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ABSTRACT Modifying the density and distribution of ion channels in a neuron (by natural up- and downregulation or by
pharmacological intervention or by spontaneous mutations) changes its activity pattern. In this investigation we analyzed how
the impulse patterns are regulated by the density of voltage-gated channels in a neuron model based on voltage-clamp
measurements of hippocampal interneurons. At least three distinct oscillatory patterns, associated with three distinct regions in
the Na-K channel density plane, were found. A stability analysis showed that the different regions are characterized by saddle-
node, double-orbit, and Hopf-bifurcation threshold dynamics, respectively. Single, strongly graded action potentials occur in an
area outside the oscillatory regions, but less graded action potentials occur together with repetitive firing over a considerable
range of channel densities. The relationship found here between channel densities and oscillatory behavior may partly explain
the difference between the principal spiking patterns previously described for crab axons (class 1 and 2) and cortical neurons
(regular firing and fast spiking).

INTRODUCTION

Electric brain activity is characterized by oscillatory patterns

caused by dynamically interacting neuronal groups. The deter-

minants of these patterns, and thus of associated perceptual

and behavioral states, include the configuration of the neural

network, the strength and type of the synaptic connections,

and the intrinsic firing/resonance properties of the neurons (1).

Factors determining the intrinsic firing properties include

dendritic morphology (2) and composition of ion channel

mixture (see Hille (3)). An increasing number of studies show

that the ion channel density and distribution vary continuously

during normal activity, either to maintain or to modify the

firing patterns in a fluctuating firing environment (4,5).

Likewise, drugs as general anesthetics and antiepileptics func-

tion by selectively blocking or activating channels (6,7),

thereby modifying the interacting patterns. Our aim here is to

analyze how the density of a class of ion channels, the voltage-

gated ones, regulates the impulse-firing patterns by studying a

simple neuron model.

The model neuron is based on a voltage clamp analysis of

a subgroup of hippocampal interneurons. This group shows

stimulus-dependent action potentials (8,9), thus deviating

from the received view that most neurons follow the all-or-

nothing law (10). Numerical calculations, based on the

Hodgkin-Huxley formalism, suggest that the graded behav-

ior in these cells is mainly due to low Na channel density.

When we increased the density in the model calculations, all-

or-nothing behavior and repetitive firing appeared. Graded

behavior has also been demonstrated in the classical squid

axon preparation when temperature is increased to room

temperature (11), suggesting that graded behavior is more

common in central neurons than previously recognized. The

model neuron thus allows us to analyze not only the channel

density-dependent oscillatory activity but also its relation-

ship with the gradedness of the impulses.

In contrast to other cases reported, where the mathematical

descriptions can be reduced to simpler systems (FitzHugh-

Nagumo and Morris-Lecar models), the model in this study

was not readily simplified to a two-dimensional system. We

therefore used the full set of differential equations and

analyzed the stability of the stationary solutions. The anal-

ysis revealed that the oscillatory activity could be classified

in at least three distinct patterns associated with three distinct

regions in the channel density plane. The different oscillatory

regions are associated with different action potential thresh-

old behaviors, one region showing a discontinuous current

threshold and the others a zone of steeply, although con-

tinuously, increasing voltage amplitude. The capacity for

gradedness shows a complex relation to the capacity for

repetitive firing; strongly graded action potentials occur in an

area of the channel density plane outside oscillatory regions,

but less graded action potentials occur together with repet-

itive firing over a considerable range of K and Na channel

densities.

The relationship found between channel densities and

oscillatory behavior explains the difference between the

principal spiking patterns previously described for crab

axons and cortical neurons; the spike pattern of Hodgkin’s

class 1 axons and regular spiking pyramidal cells on one side

and that of class 2 axons and fast spiking interneurons on the

other side (12,13). The relationships found explain reported

impulse pattern modifications in cells at selective channel

blockade (14), and open up for novel explanations of pattern

modifications in the brain, caused by selective up- and

downregulation of channels or by action of general anes-

thetics. The latter fact also makes the relationships found
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suggest a possible strategy for constructing novel general

anesthetics.

ANALYSIS

The model

For this analysis, we use a neuron model based on recordings

from small sized hippocampal interneurons at room temper-

ature (3,4). The mathematical description follows that of

Frankenhaeuser and Huxley (15), which differs slightly from

the classical Hodgkin-Huxley description (16) in using i) the

permeability concept rather than the conductance concept

(17), ii) other kinetic equations (m2 instead of m3 and n2

instead of n4), and iii) other values for the rate functions. The
reason for the difference between the kinetics of the two axon

types is possibly a species difference: the Frankenhaeuser-

Huxley description applies to vertebrate myelinated axons and

the Hodgkin-Huxley description to molluscan giant axons.

The basic equations are

dv=dt ¼ Iðv;m; h; nÞ=CM

¼ ðIS � INaðv;m; hÞ � IKðv; nÞ � ILðvÞÞ=CM

(1)

dm=dt ¼ amðvÞ3ð1� mÞ � bmm (2)

dh=dt ¼ ahðvÞ3ð1� hÞ � bhh (3)

dn=dt ¼ anðvÞ3ð1� nÞ � bnn; (4)

where v is membrane voltage, m and h are variables

describing the fraction of activated (m) and inactivated (1� h)
Na channels, and n is a variable describing the fraction of

activated K channels. Is the stimulation current and

INa ¼ AMPNa3ðvF2
=RTÞ3ð½Na�o � ½Na�I

3expðvF=RTÞÞ=ð1� expðvF=RTÞÞ (5)

is the current through Na channels, where AM denotes the

membrane area, and F, R, and T have their normal thermo-

dynamic meanings. [Na]o and [Na]i denote extracellular and
intracellular Na concentrations, respectively.

IK ¼ AMPK3ðvF2
=RTÞ3ð½K�

o
� ½K�

I

3expðvF=RTÞÞ=ð1� expðvF=RTÞÞ (6)

is the current through K channels and

IL ¼ ðv� VRÞ=RM (7)

is the current through leak channels. VR is resting potential

and RM the leak resistance.

PNa ¼ P
�
Na 3 hm

2
(8)

is the Na channel permeability and P*Na the permeability

value when all Na channels are open, i.e., when h ¼ m ¼ 1.

