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E. S. Ban~BRID~ 

Department of iYIathematics, University of Ottawa, 
Ottawa, Ontario, Canada K I N  6N5 

Although the distinction between software and hardware is a posteriori, 
there is an a priori distinction that masquerades as the software-hardware 
distinction. This is the distinction between procedure interconnection, the 
semantics of flow chart diagrams, which is known to be described by the 
regular expression calculus; and system interconneetion, the semantics of 
network diagrams, which is described by a certain logical calculus, dual to a 
calculus of regular expressions. This paper presents a proof of the duality in 
a special case, and gives the interpretation of the logical calculus for sequential 
machine interconnection. A minimal realization theorem for feedback systems 
is proved, which specializes to known open loop minimal realization theorems. 

INTRODUCTION 

The distinction in computer science between hardware and software has 
been assumed to be based on the engineering choice between the realization 
of an algorithm by a special purpose or a general purpose device. In other 
words, the hardware-software distinction is generally regarded as an a 
posteriori dichotomy. Nevertheless, there remains a persistent feeling that 
the distinction is of conceptual and not simply engineering significance. 
This paper proposes that there is an a priori distinction that masquerades 
as the a posteriori hardware-software distinction, and is of fundamental 
conceptual importance. Briefly, it is the following. Hardware systems are 
typieally described by black box diagrams (henceforth called network 
diagrams), whereas software systems are typically described by flowchart 
diagrams. There is a syntactic duality and a semantic duality between 
networks and flowcharts. Moreover, there is a logical calculus for the seman- 
tics of network interconnection which is dual to a calculus of regular expres- 
sions for the semantics of flowchart interconnections. This result in its full 
generality will appear elsewhere; this paper presents a special case of the 
general duality, and the specialization of the logical intereonnection calculus 
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to the case of sequential machines. I t  is observed that since linear systems 
interconnect according to the regular expression calculus, they lie (in a 
suitably linearized setting) on the flowchart side of the duality. Linearized 
networks are multilinear systems. It  is my suspicion that the real difference 
between linear and nonlinear systems is that they fall on opposite sides of 
this duality; the proper distinction may be between systems which inter- 
connect according to the regular expression calculus or the logical calculus. 

Sections I through 5 and Section 8, which deal with the points mentioned 
so far, do not assume any category theory. Section 6 describes Lawvere's 
observations on generalized logic, and necessarily presumes category 
theoretical concepts. I t  must be understood that the formulation of Section 5 
is not an ad hoc construction, nor was it discovered by generalizing the 
formulation of Section 3. Rather, it must be seen in the context of the 
generalized logical calculus of Section 6. 

Section 7 uses some of the adjunctions of Section 6 to describe a minimal 
realization theory for feedback connections of sequential machines which 
specializes to known open loop minimal realization theories. 

I. FLOWCHARTS AND NETWORKS 

Figure la is a typical schematic flowchart, that is, an interconnection of 
procedures. Specifically, it is an example of a schematic iteration loop. (We 
are assuming in this section that these terms already have some intuitive 
content for the reader; formal definitions will not be given here.) Figure lb 
is a typical schematic network, that is, an interconnection of systems. 
Specifically, it is a schematic feedback loop. This pair of diagrams illustrates 
a syntactic duality between networks and flowcharts. A diagram is dualized 
by reversing arrows (and, to conform to pictorial conventions, reflected in 
a diagonal). Thus, exit is dual to input, entry is dual to output, junction of 

[ 

FIG. 1. 
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a. Flowchart. b. Network. 
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control paths is dual to bifurcation of wires, iteration is dual to feedback, 
and so on. 

To  make this somewhat clearer, observe that one could define a purely 
syntactic flowchart diagram language which would have the junction of 
paths (Fig. 2a) along with some collection of labeled multiple entry and 
exit boxes as atomic formulae, and would have alternation (Fig. 3a) as a 
binary operation and iteration (Fig. 4a) as a unary operation. Note that the 
sequencing operation can be obtained by combining these primitive opera- 
tions (Fig. 5a); indeed, any flowchart can be obtained by appropriate iteration 
operations on the alternation of its components.  

Dually, one could define a syntactic network diagram language which 
would have the bifurcating wire (Fig. 2b) along with labeled multiple input 

a b 
Fic. 2. a. Junction of paths, b. Bifurcating wire. 

a 

a. Alternate procedures, b. Parallel systems. 
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FIG. 4. a. Iteration. b. Feedback. 
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a 

FIG. 5. a. Procedures in sequence, b. Systems in .series. 

and output boxes as atomic formulae, and would have parallel connection 
(Fig. 3b) as a binary operation and feedback connection (Fig. 4b) as a unary 
operation. Figure 5b shows the construction of a serial connection; in general, 
any network can be obtained by suitable feedback operations on the parallel 
connection of its components. These languages are syntactically dual in an 
obvious sense. The accompanying semantic duality can now be outlined. 

We shall give in Section 2 a translation of the flowchart language into a 
language of regular expressions. We understand that the syntactic manipula- 
tion rules for regular expressions are part of this interpretation of the flow- 
chart language in the sense that the only semantics for the flowchart language 
which we permit shall be those in which the rules are valid. A particular 
example of such a further interpretation is given in Section 2, namely the 
standard semantics of flowcharts described by Eilenberg (1974). On the 
other hand, we shall give in Section 3 a translation of the network language 
into a certain language of logical formulae. We understand that certain 
syntactic deduction rules for these formulae are part of this interpretation 
of the network language in the sense that we shall permit only those semantics 
for the network language in which the deduction rules are valid. A particular 
example of such a further interpretation is given in Section 5, namely the 
formulation of sequential machine interconnection using generalized logic. 

