
Computational Geometry 20 (2001) 131–144
www.elsevier.com/locate/comgeo

The point in polygon problem for arbitrary polygons

Kai Hormanna,∗, Alexander Agathosb
a University of Erlangen, Computer Graphics Group, Am Weichselgarten 9, 91058 Erlangen, Germany

b University of Athens, Department of Informatics, Athens, Greece

Communicated by K. Mehlhorn; received 18 January 2000; received in revised form 9 January 2001; accepted 20 March 2001

Abstract

A detailed discussion of the point in polygon problem for arbitrary polygons is given. Two concepts for solving
this problem are known in literature: theeven–odd ruleand thewinding number, the former leading toray-crossing,
the latter toangle summationalgorithms. First we show by mathematical means that both concepts are very closely
related, thereby developing a first version of an algorithm for determining the winding number. Then we examine
how to accelerate this algorithm and how to handle special cases. Furthermore we compare these algorithms with
those found in literature and discuss the results. 2001 Elsevier Science B.V. All rights reserved.

Keywords:Polygons; Point containment; Winding number; Integer algorithms; Computational geometry

1. Introduction

A very natural problem in the field of computational geometry is the point in polygon test: given a
pointR and an arbitrary closed polygonP represented as an array ofn pointsP0,P1, . . . , Pn−1,Pn = P0,
determine whetherR is inside or outside the polygonP . While the definition of the interior of standard
geometric primitives such as circles and rectangles is clear, the interior of self-intersecting closed
polygons is less obvious. In literature [1,4,5,7,8,10,13,14], two main definitions can be found.

The first one is theeven–oddor parity rule, in which a line is drawn fromR to some other pointS that
is guaranteed to lie outside the polygon. If this lineRS crosses the edgesei = PiPi+1 of the polygon an
odd number of times, the point is insideP , otherwise it is outside (see Fig. 1(a)). This rule can easily be
turned into an algorithm that loops over the edges ofP , decides for each edge whether it crosses the line
or not, and counts the crossings. Various implementations of this strategy exist [2–4,6,8,10–12] which
differ in the way how to compute the intersection between the line and an edge and how this rather costly
procedure can be avoided for edges that can be guaranteed not to cross the line. We discuss these issues
in detail in Section 3.

* Corresponding author.
E-mail addresses:hormann@informatik.uni-erlangen.de (K. Hormann), agalex@yahoo.com (A. Agathos).

0925-7721/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(01)00012-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82317584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

132 K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144

(a) (b)

Fig. 1. The interior of a self-intersecting polygon based on (a) the even–odd rule and (b) the nonzero winding
number.

The second one is based on thewinding numberof R with respect toP , which is the number of
revolutions made around that point while traveling once alongP . By definition,R will be inside the
polygon, if the winding number is nonzero, as shown in Fig. 1(b). We show that the same result as with
the even–odd rule can be obtained by letting the interior consist of those points whose winding number is
odd. Therefore, both definitions of the interior can be based on the winding number, making this concept
the more general one.

In Section 2 we explain in detail how theincremental anglealgorithm [13] for determining the winding
number can be derived mathematically. Further analysis of this algorithm leads to a modification that
turns it into a ray-crossing algorithm, revealing that both concepts are the same in principle. The resulting
algorithm is capable of handling any special cases that might occur, e.g.,R may coincide with one of the
verticesPi of P or may lie on one ofP ’s edgesei .

Several methods for accelerating this basic algorithm are discussed in Section 3. Of course the problem
always is of complexity O(n) for arbitrary polygons, hence “acceleration” refers to reducing a constant
time factor. The complexity can only be reduced for special polygons, e.g., if the polygon is convex,
an O(logn) algorithm can be found [7,8,10]. The performance of the different algorithms is analyzed
in Section 4 and a comparison to those found in literature is made. Section 5 summarizes the proposed
ideas.

2. Winding numbers

As stated in Section 1, the answer to the point in polygon problem can be derived from the winding
number. Starting with the mathematical definition of the winding number, we simplify the general
formula step by step until we obtain the pseudo-code of a very intelligible algorithm that determines
the winding number of a point with respect to an arbitrary polygon.