PK ¼ P�
K 3 n2

(9)

represents in the same way the K channel permeability. The

P*Na and P*K values are proportional to the Na and K

channel densities in the cell membrane (number of channels

per membrane area).

The rate functions for Eqs. 2–4 are

am ¼ Aam3ððv� VRÞ � BamÞ=
ð1� expf½Bam � ðv� VRÞ�=CamgÞ

(10)

bm ¼ Abm3ðBbm � ðv� VRÞÞ=
ð1� expf½ððv� VRÞ � Bbm�=CbmgÞ

(11)

ah ¼ Aah3ðBah � ðv� VRÞÞ=
ð1� expf½ðv� VRÞ � Bah�=CahgÞ

(12)

bh ¼ Abh=ð11 expf½Bbh � ðv� VRÞ�=CbhgÞ (13)

an ¼Aanððv�VRÞ�BanÞ=ð1� expf½Ban�ðv�VRÞ�=CangÞ
(14)

bn ¼AbnðBbn�ðv�VRÞÞ=ð1�expf½ðv�VRÞ�Bbn�=CbngÞ;
(15)

with constants A, B, and C listed in Table 2. Values of the

other constants used are summarized in Table 1.

The differential equations were solved by numerical

integration (Runge-Kutta methods). The initial conditions

used were v ¼ VR, n ¼ m ¼ 0, h ¼ 1. The channel densities

were changed by changing the value of the permeability

parameters P*Na and P*K, whereas the kinetic and the

passive membrane parameters were kept constant. In model

terms, this means that the calculations describe the time

evolution of the membrane voltage in a neuron with a con-

stant and simple (single compartment) morphology and with

two homogenously distributed ion channel populations (Na

and delayed rectifier K channels) of variable density.

Features of the model: gradedness
and oscillatory behavior

Fig. 1 illustrates some activity features of the model. The

responses to sub- and suprathreshold current pulses of the

original or default model (i.e., with P*Na ¼ 1.3 3 10�6 and

P*K ¼ 0.243 10�6 m s�1) are shown in the upper panel (A),
the responses of a model with an increased Na channel but

retained low K channel density (P*Na ¼ 303 10�6 and P*K
¼ 0.24 3 10�6 m s�1) is shown in the middle (B), and the

responses of a model with both Na and K channel densities

increased 20-fold (P*Na¼ 263 10�6 and P*K¼ 4.83 10�6

m s�1) are shown in the lower panel (C). The subthreshold

responses in all cases reflect the unchanged, relatively long

time constant of the passive membrane (30 ms ¼ 7 pF3 4.3

GV). Single action potentials are elicited in the low channel

density case (Fig. 1 A) and in the high Na/low K channel

density case (Fig. 1 B), whereas repetitive action potentials is
seen in the high density case (Fig. 1 C). The action potential

amplitude increases with stimulation in all cases but clearly

most in the low density case (1.7-fold between the impulses
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at 10 and 40 pA) and least in the high Na/low K channel

density case (;4%). This reflects the general trend that the

amplitude sensitivity decreases with increased P*Na and

decreased P*K, converging toward all-or-nothing behavior at
P*Na . 30 3 10�6 m s�1 and P*K , 0.24 3 10�6 m s�1.

This density-dependent switch between the capacity for

producing stimulus-dependent single action potentials and

for producing repetitive firing suggests that neuronal infor-

mation processing may switch from amplitude code to rate

code by channel up- or downregulation.

Fig. 2 shows the firing behavior of the model with three

different channel density combinations at increasing stimu-

lation amplitudes. In all three cases the stimulation elicits

repetitive firing at some interval, and in all three cases the

firing terminates as damped oscillations. The three cases

represent different dynamics. In case A (P*Na ¼ 20 3 10�6

and P*K ¼ 20 3 10�6 m s�1) sustained oscillatory activity

appears as an infinite prolongation of damped oscillations

with a frequency;16 Hz, whereas it disappears abruptly at a

frequency of 120 Hz. Case B (P*Na ¼ 203 10�6 and P*K ¼
10 3 10�6 m s�1) shows similar dynamics at threshold but

terminates continuously as the amplitude approaches zero. In

case C (P*Na ¼ 20 3 10�6 and P*K ¼ 5 3 10�6 m s�1)

oscillatory activity emerges with very low frequency unlike

case A and B, whereas it terminates like case B, i.e., con-

tinuously.

Fig. 3 shows how the oscillatory activity of the model

relates to the P*Na-P*K plane (or Na-K channel density

plane) at different stimulations (5–80 pA). The area within

each contour represents permeability (or density) pairs that

provide oscillations in the model at the given stimulation

strength.

Stability analysis

To analyze the nature of the oscillations and the excitability

of the model neuron, we performed a standard stability

analysis of the full set of differential equations. Often, one

reduces such a system by assigning certain relations between

the main quantities (as is done in, e.g., the FitzHugh-

Nagumo and Morris-Lecar models (18)), which leads to a

simpler geometric analysis of the solutions. Although such a

reduced model undoubtedly has some advantages by pro-

viding more illustrative results, we found that many impor-

tant features were not reproduced appropriately and, therefore,

we refrained from such reductions.

As a starting point in the stability analysis, we calculate

and characterize the stationary states of Eqs. 1–4 for which

all time derivatives are zero. The right hand sides of Eqs. 1–4

are then equal to zero. With j ¼ m, h, or n, we write

jNðvÞ ¼ ajðvÞ=ða;ðvÞ1bjðvÞÞ: (16)

The time derivatives of m, h, and n are zero when

m¼mNðvÞ;h¼ hNðvÞ;n¼ nNðvÞ: (17)

We put these expressions into Eq. 1 and find that dv/dt¼ 0

when

INðvÞ ¼ Iðv;mNðvÞ;hNðvÞ;nNðvÞÞ ¼ 0: (18)

Equation 18 provides a single equation for a stationary

potential, v, and can be solved numerically. We write such

a stationary solution as v ¼ v0. The other parameters then

get stationary values:

m¼m0 ¼mNðv0Þ;h¼ h0 ¼ hNðv0Þ;n¼ n0 ¼ nNðv0Þ: (19)