The most general statement of the semantic duality between flowcharts 
and networks concerns the abstract regular expression semantics and the 
abstract logical formula semantics. Various particular duality principles are 
obtained by taking suitable pairs of further interpretations. In this intro- 
ductory paper we shall discuss only such a particular duality principle, 
but one in which the important features of the general situation appear. 
The regular expression calculus is interpreted as in Section 2, and the logical 
calculus is given a corresponding interpretation in Section 3. There is an 
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interpretation of the regular expression calculus which corresponds to the 
interpretation of the logical calculus in Section 5, and this gives another 
duality principle with an interesting meaning. This will be discussed in a 
later paper. 

2. SEMANTICS OF FLOWCHART INTERCONNECTION 

This interpretation of flowcharts is a paraphrasing of Eilenberg's (1974) 
notion of a machine. In Fig. la, let F C A × (B + C) be a binary relation 
from A to B + C (disjoint union) and let G C C × A be a binary relation 
from C to A. F and G may be interpreted as the relations (for example, 
partial functions) computed by certain procedures. With initial data a ~ A ,  

box F computes a result b E B, or a result c ~ C, or no result at all. I f  the 
result is in C, box G computes a result a'  ~ A, or no result at all. This process 
is repeated and terminates if a result in B is eventually produced. If  o denotes 
ordinary relational composition and * denotes transitive reflexive closure 
(i.e., for H C D × D, H* = ID U H U H o H U H o H o H U ".., where 
I o is the identity relation on D), then we may express the relation computed 
by the flowchart as follows. Since A × ( B + C ) ~ A × B + A × C  we 
may write F = FB* VJ Fc  •, where FB a = F n A × B and Fc  A = F n A × C. 
Figure 6 shows the steps the computation may take, with their associated 
relations. Thus  one sees that the relation computed is (FcAo G)* oF8 A, 

a regular expression in Fc "4, G, F~ "4. 

C -~,- El 

Fro. 6. Computauon paths of Fig. 1. 

More systematically, consider the following interpretation of the abstract 
flowchart language. An atomic formula (procedure) P with entries labeled 
.d 1 ,..., A,~,  and exits labeled B 1 ,..., B~ will be represented by an m × n 
matrix (pji). I f  there is no ambiguity, we may write P / a s  PD c when A, = C, 

B~ - D. The junction of paths box is the matrix [11] where 1 is the regular 
expression denoting the empty word. Assuming inductively that formulae 
F, G, H of the language have been interpreted as matrices over the semiring 

643/3I/I-6 
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of regular expressions in the components P~-~ of atomic formula, we define 
the alternation F + G (Fig. 3a) o f F  and G by 

where 0 is a suitable matrix in the expression for the empty set. In general, 
if H has an entry and an exit with the same label, C say, there is an iteration 
operation which identifies them. For simplicity, suppose H has entry labels A, 
C and exit labels B ,  C. The iteration operation oC (Fig. 4a) is defined by 

o~ H ::/t~A v Hc~(HcC) * HBq 

In the general case, H c  A would become a column, HR c a row; v and con- 
catenation become matrix sum and product. 

The usual flowchart semantics is consistent with this interpretation of the 
language. A formula with entry labels A 1 ,..., A m ,  and exit labels B 1 ,..., B~  

represents a relation from A 1 + ".  + Am to B 1 + " - ' +  B~ where + 
denotes disjoint union. Such a relation is uniquely specified by its component 
relations from A i to B~. Thus, given an interpretation of the atomic formulae 
as relations, and interpreting the junctions of paths as the graph V A of the 
codiagonal function A - t - A - +  A, it is easy to check that alternation and 
iteration are computed according to the above formulas. In particular, if 
Fig. 1 a is expressed as a formula in the language, one obtains the expression 
( F c A O G ) * o F B  A by the above formalism, modulo well-known regular 
expression identities. 

3. MEMORYLESS INTERPRETATION OF NETWORKS 

The interpretation of Fig. la as an interconnection of sequential machines 
will be given in Section 5. Here, to introduce the logical interconnection 
calculus and the special case of the duality principle, we consider a simpler 
interpretation. Let R and S in Fig. 1 b be interpreted as relations (for example, 
partial functions) computed by some devices with negligible internal delay. 
With inputs x ~ X and z ~ Z,  box R either produces instantaneously some 
y ~ Y ,  or else produces no output at all; and similarly for box S. Thus, an 
input x ~ X to the network produces an output y ~ Y if and only if there is 
some z ~ Z which satisfies the simultaneous conditions imposed by boxes R 
and S on x, y ,  z. For technical reasons we consider output-input relations 
rather than input-output relations; that is, we regard R as a subset of 
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Y × (X × Z) and S as a subset of Z × Y. I f  we use predicate notation 
for R and S, the output-input predicate of the network may be written as 

3z R(y ,  x, z) A S(z,  y)  

Thus there is a certain logical calculus for interconnection of these memoryless 
networks, and the usual semantics of these formulas gives the intended 
interpretation. 