The winding numberω(R,C) of a point R with respect to a closed curveC(t) = (x(t), y(t))T,
t ∈ [a, b], C(a) = C(b), is the number of revolutions made aroundR while traveling once alongC,
provided thatR is not visited in doing so. Whenever there existst̃ ∈ [a, b] such thatC(t̃) = R, the
winding numberω(R,C) is undefined. Otherwise it can be calculated by integrating the differential of
the angleϕ(t) between the edgeRC(t) and the positive horizontal axis throughR (cf. Fig. 2(a)). AsC(t)
is a closed curve, this always yieldsω · 2π with ω ∈ Z denoting the winding number.

K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144 133

Fig. 2. (a) The continuous angleϕ(t) for curves. (b) The discrete signed angleϕi for polygons.

Without loss of generality we assumeR = (0,0) so thatϕ(t)= arctan(y(t)/x(t)) and

ω(R,C)= 1

2π

b∫
a

dϕ(t)= 1

2π

b∫
a

dϕ

dt
(t)dt = 1

2π

b∫
a

ẏ(t)x(t)− y(t)ẋ(t)

x(t)2 + y(t)2
dt. (1)

A closed polygonP represented as an array ofn pointsP0,P1, . . . , Pn−1,Pn = P0 can be seen as a
piecewise linear curvet �→ (xi(t − i), yi(t − i))T, t ∈ [i, i + 1], with (xi(t), yi(t))

T = tPi+1 + (1− t)Pi .
Using Eq. (1) and Appendix A we obtain

ω(R,P) = 1

2π

n−1∑
i=0

1∫
0

ẏi(t)xi (t)− yi(t)ẋi(t)

xi(t)2 + yi(t)2
dt

= 1

2π

n−1∑
i=0

arccos
〈Pi |Pi+1〉

‖Pi‖‖Pi+1‖ · sign
∣∣∣∣P x

i P x
i+1

P
y
i P

y
i+1

∣∣∣∣ (2)

= 1

2π

n−1∑
i=0

ϕi, (3)

whereϕi is the signed angle between the edgesRPi andRPi+1 (cf. Fig. 2(b)).
Eq. (2) can be used for creating an algorithm for computing the winding number but it involves

expensive calls to thearccosandsqrt routines. Although these can be accelerated by using lookup-tables
and nearest-neighbor interpolation, as we can eliminate rounding errors by rounding the final result to
the nearest integer value, this still remains a comparatively slow algorithm.

Further simplification of Eq. (3) can be achieved by considering the rounded partial sumsŝj =
1
4�

∑j
i=0

ϕi
π/2� with ω(R,P) = ŝn−1. This is equivalent to counting only quarter-revolutions and can be

realized as follows. Based on an algorithm that is explained on p. 251 of Rogers’ book [9] for testing

134 K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144

Fig. 3. Classification of verticesPi by quadrants, e.g.,
q3 = 0, q4 = 1 andq5 = 2.

Fig. 4. Example of half ccw- or cw-revolution: edgee3
with δ3 = 2 is ccw,e4 with δ4 = −2 is cw.

whether a polygon surrounds a rectangular window or is disjoint to it, we classify each vertexPi of the
polygonP by the numberqi of the quadrant in which it is located with respect toR (cf. Fig. 3), i.e.,

qi =

0
1
2
3

 , if arctan

P
y
i

P x
i

∈

[0, π/2)
[π/2, π)
[π, 3π/2)

[3π/2, 2π)

, resp.P x

i

>

�
<

�

Rx,P

y
i

�
>

�
<

Ry.

Now we can define thequarter angle1 δi = qi+1 − qi , i = 0, . . . , n− 1, for each of the polygon’s edges
ei . If δi = 0, then the corresponding edge is located wholly in one quadrant and nothing happens. If
δi ∈ {1,−3}, the edge crosses one of the quadrant boundaries in counter-clockwise (ccw) direction and
a quarter ccw-revolution aroundR is made, while the reverse holds forδi ∈ {−1,3}. If δi ∈ {2,−2}, a
further check is required to decide whether a half ccw- or cw-revolution aroundR occurs by moving
along the corresponding edgeei (cf. Fig. 4). This can be done by checking the orientation of the triangle
�(R,Pi,Pi+1), i.e., by finding the sign of the determinant,

sign
∣∣∣∣P x

i −Rx P x
i+1 −Rx

P
y
i −Ry P

y
i+1 −Ry

∣∣∣∣ =
{+

−
}

⇐⇒
{

ccw
cw

}
.