Next, we investigate the character of this stationary

solution when the stimulation current, Is, and the permea-

bility parameters, P*Na and P*K, are varied. This is done in a
standard way by linearizing the right-hand sides of Eqs. 1–4

close to the stationary states. The details of this procedure are

described in the Appendix. The main characterizing quantity

is a 43 4 matrix, JM, the values of which are given as partial

derivatives of the right-hand side expressions in Eqs. 1–4

with respect to the four variables (v,m, h, n) and calculated at

TABLE 1 Values of parameters used in the equations

VR resting potential (�70 mV)

P*Na permeability for Na1 when all Na channels are

open (default value 1.3 3 10�6 m s�1)

P*K permeability for K1 when all K channels are

open (default value 0.24 3 10�6 m s�1)

A, B, C empirical constants for a and b given in Table 2

AM membrane area (10�4 m�2)

R gas constant (8.3143 J K�1 mol�1)

F Faraday’s constant (9.64870 104 C mol�1)

T absolute temperature (280 K)

CM membrane capacitance (7 pF)

RM leak resistance (4.3GV)

[Na]i, [Na]o Na1 concentration in intracellular and

extracellular solution (14 and 114.5 mol m�3)

[K]i, [K]o K1 concentration in intracellular and

extracellular solution (120 and 2.5 mol m�3)

TABLE 2 Values of A, B, and C in Eqs. 10–15

a h bh a m bm a n bn

A (s�1V�1) 50 3 103 2.25 3 106 * 60 3 103 60 3 103 16 3 103 16 3 103

B (V) 5 3 10�3 60 3 10�3 37 3 10�3 28 3 10�3 60 3 10�3 35 3 10�3

C (V) 6 3 10�3 10 3 10�3 3 3 10�3 20 3 10�3 10 3 10�3 10 3 10�3

*(s�1).
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an appropriate stationary state with parameter values as

shown above. The character of the stationary state is deter-

mined by the four eigenvalues of the matrix JM. Two

eigenvalues are always real and negative. The remaining two

thus determine the stability of the system. For sufficiently

low stimulation currents or low values of any of the

P*-parameters (the density of the channels), all four eigen-

values are real and negative. Then, the system reaches a

stable state from any initial state (see Table 5 in the Appendix).

In some cases, one eigenvalue is positive, whereas all others

are negative, which yields saddle-point behavior. In all other

cases, and that covers the more interesting behaviors, two

eigenvalues are complex with positive or negative real parts.

If the real parts are positive, the stationary state is unstable.

In all investigated situations, this leads to sustained oscilla-

tions. If the real parts are negative, the stationary state is

stable. This does not mean, however, that all trajectories

approach this stable state. There are situations when, de-

pending on the initial conditions, trajectories lead to sus-

tained oscillations around the stable state. Such a situation

cannot be analyzed in any simple way.

The fact that there are always two real, negative eigen-

values of the JM matrix, which never show large variations,

indicates that the essential variation of the four variables takes

place on a two-dimensional surface in the four-dimensional

variable space. Thismaymotivate a reduction of the variables,

but the surface is not simple and not describable in simple

analytic terms. Still, it suggests that relevant parts of the

dynamics are of a two-dimensional character, from which

certain conclusions can be made. In particular, this would

exclude further complex types of solutions, such as irregular,

‘‘chaotic’’ solutions or oscillations with two separate fre-

quencies.

Oscillations for a point in the P*Na-P*K plane appear

when the value of the stimulation current IS lies within a

certain interval. The onset of oscillations at the lower limit of

this stimulation interval and the cessation at the upper limit

appear in three ways. Either they appear i), via a ‘‘conven-

tional Hopf-bifurcation’’, that is the positive part of the

complex eigenvalues of the matrix JM changes sign; or they

appear ii), via a ‘‘double-orbit bifurcation’’, meaning that a

pair of periodic orbits appears around a stable, stationary

point, one being unstable with a separating role and the other

being stable. The latter yields sustained oscillations for initial

conditions outside a manifold that contains the unstable orbit

(see Fig. 4). Or, finally, they appear iii), via a ‘‘saddle-node

bifurcation’’, meaning that there are three stationary states,

where two (one stable node and one saddle point) go together

and vanish, leaving one unstable state, which yields sus-

tained oscillations.

Three distinct oscillatory activity regions in the
channel-density plane

With the stability analysis as a basis, we can provide a more

specific characterization of the model activity for different

values of the P*Na and P*K parameters, i.e., for different

points in the Na-channel–K-channel density plane. This anal-

ysis distinguishes three distinct regions in the density plane.

Region A: This region (represented by the case of Fig. 2 A)
comprises relatively low P*Na values and high P*K values,

FIGURE 1 Features of the neuron model. Computed action potentials at

different channel densities, demonstrating density-dependent changes in

gradedness and oscillatory behavior. The low density case (A), P*Na ¼ 1.3 3
10�6 and P*K ¼ 0.24 3 10�6 m s�1, shows high sensitivity (graded

amplitude), the high Na/low K channel density case (B), P*Na ¼ 30 3 10�6

and P*K ¼ 0.24 3 10�6 m s�1, shows low sensitivity (all-or-nothing-like

behavior) and the high density case (C), P*Na ¼ 263 10�6 and P*K ¼ 4.83
10�6 m s�1, shows repetitive firing. Applied current was 5, 10, 20, and 40 pA.
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for which the solution to Eq. 18 is unambiguous and stable

and all eigenvalues of the JMmatrix are negative or complex

with negative real parts. This means that a solution trajectory

always reaches the stationary value if it starts at initial con-

ditions sufficiently close to it. However, as mentioned above,

this does not exclude oscillations, and we distinguish two

parts of the A region: A1 (the lowest P*Na-values), where
oscillations never occur, and a region A2, where oscillations

appear for each point (each P*Na-P*K pair) via a double-orbit

bifurcation within some interval of the stimulation current.

This means that two orbits, representing periodic behavior,

appear simultaneously in the variable space and then go away

from each other. One of the orbits yields stable, sustained

oscillations. A trajectory in the n-v plane that demonstrates

this double-orbit appearance is shown in Fig. 4.

Region B: This region (represented by the case of Fig. 2 B)
is also characterized by always having an unambiguous

solution to Eq. 18. In this case, however, the solution is

unstable within a certain stimulation interval as the eigen-

values are complex with positive real parts, which necessarily

leads to oscillations via a Hopf-bifurcation. The situation is

complicated, since oscillations around stable stationary states

also occur, similar to the situation of region A2. We will later

consider certain implications for the onset and cessation of the

oscillations.