More systematically, we can interpret the formulas of the abstract network 
language as logical formulas, as follows. An atomic formula (system) Q with 
inputs labeled X 1 .... , X,~ and outputs labeled I/-1 ,.-., Yn will be represented 
by an (n + m)ary predicate Q(y l  ..... y ~ ,  x 1 ,..., x~). The bifurcating wire 
is represented by the predicate (Yl = x) ^ (Y2 = x). Assuming inductively 
that formulae R, S, T of the language have been interpreted as predicates, 
we define the parallel connection R ^ S (Fig. 3b) of R and S by 

R ^ S (y ,  v, x, u) = R(y ,  x) ^ S(v, u) 

where x, y, u, v represent lists of variables if necessary. In general, if T has 
an input and an output with the same label, Z say, there is a feedback opera- 
tion which identifies them. Consider T = T(y ,  z, x, z'), where x, y may be 
lists of variables. The feedback operation 3Z (Fig. 4b) is defined by 

~Z T(y ,  x) = 3z T (y ,  z, x, z). 

The semantics of memoryless network diagrams is consistent with this 
formalism, via the usual semantics of quantifier logic. The bifurcating wire 
has output-input relation A x ~- {((x, x), x) t x ~ X},  and the operations ^ 
and ~Z acquire their proper meanings for memoryless network diagrams. 
In particular, if Fig. lb is expressed as a formula in the language, one obtains 
the logical formula ~z R(y ,  x, z) ^ S(z,  y)  by the above formalism, modulo 
well-known syntactic equivalences. In Section 5 we will see that another 
interpretation of this logical formalism gives the semantics of sequential 
machine interconnection. 

4. DUALITY 

To any F C A X B assign the relation F ~ C 2 A X 2 B defined by 

F#(ee, 19) = ~ta Vb F(a, b) ~ (o~a ~ fib) 

(where aa, fib are the truth values of the unary predicates c~ ~ 2 A, /3 ~ 2 ~ 
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at a e A,  b e B); and to any q5 C 2 A × 2 B assign the relation Ce C A × B 
defined by 

¢/~, b) = w v5 ¢(~, 5) ~ ( ~  ~ 5b) 

These functions constitute a Galois connection between the partially ordered 
sets (in fact Boolean algebras) 2 AxB and 2zax~B; that is, 

F C G implies G e C F #, 

¢ C ¢  implies C e C C e ,  

F C ¢# iff ¢ C F #, 

F~e  e = F  # and ¢ e# = Ce" 

This  Galois connection arises in a s tandard way (Cohn, 1965) from the 
function 

((a, b), (~, fi)) >--> (cm ~ fib): (A X B) × (2 a × 2 B) ~ 2. 

Relative to this Galois connection, every F C A × B is closed, i.e., F e e  = F. 
To  show this, note first that  for any a ~ A,  F # ( % ,  5a) holds, where % is 
_ = a and 5a is F(a, _). Thus,  if Fee(a, b) holds, then %(a) ~ 5a(b), so 
F(a, b) holds. Thus ,  F#  e C F ;  and we always have F C F e e ,  so F e e  = F. 

Thus,  by general properties of Galois connections, 2 axB is anti- isomorphic 
to the subalgebra {~ C 2 A × 2 B I ~e e = ~} of 2 zax28. 

DUALITY THEOREM. (V A) e = /12a , and F + G = (F:  A Ge)e , oC H ~- 
(~2 c H # ) # .  

Proof. Let  u l , u 2 : A - - ~ A  + A be the natural injections. Then  
V A = {(u,a,a) I a ~ A }  k) {(u2a , a )  I a ~ A } .  Now (VA) e C 2  a+A X 2 a 
(2 A × 2 a) × 2 a, so modulo this isomorphism we see that ((~, fi), V) e (VA) e 
if and only if aa = ya and/3a = ya for all a E A;  that is, c~ = y = ft. Thus  
(VA) # = A2A. 

For  the conjugacy of + and A, oC and 32 c, since all subsets of A × B 
are closed, it is sufficient to prove that (F  + G) # = F e A G e and (oC H)e  = 
~2 c H e. 

Note that ( F +  G ) # C 2  A+c X 2 ~ + D ~ 2  A X 2 c × 2 B × 2 D, Then  

( F  + G) e (c~, y, 5, 8) means that for all x e A + C and y e B d- D 

( ( x e A  ^ y e B  A F ( x , y ) )  v ( x e C  A y e D  ^ G(x,y)))  

::> [((x e A A o~x) v (x e C ^ yx)) :::> ( (y  e B ^ fly) v (y  e D ^ By))] 
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This  is equivalent to 

((~ s A ^ y s B ^ F(~,  y))  * ( ~  ~ & ) )  

^ ((~ ~ C ^ y ~ D ^ a (~ ,  y ) ) .  (yx ~ ~y)), 

that is, to Fe(c~, f )  A Ge(y, 8) = F e A Ge(c~, y, fi, 8). 
Rather surprisingly, the second equation is the principle of partial correct- 

ness proofs for programs. On the one hand, (oC H ) e  (~, f )  asserts that for 
all data a E A ,  if ~a holds and the flowchart of Fig. 4a produces a result 
b ~ B (i.e., oC H(a,  b)), then ]~b holds. On the other hand, (32 c He)(~, f )  = 
~ He(y,  ~, y, fi) (recalling that since H C (C d- A) × (C -k B) we may 
interpret H e as a subset of 2 c X 2 A × 2 c X 28). This  asserts that there 
exists y ~ 2 c such that for all x E C @ A,  y ~ C -Jr B,  

(x ~ C A y E C A H ( x , y )  ~ (yx ~ yy)) 

A (x ~ C A y ~ B ^ H(x,  y )  ~ (yx ~ fly)) 

A (x e A A y e C a H(x,  y )  ~ (cxx * yy)) 

A (x e A A y e B A H(x ,  y )  ~ (c~x ~ fy) ) .  

