
f*:B>F(P) for all seS by [f¥x)=vief(x) if xeB, and f¥(x)=
LFree®( f*(opns(s)3(x))) otherwise.3® f* is well-defined by definition. It is to be
shown that it is totally defined and homomorphic. We use noetherian induction w.r.t.
the partial order <. If s is a minimal element w.rt. <, there is no operator
op:s—s'e0P. Hence, | :—s is a constant which immediately implies that f* is total
and homomorphic for s.

Now consider a nonminimal sort s. Since for all s'esorts(s):s'<<s, f* is totally
defined on all these sorts by induction hypothesis, we immediately obtain that f* is
totally defined on s. It is homomorphic on By, since f; and v{ are and for x¢B;_, we
have that each operation op:s—s =opns(s);:s—s’ for some iel;. Since the opera-
tions satisfy the equations of Junk(Sig):

op P (f*(x))=0p" P (L") (F*(opns(s)®(x)))
= opns(s) V(LI ®(F* (opns(s)*(x))))
=f*(opns(s)P(x)) =f*(op” (x)).

The definition of f* immediately guarantees By q»=B, and ufof*=(vF) 1o f*=
(vF)"teovPe f=f f*isunique since each total g: B—F(P) must coincide on B, with f*
due to ufog=f. Outside B;, g must map x homomorphically to elements outside
vP(P). There is exactly one such element, namely L(f*(opns(s)®(x))).

The assignment on objects P+—F(P) can be canonically extended to a functor
F: AlgP(Sig)— Alg(Sig) which is right adjoint to < : Alg(Sig)—Alg°(Sig). []

For hierarchical graph structures, the junk completion of Definition B.2 provides
some further information about colimits and how they can be constructed if the
following uniqueness constraint is additionally required in the completion process.

Definition B.4 (Sink completion). If Sig is a hierarchical graph structure, its sink
completion Sink(Sig) is the following specification with conditional equations:

Sink(Sig)=
Use Junk(Sig)
Equations
(opns(s)i(y)= L, (X) = y= L (opns(s)(¥))secs, ie1,

The categories Algh(Sig) and Alg(Sink(Sig)) are closely related by the following
pair of functors.

38 f* s the extension of f* to vectors and opns(s)®(x) is the vector such that for all ielj,
opns(s)*(x); = opns(s)?(x).
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Definition and Proposition B.5 (Completion functor). 1f Sig=(S, OP) is a hierarchical
graph structure and Sink(Sig) its sink completion, the completion functor
T: Alg®(Sig)— Alg(Sink(Sig)) can be defined as follows:

(1) On objects, T(A)=Free(A), where Free(A4) is the free Sink(Sig)-algebra over
A.*? Since Free : Alg(Sig)— Alg(Sink(Sig)) is consistent, T can be chosen such that for
all seS, A, T(A),

(2) On morphisms, T(f: A—B)=f":T(A)->T(B) is given for all seS by

fsT(x)z{ fi(x) if xed;,,

LI® (T (opns(s)T™(x))) otherwise.

Proof. Noetherian induction on the sort relation < shows that f T is a family of total
mappings; compare proof of Proposition B.3. For fT to be homomorphic, it is to be
shown that

(1) fMop™™(x))=0pT®'(fT(x)) for all opeOP and

) fM(LTH(F))= LTE(fT(X)) for all L-operators.
In the first case, two subcases can be distinguished, i.e. either xe A, or x¢ A, If the
former is true, f7 is homomorphic since f is. If the latter is true, the definition of fT
provides: op™®(fT(x))=o0p™ ®(LI® ([T (opns(s)T“(x)))). Since op=opns(s); for
some jel,, the equations in Junk(Sig) make sure that

op" P (LI®( T (opns(s)T(x)))) = opns(s)I B LT® (7T (opns(s)T“(x))))

=/"(opns(s)] W (x))=/T(op" “(x)).