FIGURE 2 Responses of the neuron model to increased

stimulation current at different channel densities, demon-

strating different onset (left) and termination (right)

patterns of the oscillations. The high density case (A),

with permeability values P*Na ¼ 20 3 10�6 and P*K ¼
20 3 10�6 m s�1, displays an abrupt onset and abrupt

termination, case (B) with permeability values P*Na ¼
203 10�6 and P*K¼ 103 10�6 m s�1, displays an abrupt

onset and a continuous amplitude decrease at termination

and case (C), with permeability values P*Na ¼ 20 3 10�6

and P*K ¼ 5 3 10�6 m s�1, displays a continuous onset

and a continuous amplitude decrease at termination.

FIGURE 3 Regions in the P*Na-P*K plane showing where the neuron

model fires repetitively at the stimulation currents indicated.
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Region C: In contrast to the situation for all points in

regions A and B, where IN (Eq. 18) is monotonously

decreasing with potential v, IN for points in region C

(represented by the case of Fig. 2 C) increases within a

certain potential range. The consequence of this fact is that

within a certain stimulation interval (up to;5–7 pA), Eq. 18

yields three solutions, i.e., three possible stationary states.

The one with the lowest potential value always provides a

stable state, a ‘‘node’’ (the eigenvalues are all real and

negative). An intermediate potential value corresponds to a

saddle point, which, together with trajectories leading to that

state, separates regions of different character. With the initial

state used in this study (v ¼ �70 mV), solution trajectories

always target the stable state with lowest potential in a direct

manner, without any extra pulse or damped oscillations.

When the stimulation current increases, the two stationary

points at the lowest potential values merge and vanish,

leaving the solution with the largest potential value as the

only stationary point available. This high potential stationary

point is not reached at lower stimulations from our initial

conditions but discontinuously takes over at the bifurcation

(when the stable point and the saddle node merge). De-

pending on the stability criterion, we can distinguish two

regions associated with different oscillation patterns: C1 with

higher P*K values, where this high potential stationary state

is unstable within a stimulation interval (the eigenvalues

being complex with positive real parts) and thus leads to

oscillatory behavior of the model neuron via a saddle-node

bifurcation, or C2 with lower P*K values, where the high

potential stationary state is always stable.

In summary, the channel density plane can be separated

into three distinct regions (A, B, and C; represented by the

cases of Fig. 2, A–C, respectively), characterized by the

solutions to Eq. 18 (Fig. 5). The region in the density plane

yielding oscillatory activity for some stimulation interval

comprises the subregions A2, B, and C1. As we will discuss

later, solutions in the form of pulses appear differently for

points in region A1 than for nonoscillating solutions in other

regions. The oscillatory behavior looks essentially the same

for points in the oscillating regions. However, the onset and

cessation of the oscillations differ due to different kinds of

bifurcation scenarios.

The double-orbit bifurcations occur at the lower limit of

the stimulation interval for region A2 neuron models and at

the upper limit for region A2 and B neuron models. At the

lower limit the oscillations start with nonzero amplitude and

frequency (when the two orbits appear or vanish) and at the

upper limit they cease abruptly with nonzero amplitude and

frequency. Double-orbit behavior should be possible to

establish empirically by investigating the sensitivity to initial

conditions. It shows hysteresis if the stimulation current is

slowly changed through a bifurcation point, i.e., an increase

or decrease of the stimulation could lead to different results.

The Hopf-bifurcations occur at the lower limit of the

stimulation interval for region B neuron models and at the

upper limit in region B and C1 neuron models. At the lower

stimulation interval limit, the oscillations start abruptly with

nonzero frequency and nonzero amplitude, whereas at the

upper limit the oscillations cease when the amplitude reaches

zero (at a nonzero frequency). The saddle-node bifurcations,

finally, occur only at the onset of oscillations for region C1

neuron models and means that oscillations start with a very

low (zero) frequency and nonzero amplitude. The discussed

features are summarized in Table 3.

Boundaries of the oscillatory subregions

The boundaries between the regions A2 and B, between B

and C1, and between C1 and C2 can be expressed by analytic

expressions, whereas the boundary between A1 and A2 can-

not be expressed in any simple way. Region B is characterized

FIGURE 4 Double-orbit bifurcation dynamics. Projection of a trajectory

on the n-v plane of a region A2 neuron model stimulated by 18 pA. The

trajectory starts at the inner unstable orbit and moves clockwise toward the

outer stable orbit. Model permeability values are P*Na ¼ 14 3 10�6 and

P*K ¼ 10 3 10�6 m s�1.

FIGURE 5 Bifurcation map. Regions in the P*Na-P*K plane associated

with oscillatory activity of double-orbit (A2), Hopf (B), and saddle-node

(C1) bifurcation behavior of the neuron model at some stimulation interval.

The oscillatory region is the envelope of all the oscillatory regions in Fig. 3.
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by Hopf-bifurcations at the lower limit of the stimulation

intervals, which means that the real parts of the eigenvalues

of the linearization matrix JM are changing sign. This matrix

is presented in some detail in the Appendix. At the

bifurcation point, two eigenvalues are entirely imaginary.

We can get a relation for that by equation P(v) ¼ 0, where

P(v) is a function based on the elements of JM, as discussed

in the Appendix (Eq. A12). With the stimulation current Is as
parameter, this leads to a family of curves in the P*Na-P*K
diagram, similar to those of Fig. 3, and the boundary of

regions A2 and B is the envelope of these curves. The actual

form of the envelope is obtained if we require that also the

v-derivative of P(v) shall be zero, i.e., P(v) ¼ 0 and dP(v)/
dv ¼ 0. The boundary between regions A and C always in-

volve stable, simple solutions that turn directly toward a

stable final point. The boundary of region C1 is given by the

limit of possibilities of three solutions of Eq. 18, IN (v) ¼ 0.

This limit occurs when IN (v) has a horizontal inflection

point, expressed by the existence of a common solution to

dIN(v)/dv ¼ 0 and d2IN (v)/dv2 ¼ 0.