Stated informally, if H produces a result from data satisfying y or c~, the 
result satisfies y or f .  I t  is a simple induction argument,  familiar from program 
correctness proofs that this ensures that if the flowchart of Fig. 4a produces 
a result f rom data satisfying ~, the result satisfies f .  Thus,  ~2 c H e C (oC H)e.  

For the converse, suppose (oC H ) e  (~, fl). Consider 

yc = (~a o~a A H c  A o (HcC) * (a, c)) A (Vb (HcC) * o HBC(c, b) ~ fib)). 

Case (i). Suppose x E C and y ~ C and H(x,  y)  and yx. Then  there is 
a ~ A  such that aa and H c A o ( H c C ) * ( a , x ) .  Since HcC(x,y) ,  then 
3a o~a ^ H c  A o (HcC) * (a, y)  holds. Let  b E B be such that (HcC)* o HBC(y, b). 

Since HcC(x,y) ,  then (HcC)*oHBC(x,b)  holds, so fib holds. Thus,  
Vb (HcC) * o H~C(y, b) ~ fib holds. Thus,  yy holds. 

Case (ii). Suppose x c C and y ~ B and H(x,  y)  and yx. Then  there is 
a ~ A  such that c~a and I -[cAo(HcC)*(a,x) .  Since HBC(x,y), then 
HcAo (HcC)*o H~C(a,y), so (oCg) (a ,y ) .  But ~a holds, so by hypothesis, 

fly holds. 

Case (iii). Suppose x E A  and y ~ C  and H ( x , y )  and c~x. Then  
3a ~a A H c  A o (HcC) * (a ,y)  holds, since HcA(x ,y )  holds. Let  b c B be such 

643/3I[I-7 
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that (HcC) * o HBC(y, b). Then Hc A o (HcC) * o HBC(x, b) holds, so (o c H)(x, b) 
holds. Since ~x holds, then by hypothesis,/3b holds. Thus 7Y holds. 

Case (iv). Suppose x ~ A and y E B and H(x, y) and aa. Then HBA(X, y), 
SO (oc H)(x, y) holds. Since ~x holds, then by hypothesis fly holds. 

Thus 37 He(y, c¢, 7, fi) holds so (oC H)~ C $2 c H e. Therefore, the equations 
hold. Q.E.D. 

We have exhibited a duality between the Eilenberg semantics of the 
regular expression calculus for flowchart interconnection and the semantics 
of the logical calculus for memoryless network interconnection (that is, 
the usual semantics for this 3, ^ calculus). 

5. FEEDBACK FOR SEQUENTIAL MACHINES 

To every multiple input and output sequential machine can be assigned 
a suitable biaction of the output monoids on the left and the input monoids 
on the right. This construction is the crucial first step in developing a calculus 
of interconnection for sequential machines, a calculus that is syntactically 
identical to the logical calculus of Section 3. For simplicity of exposition, 
we consider only sequential machines of the form specified below, but the 
extension to the general case is entirely obvious. 

A multiple input and output sequential machine with inputs X, Z and outputs 
Y, Z consists of a set Q of states, and functions 

~:g x ( x  x z)--*9, 

1:Q × (X  × Z ) - ~ ( Y  × Z). 

The free monoid generated b~r a set A is denoted A* and has as its elements 
finite sequences of elements of A, with concatenation as multiplication and 
the empty sequence ¢ as identity. 

A configuration of the above sequential machine is an element of 
Y* × Z *  × Q  × X *  × Z * .  

~' e Z* ~ ~ Z ~ 

q¢O 

FIO. 7. A configuration. 
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We define an equivalence relation ~-~ on configurations whereby each 
configuration is identified with its successor (if any) under the operation 
of the machine. Formally, the relation is generated by the identifications 

(7, ~', q, x~, z 0  ~ (n~(q, x, z), ~'~z(q, ~, z), a(q, x, z), ~, 0 

where xEX,  z~Z,  and At,  hz are the components of A. Let  C =  
Y* x Z*  x Q x X*  x Z*  be the set of configurations, and let C ~ C/,'-, be 
the set of equivalence classes [7, ~', q, ~:, ~] of configurations (7, ~', q, ~:, ~) ~ C. 
Then  C admits a left Y* X Z*, right X* X Z* action, namely 

T o  show this, note that C has such an action, with an analogous definition. 
This  action is compatible with the identifications generating the relation ~-~, 
so by general principles of universal algebra ~-~ is a congruence, and the 
action on C is well defined. 

This  action will be called the characteristic biaction of the machine. We 
can recover the functions 8, A from the characteristic biaction, by noting 
that the equivalence classes may be identified with configurations having at 
least one input tape empty, and considering [E, E, q, s, El • (x, z) for x s X, 
zEX, q~Q. 

In  order to see the analogy with Section 3, we must interpret the charac- 
teristic biaction as a functor ~O: ( y *  X Z*) °p × (X* x Z*) -+ Sets, analo- 
gous to the characteristic function of a relation T: (Y x Z)  x (X X Z) --~ 2. 
We shall not, however, assume any category theory here; rather, we shall 
give a direct definition of the operation coend which is analogous to existential 
quantification. 