By further introducing theadjustedquarter angleŝδi via the table

δi δ̂i

0 0

1,−3 1

−1,3 −1

2 ccw,−2 ccw 2

2 cw,−2 cw −2

1 Because of 0� qi � 3 we know that−3 � δi � 3.

K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144 135

� evaluation of the determinant �

function det(i)

return (P x
i −Rx)∗ (P y

i+1 −Ry)− (P x
i+1 −Rx)∗ (P y

i −Ry)

� quadrant classification �

for i = 0 to n− 1
if Px

i > Rx and P
y
i �Ry : qi = 0

if Px
i �Rx and P

y
i > Ry : qi = 1

if Px
i < Rx and P

y
i �Ry : qi = 2

if Px
i �Rx and P

y
i < Ry : qi = 3

qn = q0

� determination of winding number �

ω= 0
for i = 0 to n− 1
switch qi+1 − qi :

1,−3: ω= ω+ 1
−1,3: ω= ω− 1
2,−2: ω= ω+ 2∗ sign of det(i)

return ω/4

Algorithm 1. First version of a winding number algorithm.

we can sum up thesêδi to count the number of quarter ccw-revolutions aroundR and get

ŝj = 1

4

j∑
i=0

δ̂i �⇒ ω(R,P)= ŝn−1 = 1

4

n−1∑
i=0

δ̂i .

This leads to the first version of a winding number algorithm (Algorithm 1) which resembles the
incremental angle algorithm in [13]. It can further be improved by exploiting the following observation:

n−1∑
i=0

δi =
n−1∑
i=0

(qi+1 − qi)= qn − q0 = 0 �⇒ ω(R,P)= 1

4

n−1∑
i=0

(
δ̂i − δi

)
,

i.e., we just need to sum up the differencesδ̂i − δi , which are nonzero only forδi ∈ {−3,−2,2,3}. 2 Thus,
by defining

δ̄i =

1, if δi ∈ {−3,−2 ccw},
−1, if δi ∈ {3,2 cw},
0, else,

we get

ω(R,P)=
n−1∑
i=0

δ̄i ,

2 And we havêδi − δi = ±4 in these cases.

136 K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144

...

ω= 0
for i = 0 to n− 1
switch qi+1 − qi :

−3: ω= ω+ 1
3: ω= ω− 1

−2: if det(i)> 0: ω = ω+ 1
2: if det(i)< 0: ω = ω− 1

return ω

Algorithm 2. Modification of Algorithm 1.

Fig. 5. All edges (arrows indicating direction fromPi to Pi+1) crossing from below the ray to above are counted
+1 (a), the others−1 (b).

which results in a slight modification of the first algorithm (Algorithm 2) and improves the performance
by approximately 5%.

However, besides this small acceleration it is far more important to notice that the algorithm has now
turned into a ray-crossing method. In fact, by disregarding all edges withδi ∈ {−1,1}, the remaining
cases relate to edges that cross the horizontal ray3 � = {R + λ

(1
0

)
, λ � 0}. The difference to the even–

odd rule where only the number of crossings is counted is that edges starting below this ray and ending
above it are counted+1 and the others−1 (cf. Fig. 5). Nevertheless, the winding numberω still shifts
from even to odd and back with every crossing, so that testing the parity ofω exactly gives the even–odd
definition.

Therefore, we have presented an algorithm that is capable of solving the point in polygon problem for
both definitions of the interior of an arbitrary polygon: the one based on the even–odd rule and the other
based on the nonzero winding number. In contrast to the statement of O’Rourke, that the determination
of the winding number depends on “floating-point computations, and trigonometric computations in
particular” [8], this algorithm gets by with integer arithmetic except for thedet function which needs
floating-point operations if the coordinates are non-integer. However, divisions (neither integer nor
floating-point) are totally avoided.

3 This refers to the special choice ofS = (+∞
Ry

)
in the definition of the even–odd rule.

K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144 137

Fig. 6. Degenerate intersections of� andP .

