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ABSTRACT On the basis of its role in the analysis of mammillary compartmental
systems, a matrix with non-zero elements in the first row, first column, and
along the main diagonal and with zero elements elsewhere is called a mam-
millary matrix. It is pointed out that such matrices occur in a variety of biological
problems including the linearized Hodgkin-Huxley equations (H-H). In con-
sidering whether such a linear system exhibits stability (all roots of the matrix
with negative real parts) it is of interest to seek conditions, expressible in a
simple manner in terms of the matrix elements, which lead to stability or in-
stability. For the case when the diagonal elements, with the possible exception
of the first, are negative (a condition physically guaranteed for the space-clamped
axon) simple criteria for instability and stability are formulated in terms of the
matrix elements. These criteria are derived by extending previous results from
linear kinetics through appeal to a classical matrix theorem without recourse to
the characteristic polynomial. The relation of these mathematical results to the
work of Chandler, FitzHugh, and Cole on the space-clamped axon is discussed.
The results are in no way restricted by the order of the matrix (which is four for
the H-H equations) and other possible applications are noted.

Consider a so called mammillary compartmental system (1) consisting of a central
compartment and n - 1 peripheral compartments. The matrix of the system of dif-
ferential equations describing the system has non-zero elements in the first row and
first column, and along the main diagonal. All other elements are zero. The matrix
can thus be written

A [a ] [1]
c D_

where r and c are a row and column, respectively, of n - 1 elements and D is a diag-
onal matrix, D = diag (dl, d2, . . . , d4). The same formal situation arises in the
theory of blood-tissue exchange (2) and chemical kinetics (3). In all of the cases
mentioned thus far, the elements of r and c are positive and the diagonal elements
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are negative. Given these conditions the nature of the roots of A and their relation
to the elements dl, d2, . . , d,,- can be very simply characterized (4).

Consider now a non-linear system described by the equations

X1 = f(xI, X2, *...*, Xn) [2]
±,=g,(x1,x,), j=2,3,*** ,n

where the dot denotes differentiation with respect to time and as indicated f is a func-
tion of all of the variables and any gj is a function only of xi and x0. Assume that
there exists a singular point (critical point and stationary point are other definitions)
such that if xk = ak for all k, then &k = 0 for all k. If equation [2] is expanded about
this point up through linear terms there results, since Ogl/Oxk is different from zero
only when k = 1 and k =

d~~~~~
l= (Xi- al) = Efk (xk - ak)dt ~~~k-i

±1 = d (xi - a) = gi ,(xi - a,) + gi, (xi- a,), J = 2, 3, - n

where fk is Of/lxk evaluated at the singular point and gjk is Ogjl/xk evaluated at the
singular point. If we define yi = xi- aj, 1 < i < n, and y as the vector whose ele-
ments are the yi, then the expanded equations can be written

.f = Ay [3]

where A is of the equation form [1] with a = fl, the elements of the row r are f2,
13, .. , fn, the elements of the column c are g21, g31, . .. , g,,n, and the diagonal ele-
ments of D are g22, g33, ... X g,n,,. With suitable numbering of the variables and n = 4
this is precisely the situation which obtains for the Hodgkin-Huxley equations as
shown by Chandler, FitzHugh, and Cole (5) who studied the above linearization
with special reference to the stability of a given singular point.

It is the purpose of this paper to show that certain previous results from linear
kinetics can be brought to bear upon this stability problem. These results, although
not as restrictive in practice as one would like, are obtained from known properties
of matrices and are not readily seen by direct examination of the characteristic
polynominal of the matrix.
We refer to a matrix of the equation form [1] as a mammillary matrix and for

any such matrix, assuming D is not singular, we define an associated scalar quality,
H(A), as follows:

H(A) = a - rD-'c. [4]

Now in the axon stability problem the elements of D are inherently negative. In
most cases' the signs of the elements of r and c can be prescribed, but the character of

IAt least over the ranges studied, the voltage dependence of the rate parameters a and p
(see reference 5 for notation) is such that, with certain other considerations, the signs of the
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these sign patterns (or what is more important the signs of the products ric4) is such
that these sign restrictions have not as yet been shown to be useful in determining
the nature of the roots of A. However, some statements regarding the roots of A
can still be made by exploiting techniques previously used (4).