Let  M, N, P be monoids, and let F be a left M X N, right P X N action 
on a set K. Then  the N-coend of F, denoted f2v/~ is a left M, right P action 
on K / z ,  where ~ is the equivalence relation generated by the identifications 
k - ( l , n ) ~ ( 1 ,  n ) ' k ,  n ~ N ,  k ~ K ;  which is defined by m ' / ~ - p - ~  
(m, 1)" k ' (p ,  1), where - denotes equivalence class relative to ~ .  One 
can see that this is well defined by noting that it is compatible with the 
identifications generating ~ ,  since 

(m, 1) .(k "(1, n)) -(p, 1) : (m, l ) - k  -(p, n) 

: ((m, 1)" k"  (p, 1))" (l ,  n) ~ (1, n)" ((m, 1)" k .  (p, l)) 

: (m, n)" k - (p ,  1) = (m, l) "((1, n) "k ) -  (p, 1). 
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In this case, let us compute f * ~; that is, C / ~  with the appropriate 
biaetion. The equivalence ~ is generated by the identifications 

that is, 
[7, ~', q, ~, ~] " (E, ~") ~ (e, ~")[~, ~', q, ~, ~], 

E~, ¢', q, ~, W ]  -= [7, ~"¢', q, ~, U 

Equivalently, C / ~ - =  C/~  where ~ is the equivalence relation generated 
by the identifications generating ~-~, together with additional identifications 

(~/, ~', q, 5, ~") ~ (7, ~"~', q, ~, ~) (1) 

These latter identifications are shown in Fig. 8. That is, the left end of the 
Z* output tape is identified with the right end of the Z* input tape--feedback! 
The left action of Y* and right action of X* are induced by the congruence ~ .  

, j .  

FIG. 8. The identifications (1). 

Let us compare f z*~  with the characteristic biaction of what would 
usually be taken as the feedback connection of the given machine. The Z 
output would be fed back with unit delay, giving the sequential machine 

8: (Q x z) x x ~ (Q x z), ~: (9 x z)  x x ~ Y 

where 3((q, z), x) ~ (8(q, x, z), hz(q, x, z)) and A((q,,z), x) = Av(q, x, z). The 
characteristic biaction of 8, ~ is a subaction of fz  ~. We forego a formal 
proof in favor of the more suggestive pictorial sequence of Fig. 9. In fact, 
the biaction fz*~  contains a subaction isomorphic to the characteristic 
biaction of the machine 8, A with feedback delay n, for every n; and fz* 
is precisely the disjoint union of these subactions. In view of this, and the 
universal properties possessed by j.z* which are sketched in the next section, 
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z e Z  x e X  

Fie. 9. 1-Delay feedback. 

it would seem that we should consider not a single feedback machine asso- 
ciated with 3, A, but rather the family of feedback machines that are captured 
in fz* q~. 

The fact that interconnection operations are more appropriately viewed 
as operations on biactions than on the machines themselves is reiterated 
when one considers parallel interconnection. How should Fig. 3b be inter- 
preted ? Must one supply inputs to both machines simultaneously, or 
can they operate independently ? I f  they have characteristic biactions 
~: y*op X X*--+ Sets and W: V*op × U*---~ Sets, the natural construction 
on biactions q~ × W: (Y* × V*)oP × (X* × U*) ~ Sets gives the more 
general answer; that is, if # is an action on K and W an action on L, the 
action • × W on K × L is given by 

(k, O '  = k .  f, I .  

which allows action of simultaneous or independent inputs. 
Thus, the logical interconnection calculus with the interpretation of coend 

and product yields the semantics of sequential machine interconnection 
(strictly, it gives a semantics that subsumes the usual semantics). 

6. GENERALIZED LOGIC 

To explain the assertion that the operations of Section 5 participate in 
a generalized logical calculus, we state here the analogies with ordinary 
logic. The fact that set-valued functors admit generalized logical oloerations 
was discovered by Lawvere (1969, 1970, 1973). In this section we must 
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assume a familiarity with category theory, in particular the notion of an 
adjunction. The reader may consult Maclane (1971) particularly for the 
less widely known notions of end and coend. There are axiomatic descriptions 
of some or all of the formal properties listed here, notably Lawvere's notion 
of a hyperdoctrine (1969, 1970), and Street's notion of a cosmos (1974). 
We shall not attempt to present these; rather, we specify the analogy (first 
observed by Lawvere) that motivates these general formulations. 

The basic form of the analogy is that types are interpreted as small cate- 
gories, terms are interpreted as functors between small categories, and 
predicates are interpreted as set-valued functors from small categories. The 
logical operations which have analogs are characterized by certain deduction 

rules, which, in fact, are seen to be adjunctions. The generalized logical 
operators for set-valued functors satisfy analogous adjunctions, as follows. 

First we consider propositional logic. The truth values for ordinary logic 
lie in the Boolean algebra 2. Let us write --~ for the order relation; that is, 
0 --~ 1. The truth values of generalized logic are sets. 

p ---~ q , p --~ r P ---~ Q, P ---~ R 

p - -+q  A r P - + Q  X R 

On the left is a familiar deduction rule of propositional logic, and on the 
right, the adjunction characterizing cartesian product of sets. The counit 
of the cartesian product adjunction is the transform of the identity function 
P × Q --~ P × Q, namely, the pair of projections P × Q -+ P, P × Q --~ Q. 
These are the analogs of the propositional axioms p n q-~  p, p A q--~ q. 
The unit of the cartesian product adjunction is the diagonal function 
P - +  P × P, analogous to the axiom p --~ p A p. Now consider the binary 
operation ~ (p ~ q=°ff  v q). Its analog is the function set construction 
(P, Q ~ Qp). The analogous adjunctions are 

p A q---~ r P × Q - +  R 

p ~ ( q ~ r )  P - + R  ° 

The units and counits are respectively p ~ (q ~ (p A q)), P - ~  (P × Q)O; 