Another advantage of this algorithm is the handling of degenerate cases, which can cause trouble in
other algorithms, as, e.g., Foley et al. point out that “the ray must hit no vertices of the polyline” [1].
However, the quadrant-classification of the verticesPi naturally avoids these degeneracies. In Fig. 6, the
regular polygon segmentP1,P2 as well as the degenerate segment sequenceP6,P7,P8,P9 should count
+1, while the sequenceP4,P5,P6 should count−1 andP2,P3,P4 should not be regarded as a crossing
at all, thus resulting inω(R,P)= 1.

The classification scheme guarantees that no vertex can ever coincide with the ray�, because either
P
y
i � Ry , thenPi is above the ray, orP y

i < Ry which holds for all vertices lying below�. Therefore, the
edgese2, e3, e4 ande7 are ignored as all the vertices adjacent to these edges are classified as 0-quadrant-
vertices. On the other hand, edgese1 ande6 will be recognized as positive crossings (δ̄1 = δ̄6 = 1) ande5

as a negative one (δ̄5 = −1). All other edges, includinge8 do not affect the determination ofω(R,P).
Another important feature of the algorithm is that it can easily be modified to recognize the special

case ofR lying on the boundary ofP , which may lead to ambiguities in some other algorithms. We
distinguish two different cases: firstly,R may coincide with one of the verticesPi of P , which can be
detected by inserting the line

if Px
i =Rx and P

y
i =Ry : exit vertex_code

into the quadrant classification loop. Secondly,R may lie on one ofP ’s edgesei . In this case, the angle
betweenRPi andRPi+1 is always±π , so that the classification scheme assigns two diagonally opposite
quadrants (0 and 2, or 1 and 3) to the verticesPi andPi+1, henceδi = qi+1 − qi = ±2. This always
invokes thedet function, which returns 0 in this case. Thus, by replacing this function with

function det(i)
d = (P x

i −Rx) ∗ (P y
i+1 −Ry)− (P x

i+1 −Rx) ∗ (P y
i −Ry)

if d = 0
exit edge_code

else
return d

the algorithm is able to detect this case, too. In the remainder we will refer to this modification as the
boundary version.

138 K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144

function classify(i)

if P
y
i > Ry

return (P x
i �Rx)

else

if P
y
i < Ry

return 2+ (P x
i �Rx)

else

if Px
i > Rx

return 0
else
if Px

i < Rx

return 2
else
exit vertex_code

Algorithm 3. Efficient quadrant classification.

ω= 0
for i = 0 to n− 1

� horizontal line crossed? �

if (P
y
i < Ry and P

y
i+1 �Ry) or

(P
y
i �Ry and P

y
i+1 <Ry)

� crossing to the right? �

if (det (i) > 0 and P
y
i+1 >P

y
i) or

(det (i) < 0 and P
y
i+1 <P

y
i)

� modify winding number �

if P
y
i+1 >P

y
i

ω= ω+ 1
else
ω= ω− 1

return ω

Algorithm 4. Computing the winding number without
quadrant classifications.

3. Efficient implementation

For many applications the algorithms of the previous section are sufficient. They are robust, correct and
easy to understand which always helps to reduce the probability of an implementation bug. But in other
applications this routine might be called so often that it turns out to be a bottleneck. We now discuss how
the basic algorithms can be accelerated, ending up with two very efficient versions: theefficient standard
algorithm, that is very short but does not care about the special case ofR lying on the boundary ofP and
theefficient boundaryalgorithm, that needs a little more code but handles that special case.

Looking at Algorithms 1 and 2, there are three parts that can be improved: thedet function, the
quadrant classification and the determination of the winding number. Thedet function can be declared
asinline which saves a few clock cycles for the function call but there is no way to accelerate the
actual calculation of this determinant. Likewise one can try to break up theswitch structure in the third
part into a series of sophisticatedif/else statements but this does not really accelerate the algorithm
considerably.

However, the quadrant classification can be improved a lot. In the present version, the average number
of comparisons that have to be evaluated for each vertex is 6, assuming the compiler generatesshort
circuit evaluation4. By simply adding anelse statement to the end of each line this number can be
reduced to 4. A more sophisticated decision tree which only needs slightly more than 2.5 comparisons
per vertex and is also able to detect the case of vertex coincidence is shown in Algorithm 3. Note that we
have followed the C convention that logical expressions are equal to 1 if they are true and 0 otherwise
in order to reduce the length of the code. The use of this classification variant accelerates the basic
algorithms of the previous section by more than 30% (cf. Fig. 11).