Encoding functions reflect the different
oscillatory patterns

Fig. 6 shows how features of the model neuron pulse trains

relate to the stimulation current for various P*Na and P*K
values. Fig. 6 A shows the frequency of sustained oscillations

versus stimulation, the relation most often considered as the

principal encoding function. The curves shown were chosen

to represent P*Na-P*K pairs in the three oscillatory subre-

gions (A2, B, and C). As seen, all curves show essentially

a monotonous increase of frequency with stimulation. (An

exception is curve 28/20, displaying a slight drop at the

upper end.) They are located close to each other, with the

curves representing points in the P*Na-P*K plane with

the same P*Na/P*K quotient being most closely located (not

shown). Curves with the same P*Na/P*K quotient show great

similarities in their initial phases (can be superimposed) but

extend differently in their later phases; the higher the P*Na and
P*K values, the wider the frequency range. As also seen in

Fig. 6 A, the curve representing a point in the C1-region (26/

4.8), and thus a saddle-node bifurcation, starts with a very low

(essentially zero) frequency, whereas the other curves start

from nonzero frequencies (see Table 3). In contrast, the

amplitude function (Fig. 6 B) shows more dispersed curves.

They all have a similar shape: starting with a relatively high

value they first increase steeply, pass a maximum, and then

decrease almost linearly until they drop. The curves

representing points in the P*Na-P*K plane where the oscilla-

tions cease with a Hopf-bifurcation (i.e., points in the C1 and

in part of the B regions; 26/4.8 and 20/10) continue to zero

amplitude (at the end very steeply), whereas those represent-

ing double-orbit bifurcations (i.e., associatedwith points in part

of the B and in the A2 region; 28/20 and 20/20) end abruptly

without reaching zero amplitude (see Table 3).

Initial pulses and amplitude gradedness

With relevant fixed initial conditions (meaning resting

conditions) and with relatively low channel densities, the

neuron model shows an initial pulse at suprathreshold

stimulation in the variable parameter space represented by a

trajectory around a stationary state. The amplitude of this

initial pulse is always larger than any following pulse. There

are no particular features of the initial pulse that reveal

whether it is followed by sustained oscillations or an ap-

proach to a stable stationary state.

We investigated the influence of the channel density on

the initial pulse amplitude, which we define as the top value

(Vtop) minus the stationary value (Veq). In this way, the pulse

height is also well defined when it is followed by sustained

oscillations, and the growth of the amplitude at large sti-

mulations is reduced as Vtop and Veq grow in similar man-

ners. It should be mentioned that the pulse amplitude depends

on the initial state, which is well separated from possible

stationary states.

Fig. 7 shows the pulse amplitude for different channel

density combinations, representing different points and

TABLE 3 Oscillatory subregions

Region onset bifurcation limits End bifurcation limits

A2 Double orbit, f . 0, A . 0 Double orbit, f . 0, A . 0

B Hopf, f . 0, A . 0 Double orbit, f . 0, A . 0

Hopf, f . 0, A ¼ 0

C1 Saddle node, f ¼ 0, A . 0 Hopf, f . 0, A ¼ 0

f denotes frequency and A amplitude.

FIGURE 6 Encoding functions for

the model neuron. Oscillation frequency

(A) and steady-state impulse amplitude

(B) dependence on stimulation and chan-

nel densities (P*Na/P*K pairs). (C) The

location of the illustrated cases in the

P*Na-P*K plane, demonstrating that all

oscillatory subregions are represented

(see Fig. 5). The curves are denoted by

associated P*Na/P*K values in the di-

mension of 10�6 m s�1. Also indicated

are the oscillatory subregions of the

P*Na/P*K pairs.
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regions in the P*Na-P*K plane. Fig. 7 A shows the effect of

varying the K channel density while keeping the Na channel

density constant. It is clear that changed K channel densities

do not change the curve shape significantly. Fig. 7 B shows a

corresponding example where the Na channel density varies

and the K channel density is kept constant. Clearly, more

dramatic differences are evident here. Changing the Na

channel density means shifting the activity of the model

neuron from conditions where the amplitude is very sensitive

to stimulation intensity (at low Na channel densities) to con-

ditions of much less sensitivity (at high densities), even of

insensitivity, i.e., all-or-nothing behavior.

Closer inspection also reveals that pulse amplitudes for

channel density combinations in the C1 and C2 regions

(curves 20/0.24, 20/3, and 20/6 in Fig. 7 A) show an abrupt,

discontinuous start (i.e., a strict threshold in a mathematical

sense), whereas those for channel density combinations in

the B, A1, and A2 regions (curves 20/10, 10/10, 3/10, and

1.3/10 in Fig. 7 B) show a continuous growth, the steepness

decreasing with decreasing P*Na.
With these kinds of results as a starting point, we can

analyze features such as amplitude gradedness and all-or-

nothing behavior. There are two relevant parameters to take

into account: the existence of a proper threshold and the

sensitivity of the amplitude to stimulus. These two features

are not necessarily correlated. Fig. 7 A clearly shows that a

variation of P*K does not imply great qualitative changes

besides the discontinuous/very steep features discussed

above, although the curves represent different regions in

the P*Na-P*K plane with different oscillation properties (i.e.,

from the nonoscillation region C2 through oscillation

regions C1, B, and A2).

Quantification of the gradedness

The lower curves in Fig. 7 B represent neuron models with a

high sensitivity to stimulation not compatible with all-or-

nothing behavior. In theory, such stimulation-sensitive

behavior opens up for amplitude-coded information transfer

between neurons. The sensitivity of the pulse amplitude to

stimulation can be quantified in many ways. Here, we have

chosen a measure which is equal to the stimulus range at

which the derivatives (slopes) of the amplitude-stimulation

curves (see Fig. 7, A and B) are larger than 0.25 mV/pA.

Also, to avoid situations with very small pulses (in particular

at the onsets of the curves), we exclude the ranges where

pulse amplitudes are smaller than 1 mV. The gradedness

measures thus obtained, plotted in the P*Na-P*K plane, are

shown in Fig. 8.

As mentioned, there are other ways to define a gradedness

measure, but the main features of Fig. 8, with large values

(high sensitivity) to the left and small (low sensitivity or all-

or-nothing-like behavior) to the right in the diagram, should

be the same. It should be noted that the values go to zero for

small (nonzero) values of P*Na. Pulses appear also when

P*Na¼ 0, due to the activation of a K current (and thus do not

represent real action potentials). They will, however, not be

included as the slope of the corresponding amplitude-

stimulation plots are too small. If we had chosen a lower

value of the minimum slope (e.g., 0.1 mV/pA), most of the

curves of Fig. 8 would be similar, but they would also

include the P*K axis where P*Na¼ 0.