(q ~ r)A q-+ r (modus ponens), R ° × Q ~ R (evaluation). There is also 
an adjunction characterizing 1 (true) and its analog 1 (singleton set), namely, 

p - -~ l  P---~ 1 ' 

which, for logic, asserts that 1 is maximal, and for sets, asserts that 1 is 
terminal. 
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For predicate logic, write -+ for the semantic ordering on predicates; 
that is, F--+ G means that in all models the interpretation of F is a subset 
of that of G. Write f,  g, etc., for terms. Write 2,  h v, etc., for set-valued 
functors, and ¢, ¢, etc., for functors between small categories. We have the 
following analogous adjunctions relating substitution and quantification for 
logic, and substitution and Kan extensions for set-valued functors. Here Z'~ 
denotes the left Kan extension along ¢ a n d / / ¢  denotes the right Kan exten- 
sion along ¢ (see (Maclane, 1971)). Arrows are natural transformations 

F(x)--. G(f(x)) 
~x(F(x) ^ I f .  = y]) ~ e(y) 

F(g(y))--+ G(y) 
F(x) -~  Vy([x = gy] ~ a(y)) 

¢(x) -+  ~(¢(x)) 
( s¢  aS)(y) --+ ~ ( y )  

# ( ¢ ( y ) ) - +  ~ ( y )  

¢(x) -~  ( / /¢  ~)(x) " 

If the Kan extensions are written using the appropriate coend and end 
formulas, we obtain a more striking form of this analogy. 

q)(x) --+ W(¢(x)) for ¢: X--+ Y 
f~ qb(x) × Y[¢x, y] --> T ( y )  

*(¢(Y)) ~ ~(Y) for ¢: Y - ~  x 

Finally, for functors ~b: Xop × y--+ Sets, W: yop X Z--+ Sets, S: X °p X Z--+ 
Sets, there are analogous adjunctions. 

3y(F(x, y) ^ o(y, ~)) ~ H(x, ~) f~ ¢(x, y) x ~ ( y ,  ~) -~  3(x, ~) 

F(x, y)  ~ Vz(G(y,  z) ~ H(x,  z)) ¢(x, y) --~ f ,  •(x, z) ~(y.') 

Indeed, in another context, this amounts to the ( ~ f  - -  Horn Z adjunction for 
bimodules. 

The relevance of these observations to interconnection of systems is the 
following. First, it shows the proper level of generality for the development 
of Section 5. In fact, by choosing small categories more general than free 
monoids, one obtains an interconnection theory for other types of system; 
for example, using Lawvere's algebraic theories, one obtains Thatcher's 
generalized 2 sequential machines. More importantly, however, it provides 
a deductive calculus for system homomorphism. A proof from some axioms 
Fi --* Gi of some theorem F---> G, using the deductions specified by the 
above adjunctions, translates as follows. The formulas F i , G i , F, G represent 
interconnections of systems. The proof shows that if one is given certain 
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homomorphisms F~. -+ Gi of systems, there is a canonical induced homo- 
morphism F--~ G. It is this which makes the theory a calculus for system 
interconnection. A simple use of the last adjunction is given in the next 
section, and the Kan adjunctions have also been used (Bainbridge, 1972). 

Finally, there is an interpretation of the regular expression calculus in 
this context which provides a special duality principle analogous to the duality 
theorem of Section 4. For example, if ~b: (A + C)°p × (B + C) --~ Sets, 
we may define oC ¢: Mop × B --* Sets to be @c A + qbcA @c (¢cC) * @c ¢ c ;  
where q~B ~, etc., are the components of ~; + denotes pointwise disjoint 
union; I ' @ c A  = f C F ( _ , c )  × A(c,_); and for T:Cop × C--~Sets, 
~ *  = c[_,  _] + 7 ~ +  7~ ® c  7~ + . . . .  

7. REDUCTION AND MINIMAL REALIZATION FOR FEEDBACK SYSTEMS 

The Kan extensions for set-valued functors have been used (Bainbridge, 
1972) to describe the minimal realization of behaviors by sequential machines, 
linear systems, and algebra automata, among others. This can now be 
generalized to give a minimal realization theory for the behavior of feedback 
systems. We prove the general result and give its application to sequential 
machines. 

First, for small categories A, B, let us denote a functor of the form 
¢p: Aop × B -~- Sets by q)B n. Then, given functors ¢b~ ~, 7Jc n, 3c  "~, define 

B 
CBA ®S TcB = f ~ A × T c  B, 

H°mc(TcB' SeA) = :c [TCB' SEA]' 

where, for sets P, Q, [P, Q] denotes the function set QP. Then _ @B 7Jc n is left 
mBOP and ~B i @B 7tc B adjoint to Homc(Tc ~, _). We can interpret q)B A as ~'AOV, ~- 

~.fcOD ~B°P BoP 
BOP @BOP "~'AOP SO ~DBA @8- is left adjoint to HOmAov(¢Aop, _) 

HomA(~B A, _), say. 

REDUCTION THEOREM. Given ~B A, t[tcB , 3C n, and a natural transformation 
¢: q~l~ A ®B ~CB --+ BcA; there are natural epimorphisms a: ~BA ---+ ~B A, 

fi: TcB ~ ~ c  ~ for which there exists a factorization ¢ ~-- (~ @8 fl)O (where 
O: q)B A ®~ ~cB --+ 3)  which is terminal among all factorizations of ~ through 
a QB-product of epimorphisms. 