Unfortunately this is the maximum speed-up we can get out of our basic idea and we need to restructure
the algorithm for further improvement. First of all we can combine the two loops because both of them

4 I.e., the second operand of anand operator is only evaluated if the first one is true.

K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144 139

Fig. 7. Edges that fulfill thecrossing condition.

range over the same intervali = 0, . . . , n − 1. Then we can eliminate the arrayq as we can process
the quadrant numbers on the fly and do not need an explicit storage of these values. All we need for
each single pass of the loop are the quadrant numbers of the vertex where the edgeei that is currently
processed begins and the one where it ends, namelyqb andqe. This leads to the following simplification:

qb = classify(0)
for i = 0 to n− 1
qe = classify(i + 1)
switch qe − qb:

...

qb = qe

and reduces memory usage as well as execution time.
Further optimization can be achieved by omitting the quadrant numbers altogether and rather handling

the cases in which the winding number changes directly. All edgesei that relate to these cases have in
common that one of their endpoints lies strictly below the horizontal line throughR and the other one
above or on it (cf. Fig. 5). After using this property as an initial test to distinguish edges that might
contribute to a change in the winding number from those who certainly do not, the edge constellations
shown in Fig. 7 remain. To further reject those edges that do not modify the winding number, the
following observation can be used. Whenever the determinant does not have the same sign as the
differenceP y

i+1 −P
y
i , the intersection of the edge with the horizontal line is on the left side ofR and the

winding number remains unchanged. For the residual edges, the edge direction decides the sign of the
modification: if the edge crosses the horizontal line from below (P

y
i+1 >P

y
i), then the winding number is

increased, otherwise it is decreased. These considerations are summarized in Algorithm 4, which is 20%
faster than Algorithm 2 with the optimal classification scheme (Algorithm 3). This code can be abridged
a lot by using the following macros which may seem a little cryptic at first sight:

crossing: (P
y
i < Ry) �= (P

y
i+1 <Ry),

right_crossing: (det (i) > 0)= (P
y
i+1 >P

y
i),

modify_ω: ω = ω+ 2∗ (P y
i+1 > P

y
i)− 1.

They can be used to rewrite Algorithm 4 as Algorithm 5 and accelerate it by more than 30%.
The last improvement on the winding number algorithm can be made by avoiding the rather costly

procedure of computing the determinant whenever possible. In Algorithm 5 the determinant computation
is invoked for all edges that pass thecrossing test in order to find out whether they intersect the
horizontal line to the left or to the right ofR. But for some of these edges this decision can be made in a

140 K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144

ω= 0
for i = 0 to n− 1
if crossing
if right_crossing
modify_ω

return ω

Algorithm 5. Using macros to
rewrite Algorithm 4.

ω= 0
for i = 0 to n− 1
if crossing
if Px

i �Rx

if Px
i+1 >Rx

modify_ω
else
if right_crossing
modify_ω

else
if Px

i+1 >Rx

if right_crossing
modify_ω

return ω

Algorithm 6. Efficient standard algorithm.

Fig. 8. Different cases of edge coincidences.

simpler way. Referring to Fig. 7, edges like the leftmost one (P x
i < Rx and P x

i+1 � Rx) never change the
winding number, whereas those similar to the rightmost one (P x

i � Rx and P x
i+1 >Rx) always do. Both

cases can be detected by comparisons and only the edges in the middle require the evaluation of thedet
function to decide whether they affect the winding number or not. This observation has been realized
in the efficient standard algorithm (Algorithm 6). Assuming uniformly distributed polygon vertices, the
probability of occurrence of the different edge types is 25% for the leftmost, 25% for the rightmost case
and 50% for the edges shown in the middle. Therefore Algorithm 5 evaluates thedet function only
every second time on average. This improvement is traded in for two extra comparisons and decreases
the computational costs by approximately 5%.

Now we will show that only minor modifications of the efficient standard algorithm are necessary in
order to handle special cases. First of all, most cases of edge coincidences can be detected by using the
modifieddet function in theright_crossing condition. Only the case ofR lying on a horizontal
edge (leftmost case in Fig. 8) cannot be recognized this way because this constellation does not pass the
crossing condition and can therefore never reach the call of thedet function. The other special case,
R being identical to one of the verticesPi , can be detected by checking the equality of both coordinates as
in the boundary version of Algorithm 1. The resulting code is shown in Algorithm 7. Note that the vertex
coincidence test is prior to the investigation of possible ray intersections, because an edge intersection
could be wrongly detected otherwise.