Fig. 8 confirms the view that strongly graded behavior

is confined to regions that show no oscillatory behavior and

all-or-nothing-like behavior to regions showing oscillatory

activity. This is demonstrated in the figure where the dotted

contours show the onset bifurcation subregions with the cases

of Fig. 1 plotted (highly graded and all-or-nothing impulses

outside the oscillatory regions and medium graded impulses in

C1). The results suggest that neurons can switch between the

two principal modes of information processing by regulating

the number of active channels. Whether this occurs in reality

remains to be discovered. The pharmacological importance of

this suggestion is clearer: anesthetics block channels selec-

tively (see Hutcheon and Yarom (1) and Hille (3)) and are

expected to change the firing behavior, in some cases dra-

stically.

DISCUSSION

This analysis shows that modifying the channel density

causes the neuron model not only to change its firing from a

nonspiking mode to a spiking one but to switch between

qualitatively different firing patterns. At least three distinct

oscillatory patterns, characterized by onset firing patterns of

double-orbit, Hopf, and saddle-node type, can be distinguished.

FIGURE 7 Impulse amplitude-stimu-

lus diagrams showing the amplitude

sensitivity to stimulation of the model

neuron. Changed K channel density and

constant Na channel density (A), and

changed Na channel densities and con-

stant K channel density (B). (C) The

location of the illustrated cases in the

P*Na-P*K plane (see Fig. 5). The curves

are denoted by associated P*Na/P*K
values in the dimension of 10�6 m s�1.

Also indicated are the oscillatory sub-

regions in the P*Na-P*K plane.
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The three oscillatory patterns are associated with three distinct

areas in the channel density plane: the double-orbit pattern with

area A1, the Hopf pattern with area B, and the saddle-node

pattern with area C1. In contrast, the action potential amplitude

sensitivity on stimulation changes continuously with channel

density, the lowest sensitivity (all-or-nothing behavior) region

overlying part of the saddle-node pattern region C1. This

region roughly coincides with the oscillatory regions at low

stimulation strengths (;5 pA region in Fig. 3).

Qualitatively similar results are obtained for other neuron

models of the Hodgkin-Huxley type. However, the location of

the oscillatory subregions in the density plane varies. Apply-

ing Na and K channel density data from the classical squid

axon model of Hodgkin and Huxley (16) (after converting the

conductance values to permeability values) and from the

myelinated axon model of Frankenhaeuser and Huxley (15) to

the hippocampal model here, we obtain values that place them

in the oscillatory subregion C (saddle-node dynamics) of the

P*Na-P*K plane. Nevertheless, both models show Hopf-type

threshold dynamics, demonstrating the importance of also

taking the passivemembrane properties into accountwhen con-

structing oscillatory maps for a neuron model.

Pharmacological modifications of
oscillatory patterns

An increasing number of studies (4) show that channels are

spontaneously and selectively up- and downregulated to

adapt the activity of the parent neuron to a changing en-

vironment. This means that if these results apply to real

neurons, their oscillatory activity and threshold dynamics

can change during normal activity. Likewise, neurons can in

theory switch between amplitude and rate coding behavior

under physiological conditions. Similar changes in firing

behavior can be achieved by a selective block of ion chan-

nels. Thus a selective block of K channels could switch a

neuron with Hopf threshold dynamics (region B) and with a

relatively high minimum frequency to saddle-node dynamics

(region C1) with no low frequency limit. These findings

suggest novel ways to interpret mechanisms of general

anesthesia and novel strategies for constructing general

anesthetics. An attractive idea would be that some anes-

thetics selectively block specific voltage-gated K channels in

critical neurons, thereby contributing to the hypnosis effect.

This idea does not seem far fetched: specific blocks of certain

Kv channels have been reported for some general anesthetics

(1,20). We have also shown (in voltage-clamp experiments

with the oocyte preparation; 21) that some intravenous

anesthetics specifically block Kv2.1 channels (22).

Saddle-node and Hopf-bifurcation dynamics
in real neurons

These calculations were made for a neuron model compris-

ing only two voltage-gated channel types. Furthermore, the

calculation procedure in itself implies the assumptions of

homogenously distributed channel populations and no

interference by currents due to a complex dendritic mor-

phology. How does this simplistic model apply to real

neurons? This is so far little studied. However, both saddle-

node (region C1) and Hopf-like (regions B and A2) threshold

dynamics have been demonstrated in real neurons. They

seem represented already in the classical study of Carcinus
maenas axons (12), with class 1 axons displaying saddle

node and class 2 axons displaying Hopf dynamics. Studies of

cortical neurons also reveal similar types of threshold

dynamics (13), with regular spiking neurons (often pyram-

idal cells) displaying saddle node type and fast spiking

neurons (often interneurons) Hopf dynamics. Fig. 9 A shows

recordings from mouse hippocampus mossy cells, demon-

strating low frequency nondamped oscillations at threshold,

resembling saddle-node dynamics. This study also suggests

that transitions between different dynamics regimes should

be possible. To date, few such transitions have been reported

(but see Safronov et al. (19) showing transitions from

damped to steady oscillations when Na channels in rat dorsal

root neurons are recovering from TTX block, suggesting

Hopf dynamics). In conclusion, this study adds another

possible explanation to the variability of the oscillatory pat-

terns in neurons at constant stimulation—an explanation com-

plementing the hypotheses based on the dendritic structure

(2) and the ion channel mixture (3,23).

Channel densities in neurons

How do the channel densities used in the calculations above

relate to channel densities in real neurons? Some estimations

FIGURE 8 Pulse amplitude sensitivity to stimulation plotted in the channel

density plane (P*Na-P*K). Sensitivity given as the range of stimulation current

at which the current derivative of the impulse peak exceeds 0.25 mV pA�1 as

described in the text. The numbers marking the contours are range values in

pA. High stimulus sensitivity, i.e., a strongly graded impulse, is reflected in a

high range value. The dotted line indicates the oscillatory region, shown in Fig.