In the second case, we have by construction of T(4) that 1LT“(X)¢ A. Therefore, we
obtain by definition of fT: fT(LT™(X))= LT®(FT(opns(s)"“ (LT (X)))). The equa-
tions of Junk(Sig) guarantee, for all jel,, that: opns(s)] (LT (X))=X;. Hence, it
can be concluded: LT®(fT(opns(s)T( LT*(X))))= LT ®(fT(%)), which completes
the proof that fT: T(4)~T(B) is a total homomorphism. By definition, the functor
T preserves identities and respects morphism composition. [J

Definition and Proposition B.6 (Restriction functor). If Sig=(S, OP) is a hierarchical
graph structure and Sink(Sig) its sink completion, the restriction functor
P: Alg(Sink(Sig))— AlgP(Sig) can be defined as follows:
(1) On objects, P(4);={ ye A|y # L{(X)} for seS and for opeOP, op*“ = opih 4.
(2) On morphisms, P(f: 4—B)=f":P(4)—P(B) is given by

f"(x)={ f(x) if f(x)eP(B),

undefined otherwise.

Proof. The conditional equations of Sink(Sig) guarantee that P(A) is a Sig-algebra
for each A€ Alg(Sink(Sig)) as the following argument demonstrates: The assumption

3% Free constructions for specifications with conditional equations always exist; cf. [32, 6]. The construc-
tions of [6] can be easily extended to handle operators with infinitely many arguments.
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xeP(A), and for some operation op:s—s’, op" ™) (x)¢P(A4)y implies op?(x)= LZ().
But A satisfies the equations in Sink(Sig). Hence, x = | {(Z) and, therefore, x¢ P (4),
which is a contradiction to the assumption. By definition, f¥ is a family of partial
mappings. The same argument as above provides that xeP(A)»~ implies
op*(x)eP(A)» for all op:s—s’. Thus, P(A)» is a subalgebra of P(4). fF is
homomorphic on its scope since f is.

The definition of P immediately provides that identities and compositions of
morphisms are preserved. [

Theorem B.7 (Completion). The categories Algt(Sig) and Alg(Sink(Sig)) are equiva-
lent for hierarchical graph structures Sig.

Proof. The definition of the completion functor T and of the restriction functor
P immediately provides P T =id.

For the equivalence, it remains to be shown that Te Pxid. The construction of
P(A4) for a Sink(Sig)-algebra A provides a total inclusion homomorphism
i:P(A)—>[A] where [ ]:Alg(Sink(Sig))— Alg(Sig) is the forgetful functor induced by
the specification inclusion of Sig in Sink(Sig). The completion functor T is the free
Sink(Sig)-construction on objects. Hence, we obtain a unique extension of i, i.e. a total
homomorphism *: Free(P(4))— A4 such that the Diagram 23 commutes. Note that
uP™ has been chosen to be the inclusion; cf. Definition B.5. By induction on the sort
order <, it can be shown that i * is an isomorphism. For a minimal sort s w.r.t. <, L,
is a constant. Hence, A;=P(A4), & { L} and i¥ is surjective and injective.

Now consider a sort s and assume that i¥ is bijective for s'<s. By Definition B.6,

A;=P(A), @ { LA(X)|for all vectors X with x;eA, for iel,}.

Thus, A, is generated by P(A4), and i¥ is surjective. For the proof that i¥ is injective,
suppose that i¥(x)=i¥(y) for some x, yeFree(P(A4)),. If i¥(x)eP(A),, we obtain
x, yeP(A), and x=y since Diagram 23 commutes. If i*(x)¢P(4),, we obtain
x=_LFree(P(A))(b’),y:_LFree(P(A))(‘/—")), and

LA =i (LT @)) = id () =i (y) =i (LT CG0)) = LA ().
Since A4 satisfies the equations of Sink(Sig), it follows that, for all kel
i* (i) = opns(s)i (L (7*(9))) = opns () (L (7 (W) = i* (w).

By induction hypothesis, i¥ is injective for all sorts s’ <s. Hence, for all kel,, 3, =w,
and, therefore, x = LFree®)(Fy= | Free@®i(y— y

piA) — [4] A
P =
[i*] i*
[Free(P(A))] Free(P(A)

Diagram 23. Extension of restriction inclusion.
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Free(P(A) L o Free(P(B)
| |

[

A———————§8

Diagram 24. Natural transformation for completion.

With this result on objects, it is obvious that Diagram 24 commutes for each total
homomorphism f. [

Many graph structures which provide an algebraic model for some relational or
graphical structures are hierarchical (compare examples in Section 3). For these graph
structures, the whole theory presented in this article could have been described as

Y e B

d tneory of sink- completea algebras due to Theorem B.7 [CI L21)
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