K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144 141

if P
y
0 =Ry and Px

0 =Rx

exit vertex_code
ω= 0
for i = 0 to n− 1
if P

y
i+1 =Ry

if Px
i+1 =Rx

exit vertex_code
else
if P

y
i =Ry and (P x

i+1 >Rx)= (P x
i < Rx)

exit edge_code
if crossing
if Px

i �Rx

if Px
i+1 >Rx

modify_ω
else
if right_crossing
modify_ω

else
if Px

i+1 >Rx

if right_crossing
modify_ω

return ω

Algorithm 7. Efficient boundary algorithm.

4. Evaluation

The timings reported in this section refer to an implementation in C on a 195 MHz SGI R10000 with
128 MB of memory, but similar results were obtained by usingPascaland a Pentium PC with 233 MHz
and 64 MB of memory. We generated 1000 polygons for different values ofn and determined the winding
numbers of 1000 reference points for each of these polygons, thus calling the winding number algorithm
one million times. The vertices of the polygons as well as the reference points were chosen randomly
within the integer square[−100,100] × [−100,100].

Fig. 9 shows that the runtime of the standard algorithms that do not take the special cases into account
grows linear with the number of vertices, thus confirming the O(n) complexity of the problem. In
contrast, the boundary algorithms behave different (see Fig. 10). As the number of vertices grows, the
probability of the reference point to lie on the boundary of the polygon increases. At the same time the
chances of the boundary algorithm to exit earlier with the detection of a vertex or an edge coincidence
rise and therefore the algorithms do not need to run through the whole loop over the polygon’s edges in
many cases. Of course, this effect is much less perceivable if the reference points are chosen from a larger
domain than the polygon vertices or if the coordinates are floating-point values. Fig. 11 summarizes the
timing results of all algorithms for the special choice ofn= 10.

All algorithms presented in this paper can easily be modified to give the result of the even–odd
rule instead of the winding number by replacing every statement that modifiesω, especially the macro
modify_ω, with ω= 1− ω. This simplification saves about 5% of the computation time.

Furthermore we would like to mention that the algorithms can be speeded up considerably by
comparing the reference point with the polygon’s bounding box first, as it is done, e.g., in the point in

142 K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144

Fig. 9. Execution times of the algorithms that do not handle the special cases.

Fig. 10. Execution times of the algorithms that handle the special cases.

polygon algorithm of the C++ library LEDA [6]. The additional costs of the bounding box determination
and the test itself pay off after just a few (< 10) tests, the precise number depending on the number of
vertices as well as the size of the reference point domain compared to the size of the polygon.

We conclude this section by comparing our algorithms to those found in literature. The most thorough
comparison of different point in polygon strategies was probably made by Haines in [4], with the result
that the ray-crossing strategy performs best “if no preprocessing nor extra storage is available”. Taking a
close look at his ray-crossing algorithm it is very similar to Algorithm 6, except that he uses a different

K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144 143

Fig. 11. Execution times of all algorithms forn= 10.

test for determining whether an edge crosses the ray to the right. He directly computes thex coordinate
of the intersection and compares it toRx,

right_crossing’: Px
i+1 − (P

y
i+1 −Ry) ∗ (P x

i+1 − Px
i)/(P

y
i+1 − P

y
i) > Rx .

Note that the case ofP y
i+1 = P

y
i , which would cause a division by zero, never passes the priorcrossing

test. We found this version to be approximately 8% slower than theright_crossing condition in our
testing environment, which is probably due to the division operation. This observation corresponds with
Haines’ comments on a modified version of his algorithm [3] where he uses theright_crossing
condition. At the same time he omits the if-statements that filter unnecessary evaluations of this condition,
making that modified version identical to Algorithm 5.

Theright_crossing’condition has also been used in an implementation by Franklin [2] which is
otherwise identical to Algorithm 5, as are the algorithm in the LEDA library [6] and the implementation
by Stein [11] except that they swapPi andPi+1 if necessary so that they can always assumeP

y
i+1 < P

y
i

which simplifies theright_crossing condition to (det (i) < 0) but is about 20% slower in total.
Finally, the code given by O’Rourke [8] resembles Algorithm 4 with aright_crossing’ condition
and he gives further optimization ideas as exercises which will eventually lead to Algorithm 5.