Proof. For simplicity, omit sub- and superscripts, writing Hom. or 
Horn" as required. Let ~: ~b--+~ and ~:¢ff--> Hom.(~ ,S)  be the image 
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factorization of the transform q~ ---* Hom.(g  z, S) of 55. Let  ¢: ~ @ T---~ S 
be the transform of 7. Performing the dual construction on ~b, we let fl: ~ - -*  
and 3 : ~ - - * H o m ' ( ~ , Z )  be the image factorization of the transform 
W---~ Hom' (~ ,  ~)  of ~, and define 0: q) @ ~ - - *  ~ to be the transform of 3. 
Then the desired factorization is 55 --  (a @ ~ ) ( ~  @ fi)O ~- (a @ fi)O. 

Now suppose that there is a factorization ~ = (~: @ ~/)~, with ~:: q~ ~ / ' ,  
~/: W-~  A epimorphisms. First, let a = (F  @ ~)~, so that ~b ---- (~: @ W)a. 
Thus,  the transform q~ ~ Hom.(W, S) of 55 factors through the epimorphism 
~:. By the universal property of c~: q~ --* ~ ,  we have a = ~:/x for some/x: Y'--* ~ .  
The dual construction gives a factorization fi = ~v. Thus  ~ @fi  = 
~:/z @ ~v = (~ @ ~)(/~ @ v), and since ~: @ ~1 is an epimorphism, /z @ v is 
uniquely specified. Q.E.D. 

MINIMALITY THEOREM. Given 4: q5 @ ¥~---~ 3, let ~: ~ - - ~ ,  fi: ~---~ ~ ,  
O: qb @ ~--~ 3 be as in the reduction theorem. I f  55 factors as (~ @ ~)~ for any 
maps ~: ~ ~ F, ~: ~--~ d, ~: F @ A -~ S, then ~ is a subquotient of F, and 

is a subquotient of A. 

Proof. Consider image factorizations ~: = ~_~, ~/ = ~/_~. The  reduction 
theorem gives a factorization c~ @ fi = (~ @ ~/)(/z @ v), say, and so we have 
a subquotient o f / "  via _~ and/~ and ~ a subquotient of z] via ~ and v. Q.E.D. 

As a corollary of the proof of the reduction theorem, we obtain the minimal 
realization theorem of Bainbridge (1972) for automata and more general 
systems. As special cases of the reduction theorem we obtain the minimal 
realization theorem of Bainbridge 0975) for addressed systems, and a 
minimal realization theorem for feedback systems. For automata, the 
specializations are the following. 

First, for minimal realization of automaton behaviors, let a function 
4: X*  --~ {0, 1} be given. Let q5 be the left ~ * right X*  action on X* given 
by E • ~: • ~:' = ~: ' ,  and let }//be the left X*  right ~ * action on X* given by 
~:' " ~: • ¢ ~ ~:'sq Then we may interpret ~ as a map from ~b @x* hrJ to Z, the 
left ;~ * right ~ * action on {0, 1} given by e - p • ~ = p, since q~ @x- ~ is 
the left ~ * right ~ * action on the set X*. Thus,  we have 55: q~ @x* ~ - -*  3,  
and, using half the proof of the reduction theorem, we obtain a factorization 
q~ = (c~ @ ~)~b for ~b: ~ @ ~- -*  S. Now ~ is a left 2~ * right X*  action on 
a set ~), say. Since X* is free, this action is determined by a function 
3: ~) × X ~ Q. The map ~: • --~ ~ is a homomorphism of left ~ * right X*  
actions, and so is determined by its value cce e ~). The left ~ * right ~ * 
action ~ @ h u is just the set O, so ~ is a function from ~) to {0, 1}. Thus, 
the proof of the reduction theorem gives us an automaton with initial state 
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~e ~ ~), transition function 3: Q × x -+ Q and output function ~b: Q --~ {0, 1}. 
The  homomorphism ~ is the run map, and the factorization shows that the 
automaton has behavior qk Half the proof of the minimality theorem shows 
that this is the minimal realization of the behavior q~. 

Now let us apply the reduction theorem in its entirety to the above 4, O, 
~ ,  S. We obtain a factorization ~ = (~ @/3)0. From O we obtain as before 
a transition function 3: Q × X---~) ,  and from ~ we obtain an initial state 
~e ~ Q. From 7 t we obtain a left action of X*  on a set R, say, generated by 
a cotransition function d: X × / ~  ~ R. From ]~ we obtain an element fie 6/~. 
Since O @ ~ is just the left ;~ * right 2~ * action on Q x -~, 0 is a function 
from Q × R to {0, 1}. However, the function 0: Q--+ {0, 1}/~ induced by 0 
is a homomorphism of (left ~ *) right X* actions; in other words, ~ and d 
satisfy 

0(8(q, x), f) = O(q, a(x, f)) (2) 

for all ~ ~ ~), f e/~,  x ~ X. Thus,  we have an addressed machine (Bainbridge, 
1972) with transition function 3, initial state ~e, cotransition function d, 
output coordinate /3e, and coordinatization 0. The  interpretation is this. 
Each state has, by 0, a unique coding as an assignment of binary values to 
the elements (called coordinates) of R. Equation (2) states that the value 
stored at coordinate f for the next state 3(~, x) is the value presently stored 
at d(x, ~). Thus,  d represents the information flow among the coordinates R. 
The  output of the machine is the function Q --~ {0, 1} obtained by observing 
the output coordinate tic; that is, the output function is ~--~ 0(~, fie). This 
realization is minimal not only in states ~), but in coordinates R. 