5. The circles denote the locations of the cases in Fig. 1; the strongly graded

case to the left, the all-or-nothing-like case to the (lower) right, and the medium

graded/repetitive firing case in between (upper right).
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of the distribution and density of channels in neurons

collected from a fragmented literature are listed in Table 4.

The trend is clear: the densities are very different in soma,

initial segment, and axon. Thus, in mammalian neurons, the

density of Na channels in soma and axon hillock is estimated

to be low (1–5 channels per mm2), whereas it is 100- to 200-

fold higher in the initial segment and 1000-fold higher in the

nodes of Ranvier (Table 4). The K channels form a more

heterogeneous subfamily, and the densities are consequently

even more difficult to quantify. Delayed rectifiers show low

density in the soma (0.5–5 channels per mm2) increases to a

50-fold higher density in the initial segment but decreases to

almost zero density in the nodes of Ranvier. Recently,

several investigations have challenged these estimations

(24), suggesting a more homogenous distribution. Another

controversial issue is the location of the triggering zone.

Traditionally, the axon hillock and the initial segment have

been assumed to serve this role. A number of studies suggest

that the axon comprises the triggering zone (24,25). As-

suming that the initial segment regulates the firing and that

the higher density estimates are valid, we obtain a trigger

critical density of 100–200 Na channels per mm2 and 50

delayed rectifier K channels per mm2. Since the original

hippocampal neuron model is based on measurements from

the soma of a hippocampal interneuron with a Na channel

density of 5 channels per mm2 and a delayed rectifier K

channel density of 2.5 channels per mm2 (calculated from

data in Johansson and Arhem (8)), the Na channel density in

the initial segment (150 channels per mm2) corresponds to a

30-fold higher density than the original model density and

the K channels in the initial segment (25 channels per mm2)

to a 10-fold higher density. Such a neuron would in our

oscillation map be classified as a C1 or saddle-node neuron.

Interestingly, the hippocampal mossy cells were also found

to display saddle-node behavior (Fig. 9). We conclude that

the densities discussed in this analysis are well within the

physiological density range. Assuming lower densities of the

initial segment, but also that the axon is the triggering zone,

will not change these conclusions markedly. A discussion on

the effects of spontaneous and pharmacological modifica-

tions of the densities and consequent impulse pattern

changes therefore seems highly relevant.

Role of oscillatory pattern transitions for
network behavior

How the natural and pharmacological modifications of

neuronal firing behavior discussed above affect the global

oscillatory activity is a cross-scale problem of extreme

FIGURE 9 Saddle-node bifurcation behavior in a hippocampal interneu-

ron. (A) Recordings from a mossy cell in the dentate gyrus with patch-clamp

technique (whole-cell configuration). Stimulation current 5, 10, 20, 30 pA.

Experimental details are given in (46). (B) Computed activity of the model

neuron at channel densities P*Na ¼ 14 3 10�6 and P*K ¼ 23 10�6 m s�1,

located in region C1 (saddle-node bifurcation region) for stimulation

currents 5, 10, and 15 pA.

TABLE 4 Channel densities (mm�2), estimated from

reported measurements

Na channels

Soma

Rat hippocampal interneuron 5 (8)

Rat pyramidal cell 5 (30)

Rat dorsal horn neuron 1 (19)

Initial segment

Rat dorsal horn neuron 160 (31)

Axon

Squid giant axon 339 (32)

Frog sciatic axon 920–1900 (33–36)

Rat sciatic axon 700–2000 (37,38)

Rat unmyelinated axon 200 (39)

K channels (delayed rectifiers)

Soma

Rat hippocampal interneuron 2.5 (8)

Rat pyramidal cell 5 (40)

Rat dorsal horn 0.5 (19)

Initial segment

Rat dorsal horn neuron 25 (20)

Axon

Squid giant axon 18–72 (32,41)

Frog sciatic axon 240–1100 (42–44)

Rat sciatic axon 0 (45)
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complexity. The role of the many determining factors, the

network configuration, the connectivity type, and strength

and the intrinsic neuronal resonance, is still only fragmen-

tarily understood. This analysis introduces the density of

voltage-gated channels as another factor, contributing to the

sculpturing of global oscillatory patterns.

We hypothesized above that neurons could switch from

rate code to amplitude code information processing. For

amplitude coding to play a role in the nervous system, the

amplitude-modulated impulse, elicited in the trigger zone,

should be able to propagate as modulated (i.e., with

decreased amplitude) along the axon and into the terminals.

This in turn depends on channel density and length factors of

the axon and terminals. Low density (i.e., electrically pas-

sive) axons should not be so long that the impulse is elim-

inated by the electronic decrease; high density axons should

not be so long that the initial downgraded impulse reaches

full amplitude. This means that the main candidates for being

rate-code/amplitude-code switcher neurons are interneurons

with short axons.

The novel idea of obtaining general anesthetic effects by

selectively blocking K channels is based on the proposal that

human brain neurons firing in the g-frequency range are

involved in conscious activities, whereas lower frequencies

characterize unconscious states such as sleep and general

anesthesia (26–28). Shifting critical neurons from the B

region (and high minimum frequency) to the C1 region (and

lower minimum frequency) might cause global networks of

the brain to switch from high to low frequencies (29) and the

brain to switch from conscious to unconscious states.

APPENDIX: DETERMINING THE STABILITY OF
THE STATIONARY SOLUTIONS

Below, we analyze the stationary states and stability features of the basic

equations, Eqs. 1–4, here rewritten as

dv=dt¼ Iðv;m;h;nÞ=CM

¼ ðIS� INaðv;m;hÞ� IKðv;nÞ� ILðvÞÞ=CM

(A1)

dm=dt¼ amðvÞ3ð1�mÞ�bmm (A2)

dh=dt¼ahðvÞ3ð1�hÞ�bhh (A3)

dn=dt¼anðvÞ3ð1�nÞ�bnn: (A4)

In accordance with previous notations, we write j ¼ m, h, or n. The time

derivatives of these variables are zero when they are particular functions of

the potential v as shown in Eq. 16, which we here rewrite

jstationary ¼ jNðvÞ ¼ ajðvÞ=½ajðvÞ1bjðvÞ�: (A5)

Equation 18, again rewritten here, then gives the stationary potential

INðvÞ ¼ Iðv;mNðvÞ;hNðvÞ;nNðvÞÞ ¼ 0: (A6)