5. Conclusion

We have presented a detailed discussion of the point in polygon problem for arbitrary polygons. This
problem is well known and has been discussed in many books and papers before. Most of the authors
distinguish between two concepts for solving this problem: the even–odd or parity rule and the nonzero
winding number. We have shown by mathematical means that both concepts are the same in principle
and that the concept of winding numbers encompasses the even–odd idea.

Furthermore, we have developed an algorithm for the determination of the winding number and have
improved it step by step up to a very efficient implementation. We have compared our algorithms to
those found in literature and can summarize that in our testing environment Algorithm 6 performed best
although we admit that Algorithm 5 and the implementations in [2–4] were so close that they might be
faster for different machine architectures and compilers. However, a definite advantage of our approach

144 K. Hormann, A. Agathos / Computational Geometry 20 (2001) 131–144

is that it can easily be extended to handle the special case ofR lying on the boundary ofP (Algorithm 7),
an issue that was otherwise taken care of only in [6] and [8], leading to much slower algorithms.

Appendix A

LetR = (0,0)T, P = (Px,Py)
T andQ= (Qx,Qy)

T be the vertices of a planar triangle andα, β, γ the
angles of that triangle atR, P andQ, respectively. Then

cosα = 〈P |Q〉
‖P ‖‖Q‖ , cotβ = 〈P −Q|P 〉

|D| , cotγ = 〈Q− P |Q〉
|D| ,

with D = PxQy −QxPy and for the linear curve(x(t), y(t))T = tQ+ (1− t)P , t ∈ [0,1], the following
equations hold:

1∫
0

ẏ(t)x(t)− y(t)ẋ(t)

x(t)2 + y(t)2
dt =

1∫
0

D

t2〈Q−P |Q− P 〉 + 2t〈Q− P |P 〉 + 〈P |P 〉 dt

= arctan
〈Q− P |Q〉

D
+ arctan

〈P −Q|P 〉
D

= sign(D)(arctan cotγ + arctan cotβ)

= sign(D)(π − γ − β)

= sign(D)α.

References

[1] J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, Computer Graphics: Principles and Practice, 2nd Edition,
Addison-Wesley, 1990.

[2] R. Franklin, pnpoly, http://www.ecse.rpi.edu/Homepages/wrf/geom/pnpoly.html.
[3] E. Haines, CrossingsMultiplyTest, http://www.acm.org/tog/GraphicsGems/gemsiv/ptpoly_haines/ptinpoly.c.
[4] E. Haines, Point in polygon strategies, in: P. Heckbert (Ed.), Graphic Gems IV, Academic Press, Boston, MA,

1994, pp. 24–46.
[5] S. Harrington, Computer Graphics: A Programming Approach, McGraw-Hill, 1983.
[6] K. Mehlhorn, S. Näher, LEDA: A Platform for Combinatorial and Geometric Computing, Cambridge

University Press, 1999.
[7] J. Nievergelt, K. Hinrichs, Algorithms and Data Structures: With Applications to Graphics and Geometry,

Prentice-Hall, 1993.
[8] J. O’Rourke, Computational Geometry in C, 2nd Edition, Cambridge University Press, 1998.
[9] D.F. Rogers, Procedural Elements for Computer Graphics, McGraw-Hill, 1985.

[10] R. Sedgewick, Algorithms, 2nd Edition, Addison-Wesley, 1988.
[11] B. Stein, A point about polygons, Linux Journal 35 (March 1997).
[12] T. Theoharis, A. Böhm, Computer Graphics: Principles & Algorithms, Symmetria, 1999 (in Greek).
[13] K. Weiler, An incremental angle point in polygon test, in: P. Heckbert (Ed.), Graphic Gems IV, Academic

Press, Boston, MA, 1994, pp. 16–23.
[14] M. Woo, J. Neider, T. Davis, OpenGL Programming Guide, 2nd Edition, Addison-Wesley, 1997.

http://www.ecse.rpi.edu/Homepages/wrf/geom/pnpoly.html
http://www.acm.org/tog/GraphicsGems/gemsiv/ptpoly_haines/ptinpoly.c