As a simple but  typical feedback system, consider an interconnection of 
sequential machines having configurations as shown in Fig. 10, where 

FIO. 10, Configurat ion of  a feedback system. 

s X*, ~ ~ Y*, say. A behavior function for such a system should assign 
to each initial configuration (q0, ~, ~/, r0) a value in some output set, say 
{0, 1}; so a behavior function would be of the form 4: X* × Y* --+ {0, 1}. 
To  see the relation between the machines and such a behavior, suppose the 
left machine has characteristic b iact ion/ ' ,  a left ~ * × Y* right X*  action 
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on a set K,  and that the right machine has characteristic biaction A, a left X*,  
right Y* × 25 * action on a set L. From Fig. 11, we see that the characteristic 

Y 

FIG. 11. Reformula t ion  o f  Fig. 10 interconnect ion.  

biaction of the interconnection is o r*°" (oX* (F  × A)). However, viewing F 
as a left ~ * right y*op × X*  action, and A as a left y*op × X*  right ~ * 
action, one can show from general properties of coends that this is isomorphic 
to F @yo~×x* A. Specifically, it is the set of equivalence classes of configura- 
tions generated by identifying states with their successors; so every configura- 
tion may be identified with the cycle of configurations which it ultimately 
reaches, be that cycle of infinite period, finite period, or period 1 (in effect, 
a final configuration). In  order to assign a behavior to such a system, one 
must specify initial states k 0 , l 0 for the components F and A, and an output 
function. By analogy with earlier examples, this should be a map 
~: F @ A --~ {0, 1}; for example, ~ could have value 1 on equivalence classes 
corresponding to certain final configurations (cycles of period l), and 0 
otherwise. With these conventions, the machine computes a function 
~: X*  × Y* -~ {0, 1} by first selecting an initial configuration (ko, ~:, ~7,/0), 
running the machines until ~ can be evaluated (e.g., until the computation 
halts), then evaluating ¢. 

I f  the systems represented b y / '  and A are generalized sequential machines 
(that is, they produce an output string for each input letter, instead of a 
single output letter) then the tag systems of Post are included as a special 
case. Since such systems are capable of universal computation, the behaviors 
can be the characteristic function of an arbitrary recursively enumerable set. 

Now, given 6: X*  × Y* --* {0, 1}, let # be the left ;~ * right y ,op  × X* 
action on Y* × X*  given by (•, ~) "(*/, ~') = (~/'~7, ~ ' ) ,  and let }P be the 
left y*op × X*  right ~ *  action on Y* × X *  given by ( ~ ' , ~ ' ) ' ( B , s  e ) =  
(~pT', ~'~:). Then  ~ @ ~u = y ,  × X*.  Let  3 = { 0 ,  1}. The  reduction 
theorem gives a factorization ~ : (~  × ~)0, where a : ~ - ~ ,  3:~---~,  
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0 : ~ @ ~ P - - ~ ,  q~ is a left ~ *  right y*op × X* action on a set Q, say; 
and T is a left y*op × X* action on a set _~, say. Since the actions q), T are 
free, the homomorphisms a, fl are determined by their values a(e, E)e ~), 
/3(% E) e R. These provide initial states for the q~ and T components of the 
interconnection. The function 0 from ~ G ~ to {0, 1} provides the output 
function. Then ~ ,  ~ with these initial states and output realize the function 
in the above sense. 

Further investigation is required to determine the precise significance of 
this minimal realization theorem for closed loop behaviors. The fact that 
it has the open loop minimal realization theorems as special cases suggests 
that such investigation is worthwhile. 

Before ending this section, it should be noted that the type of feedback 
interconnection above is not as general as could be considered; for example, 
a "behavior" could be a homomorphism between systems of the form shown 
in Fig. 12. 

¢ :q~®~ >- E 

Fro. 12. Most general feedback behavior. 

In fact, a simulation of S by • @ T is a partial map in the topos Sets r° 'xx 
(for ~b, T, ~ as above), and so corresponds to a map ¢: q~ @ ~ ~ ~,  where 
is the classifier of partial maps into ~;  that is, a behavior to which the reduc- 
tion theorem applies. 

8. LINEAR SYSTEMS 

Schiitzenberger and others have observed that linear systems interconnect 
according to the calculus of regular expressions. One can find the following 
manipulations (except the last) in any engineering text on feedback. From 
Fig. 13, y - - F ( x  + Gy) - ~ F x  + F G y ;  so y - - F G y  = ( I - - F G ) y  = F x ;  
thus, y : ( I  - -  FG)- I  Fx.  But ( I  - -  FG) -1 -= I + F G  + (FG) 2 -+- . . . .  (FG)*, 

so  y = ( ( F C ) * F ) . .  

This section makes two points. First, it explains why, in a paper on a new 
calculus for feedback intercofinection, we do not obtain as a special case the 
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FIG. 13. Linear feedback. 

only existing good theory of feedback, namely, that for linear systems. The  
explanation is that there are two dual notions of feedback, which in the 
nonlinear case are more appropriately labeled feedback and iteration, but 
in the linear case may be more easily confused. These two notions admit 
different calculi, the logical calculus and the regular expression calculus. 
Feedback in linear systems is described by the regular expression calculus, 
feedback in multilinear systems is described by the generalized logical (i.e., 
tensor) calculus. (For the application of tensor calculus to multilinear systems, 
see Meseguer and Sols (1975).) The second point is that a unified categorical 
treatment of both the theory presented in this paper (based on functors 
~ :  yop x X---~Sets) and the linear-multilinear case can presumably be 
obtained using categories based on closed categories other than Sets. 
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