The solution is v ¼ v0, and we introduce notations for stationary m-, h-,

n-values:

j0¼ jNðv0Þ; j¼m;h; or n: (A7)

Further, we extend the notations and write

j1 ¼m; j2 ¼ h; j3 ¼ n: (A8)

The next step is to investigate the differential equation solutions close to the

stationary state. This is made in a conventional way. We replace the right

hand sides by linear expressions and get the following equations (Note:

k ¼ 1,2,3; j ¼ m, h, n. We have a double index notation and write, for

instance, ajk, which shall be interpreted by Eq. A8. Thus, as j1 ¼ m, aj1 ¼
am, and other components similarly):

dv

dt
¼ JM0;03ðv� v0Þ1 +

3

k¼1

JM0;k3ðjk� jk0Þ
djk
dt

¼ JMk;03ðv� v0Þ1JMk;k3ðjk� jk0Þ:
(A9)

The JM-elements are

JM0;0 ¼ @Iðv;m0;h0;n0Þ=CM

@jk
jv¼v0

JM0;k ¼ @Iðv;n;h;mÞ=CM

@jk
jv¼v0;n¼n0;h¼h0;n¼n0;

and (A10)

JMk0 ¼ ðajk9ðvÞ3bjkðvÞ�ajkðvÞ3bjk9ðvÞ=ðajkðvÞ1bjkðvÞÞ
JMkk ¼ajk1bjk:

The JM-functions are elements of a matrix:

JM00 JM01 JM02 JM03

JM10 JM11 0 0

JM20 0 JM22 0

JM30 0 0 JM33

0
BB@

1
CCA

All elements are functions of the stationary potential v0. The elements of the

upper row, but not the other ones, also contain the P*-parameters.

The (four) eigenvalues of this matrix are of principal relevance for

determining the stability of the stationary states. These are obtained by

standard methods and given as roots of a fourth order equation:

r
4�A3r

31A2r
2�A1r1A0 ¼ 0: (A11)

The A coefficients can be expressed as sums of products of the JM elements. A3
is the sum of the diagonal elements (JMii), and A0 is equal to the determinant.

A2 is a sum of products of two JM elements, and A1 is a sum of products of

three elements from different rows and columns.

Table 5 summarizes the cases discussed in this investigation. Two

eigenvalues are always real and negative. The other two are the important

ones in our analysis. In some cases both are real and one is positive, whereas

the other is negative, yielding saddle-point dynamics. For most relevant

situations, however, they are complex and their real parts can be positive or

negative. The border situation when two eigenvalues are purely imaginary is

particularly important, yielding a Hopf-bifurcation behavior. The condition

for this can be expressed by demanding that a certain function P is equal to

zero:

P¼A
2

1�A1A2A31A
2

3A0 ¼ 0: (A12)

This condition is derived from the relations between the roots and the

coefficients in Eq. A11:

A3 ¼ r11r21r31r4; A2 ¼ ðr11r2Þðr31r4Þ1r1r21r3r4

A1 ¼ r1r2ðr31r4Þ1ðr11r2Þr3r4; A0 ¼ r1r2r3r4:

If roots r1 and r2 are imaginary and r3 and r4 are real and negative, we can

write
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r1 ¼ it; r2 ¼�it yielding r11r2 ¼ 0 and r1r2 ¼ t
2

r31r4 ¼�p; r3r4 ¼ q
2
:

Then A3 ¼ �p, A2 ¼ t2 1 q2, A1 ¼ �pt2 and A0 ¼ t2q2.

The expression for P follows when the three variables p, t, q are

eliminated in the four relations.

As an example we here show typical numerical values associated with

points closing in on an end Hopf-bifurcation (the situation when stimulations

cease to elicit repetitive firing). We choose the following P*-values in the C1

region: P*Na ¼ 13 3 10�6 m/s and P*K ¼ 2.4 3 106 m/s. With the

stimulation current Is ¼ 15 pA, we get the stationary potential v0 ¼ �30.0

mV and the JM matrix (units as given by the main definitions):

�186 27440 161400 �54430

37:2 �1307 0 0

�1:14 0 �274 0

5:17 0 0 �358

0
BB@

1
CCA

The resulting eigenvalues are r1,r2 ¼ 8.21 6 440i, r3 ¼ �1830, and r4 ¼
�311.5 (s�1). The A coefficients are A3 ¼ �2125 (s�1), A2 ¼ 7.285 3 105

(s�2), A1 ¼ �4.051 3 108 (s�3), and A0 ¼ 1.103 3 1011 (s�4). P ¼ 3.53 3
1016 (s�4). P . 0 as are the real parts of r1,2, implying instability of the

system.

Next, we consider the case of stimulation current Is ¼ 20 pA. Then

v0 ¼ �29.1 mV and the matrix is

�205 25200 192100 �59900

38:5 �1317 0 0

�1:03 0 �292 0

5:36 0 0 �348

0
BB@

1
CCA

The resulting eigenvalues are r1,2 ¼ �16.9 6 500i, r3 ¼ �1813, and r4 ¼
�315 (s�1). The A coefficients are A3 ¼ �2162 (s�1), A2 ¼ 8.926 3 105

(s�2), A1 ¼ 5.508 3 108 (s�3), A0 ¼ 1.426 3 1011 (s�4). P ¼ �9.3 3 1016

(s�4). P , 0 as are the real parts of r1,2 implying stability of the system.

The bifurcation occurs close to Is¼ 16.58 pA with v0¼�29.71 mV. The

matrix is

�192:3 26880 171500 �56230

37:7 �1310 0 0

�1:10 0 �280 0

5:24 0 0 �354

0
BB@

1
CCA

The resulting eigenvalues are r1,2 ¼ �0.009 6 460i, r3 ¼ �1825, and r4 ¼
�312 (s�1). The A coefficients are A3 ¼ �2137 (s�1), A2 ¼ 7.817 3 105

(s�2), A1 ¼ 4.526 3 108 (s�3), and A0 ¼ 12,076 3 1011 (s�4). P ¼ � 5 3
1013 (s�4). P is three orders of magnitude smaller than in the other cases

calculated above, and the real part of r1,2 is close to zero. Both these facts

imply that we are close to a Hopf-bifurcation point, as also indicated by the

fact that P is four orders of magnitude smaller than the terms in the P

expression.
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