Under the stated conditions, (D non-singular and the d1 negative), it can be
shown that H(A) > 0 implies a positive root and hence instability. For, by a known
determinantal identity (Note I; reference 6, p. 46; reference 7, p. 74) the de-
ter ant of A, denoted JA 1, can be written as

JAI = lDI H(A) = 1X2 . . , [5]
where the first equality is the identity cited and the second states the well known
fact (reference 7, p. 88) that IAI is the product of the characteristic roots, xi, j = 1,
2, . . ., n, of A. Given that d1 < 0 for all j, equation [5] can be written

(- lH( A) 1(_l)Np [6]

where pi and P2 are positive2 and N is the number of negative roots. From equation
[6], ifH (A) > 0, then n - 1 and N must either be equal or differ by an even positive
integer. If N = n - 1 there are n -1 negative roots and the single remaining root must
be positive. Thus assume

n-l- N= p [7]

where p is an even integer .2. If P and C are the number of positive and complex
roots, respectively, then

n =N+ P+ C [8]
and from equations [7, 8]

n- N= P+C= p+1 [9]

where p + 1 is an odd integer not less than 3. Since complex roots, if any, must oc-
cur in conjugate pairs, C is either zero or an even integer not exceeding p, and equa-
tion [9] shows that P cannot be zero but must be an odd integer. Thus we see that
H(A) > 0 implies the existence of at least one positive root and hence instability.
On the other hand, if H(A) < 0, the same argument leads to n - N = P + C =

p, and we are assured nothing but that P is even if it is not zero.
We now make use of the fact that the sum of a mammillary matrix and its

transpose is again a mammillary matrix. Define the symmetric matrix B by
B = (A + AT)/2 [101

elements of r and c can be fixed. The author is indebted to one of the referees for calling this
point to his attention.
2 If the negative d. are written di = -qj, q1 positive, then pi = qiq2 .... ql. If the real,
negative roots are - as, as positive, i = 1, 2, . . . , N, then p2 = aia2 ... aNT where T is the
product of complex roots. Since complex roots, if any, must occur in conjugate pairs, T con-
sists of a product of numbers of the form XX, where X is the complex conjugate of X. Thus T is
positive.
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where AT denotes the transpose of A. With A from equation [1], it is readily seen
that B is a maimillary matrix and in fact the submatrix of order n - 1 in the lower
right hand corner of B is the matrix D. It is well known that the roots of B are real
(reference 7, p. 73). Let A1 = aj + i,31, where i = v-1, and aj and I, are real, be
any root of A. It is a known theorem (8, 9) that if M and m are the maximum and
minimum roots, respectively, of B, then

m < a.< M, j = 1, 2,*,n [11]

In fact this theorem is sufficiently simple to prove here (see Note II).
Therefore any condition which insures M < 0 will insure that every root ofA has

a negative real part. Thus any condition which implies M < 0 is a sufficient condi-
tion for stability. Based on a classical theorem (cf. reference 10 for discussion and
references) which states that the roots of B are separated by the diagonal elements
of D, it has been shown that M and H(B) are of like sign (4). Thus H(B) < 0
implies M < 0, and is a sufficient condition for stability.

If H(B) is written out from the definition of equation [10] we have after some
simplification

H(B) = H(A) + Q [12]

where the positive quantity Q is

Q= -1 (c,-r) [13]4j-l
and from the definition of H(A),

n-1

H(A) = a- E ric,/d, [14]
j-l

If H(A) > 0 then H(B) > 0 and the sufficient condition for stability is infringed.
But it has been seen that H(A) > 0 implies instability, since this implies the ex-
istence of an odd number of positive roots. Thus H(A) < 0 is a necessary condition
for stability. In particular if ric4 . 0 for all i, it is seen from equation [14] that a < 0
is necessary for stability since under these conditions a . 0 implies H(A) > 0.
Thus we have
(i) H(A) > 0 instability

stability
(ii) Q > -H(A) > 0 or

instability

(iii) -H(A) > Q > 0 stability

Considering H(A) on the real line, the region to the right of zero is a region of
instability; the region between zero and -Q may be stable or unstable; the region
to the left of -Q is a region of stability.
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According to computations by Dr. Richard FitzHugh,8 the ambiguous region (ii)
may be rather broad. However the sufficient conditions (i) and (iii) for stability
and instability, respectively, are not difficult to apply and give a region guaranteeing
instability, a region guaranteeing stability, and a region which must be explored
in more numerical detail. As noted, H (A) < 0 is a necessary condition for stability.
We close by indicating some connections between this analysis and that of

Chandler, FitzHugh, and Cole (5). Assume,4 as these authors tacitly did, that no
dj is a root of A. Then application of the determinantal identity already cited (refer-
ence 6, p. 46) to the characteristic matrix, A - l, gives the characteristic equation
in the form

IA-XII = ID-XI'I[a-X-r(D-XIT)-1c] = ID-XI'I H(A-XI) = O [15]
where I andF are the identity matrices of order n and n - 1 respectively. Under the as-
sumption that D - A' is not singular, the roots of A are the zeroes of the function
H(A - l). Chandler, FitzHugh, and Cole take as the characteristic equation

-CH(A - XI) = 0 [16]

where C > 0 is the membrane capacity per unit area, and they write equation [16]
as (their equation 9)

g + F(X) = O, [17]

on the basis that -Ca = g + g.,, where g0, is the infinite frequency membrane
conductance and g is the conductance in series with the membrane. The factored
equation form [16] of the characteristic equation was obtained in a different way
by Smith and Morales (2) and in still a different way by Sheppard and Householder
(1), who established certain properties of the roots of A by studying the poles of
H(A - XI). What has been discussed here, is the role which the sign and magnitude
of the quantity -CH(A) = g + F(O) plays in determining the stability of a
singular point for the space-clamped axon. In particular it is seen (reference 5,
equation 10) that

-CH(A) = g + F(O) = g + go + gn. + gh + g. = Mg,
where g., gA and gn are defined in reference (5), and the condition H(A) > 0 of
this paper can be replaced, since C > 0, by Ig < 0.
We have dealt specifically with application of some properties of mamnillary

matrices to the axon stability problem. It is clear that this analysis is applicable
to any system obeying equation [2] and such that agj/lx1 = dj < 0. What is more,
arguments such as those leading from equation [5] to equation [9] can still be used

8 Personal communication.
4 Actually it can be shown that X 9& d,, for any j, provided that r,c, =, 0 for all i, and the di
are distinct.
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when the signs of the d, are known whether or not they are all of like sign. Finally, al-
though linear chemical systems (and we include actual linear systems and non-linear
systems when we are concerned with tracer kinetics) and closed non-linear chemi-
cal systems are stable (10), an open non-linear chemical system may have more
than one singular point and some of these may be unstable. To the extent that
equation [2] is obeyed, the present analysis is applicable to such systems and pos-
sibly to certain analogues of such systems.

NOTE I

If we accept the fact (reference 7, p. 80) that for two square matrices, F and G,
of the same order, it is true that IGFI = IFI * IGI, then for the case in hand the
determinantal identity referred to is easily proved. Take the matrix

G =
[ -rDyl

where 0 is a column of n - 1 zeroes and F' is the unit matrix of order n - 1. By ex-
panding the determinant IGI according to the elements of the first column it is
readily verified that |GI = 1 I'l = 1. Therefore IGAI = JAI. By direct multiplica-
tion, with A from equation [1], the produce GA is

GA = [a -rD c J = [H(A) 01

where we have used the definition of equation [4]. Expansion of the determinant
of this last matrix according to the elements of the first row gives IGA I = AI =
ID] H(A), the first equality of equation [5], which was to be proved.

NOTE II
Consider an arbitrary square matrix A. Denote by A* the conjugate transpose

of A; i.e., if A = [ajs] then A* = [a1]T. Applied to a column vector x this notation
means that x* is a row vector, each element of which is the complex conjugate of
the corresponding element of x. Let.A = a + if? be any root of A and x the cor-
responding characteristic vector. Then we have
(i) Ax = Xx

(ii) x* A* = Xx*
If (i) is multiplied from the left by x*/2 and (il) from the right by x/2, and the
corresponding equations added, there results

(iii) x* (A + A*)x = x*Bx = ax*x
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Now the matrixB = (A + A*)/2 is Hermitian (if A is real, A* = AT, and B is
symmetric) and thus has real roots M = ,&l.,2 2 > . . . 2 p. = m. The real
number a = x*Bx/x*x lies in the field of B (e.g. see reference 9) and is thus con-
tained in the interval (m,M) as will now be shown. Since B is Hermitian it is
standard that there exists a matrix U, such that U* U = I and U* BU = diag (p1
*2. , ).Thus ifin (iii) we substitute x = Uy we obtain

(iv) a E yj.'ii/E yiyi
= Wat,

where wi = Lyj/:5,yj, and Yw4 = 1. Therefore a is the weighted mean of the p4
and cannot exceed M or be exceeded by m. For, if (iv) is written as 4w4(p4 - a) =
0, it is seen, since wi . 0, that both a > M, which implies a > ^ for all i, and
a < m, which implies a < i for all i, lead to a contradiction. It is proved that
m<a<M.
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