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1. Introduction

In this paper we consider some classes of non-associative algebras. There exist several classes of

non-associative algebras (baric, evolution, Bernstein, train, stochastic, etc.), whose investigation has

provided a number of significant contributions to theoretical population genetics. Such classes have

been defined at different times by several authors, and all the algebras belonging to these classes are

generally called “genetic”. Etherington introduced the formal language of abstract algebra to study of

genetics in his series of seminal papers [2–4]. In recent years many authors have tried to investigate

the difficult problem of classification of these algebras. The most comprehensive references for the

mathematical research done in this area are [11,12,15,16].

In [11] an evolution algebra A associated to the free population is introduced and using this non-

associative algebra many results are obtained in explicit form, e.g. the explicit description of sta-

tionary quadratic operators, and the explicit solutions of a nonlinear evolutionary equation in the

absence of selection, as well as general theorems on convergence to equilibrium in the presence of

selection.

In [15] a new type of evolution algebra is introduced. This evolution algebra is defined as follows.

Let (E, ·) be an algebra over a field K . If it admits a basis e1, e2, . . . , such that ei · ej = 0, if i �= j and

ei · ei = ∑
k aikek , for any i, then this algebra is called an evolution algebra.

In this paper by the term evolution algebrawewill understand afinite dimensional evolution algebra

E (as mentioned above) over field R.

Evolution algebras have the following elementary properties (see [15]): Evolution algebras are not

associative, in general; they are commutative, flexible, but not power-associative, in general; direct

sums of evolution algebras are also evolution algebras; Kronecker products of evolutions algebras are

also evolution algebras.

The concept of evolution algebras lies between algebras and dynamical systems. Algebraically,

evolution algebras are non-associative Banach algebra; dynamically, they represent discrete dynamical

systems. Evolution algebras have many connections with other mathematical fields including graph

theory, group theory, stochastic processes, mathematical physics, etc.

In the book [15], the foundation of evolution algebra theory and applications in non-Mendelian

genetics and Markov chains are developed, with pointers to some further research topics.

In [13] the algebraic structures of function spaces defined by graphs and state spaces equipped

with Gibbs measures by associating evolution algebras are studied. Results of [13] also allow a natural

introduction of thermodynamics in studying of several systems of biology, physics and mathematics

by theory of evolution algebras.

The paper is organized as follows. In sectionwe givemain definitions related to a chain of evolution

algebras. Thereinwegiveseveral examples (timehomogenous, timenon-homogenous,periodic, etc.) of

such chains. For a periodic chain of evolution algebraswe construct a continuumset of non-isomorphic

evolution algebras and show that the corresponding discrete time chain of evolution algebras is dense

in the set. In Section 3 we obtain a criteria for an evolution algebra to be baric. The concept of a

property transition is introduced in Section 4. This section also contains several chains of evolution

algebras for which we describe the behavior of the baric property depending on the time. For a chain

of evolution algebras given by thematrix of a two-state evolutionwe define a baric property controller

function andunder someconditions on this controllerweprove that the chain is not baric almost surely

(with respect to Lebesgue measure). We also construct examples of the almost surely baric chains of

evolution algebras. We show that there are chains of evolution algebras such that if it has a unique

(resp. infinitely many) absolute nilpotent element at a fixed time, then it has unique (resp. infinitely

many) absolute nilpotent element any time; also there are chains of evolution algebraswhich have not

such property. In the last subsection for an example of two dimensional chain of evolution algebras

we give the full set of idempotent elements and show that for some values of parameters the number

of idempotent elements does not depend on time, but for other values of parameters there is a critical

time tc such that the chain has only two idempotent elements if time t � tc and it has four idempotent

elements if time t < tc.
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2. Definition and examples of CEA

Consider a family
{
E[s,t] : s, t ∈ R, 0 � s � t

}
of n-dimensional evolution algebras over the field

R, with basis e1, . . . , en and multiplication table

eiei = M
[s,t]
i =

n∑
j=1

a
[s,t]
ij ej, i = 1, . . . , n; eiej = 0, i �= j. (2.1)

Here parameters s, t are considered as time.

Denote by M[s,t] =
(
a
[s,t]
ij

)
i,j=1,...,n

-the matrix of structural constants.

Definition 2.1. A family
{
E[s,t] : s, t ∈ R, 0 � s � t

}
of n-dimensional evolution algebras over the

field R is called a chain of evolution algebras (CEA) if thematrixM[s,t] of structural constants satisfies
the Chapman–Kolmogorov equation

M[s,t] = M[s,τ ]M[τ,t], for any s < τ < t. (2.2)

If ρi is a projection map of E[s,t], which maps every element of E[s,t] to its ei component, then Eq.

(2.2) can be written as

M
[s,t]
i =

n∑
j=1

ρj(M
[s,τ ]
i )M

[τ,t]
j , for any s < τ < t. (2.3)

Definition 2.2. A CEA is called a time-homogenous CEA if the matrixM[s,t] depends only on t − s. In

this case we writeM[t−s].

Definition 2.3. A CEA is called periodic if its matrix M[s,t] is periodic with respect to at least one of

the variables s, t, i.e. (periodicity with respect to t) M[s,t+P] = M[s,t] for all values of t. The constant

P is called the period, and is required to be non-zero.

Remark 2.4. In general, an algebra A[s,t] can be given by a cubic matrix M[s,t] =
(
a
[s,t]
ijk

)
i,j,k=1,...,n

of structural constants. Our Definition 2.1 can be extended to A[s,t] using analogues of the Chapman–

Kolmogorov equations for quadratic operators (see [6,7,14]). Since in the general case there are two

types of the Chapman–Kolmogorov equations: type A and type B [6], one also can define two types of

chainof (general) algebrasusing theChapman–Kolmogorovequationsof typeAandtypeB, respectively.

In this paper we shall only consider CEA, which is more simple than general case, because it is defined

by quadratic matrices.

The CEA corresponding to a Markov process

Let
{
M[s,t], 0 � s � t

}
be a family of stochastic matrices which satisfies the Eq. (2.2), then it

defines a Markov process. Thus we have

Theorem 2.5. For each Markov process, there is a CEA whose structural constants are transition probabil-

ities of the process, and whose generator set (basis) is the state space of the Markov process.

If M[s,t] does not depend on time (i.e. = M) then the CEA contains only one evolution algebra E.

Note that for a Markov chain defined byM the corresponding E has been studied in [15].
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Now we shall give several concrete examples of CEA.

Example 1. To showa timedependent CEAweuse the following example of timehomogenousMarkov

process (see [10]) : for n = 3 consider

a
[t]
ii = 2

3
e−

3
2
At cos(αt)+ 1

3
, i = 1, 2, 3;

a
[t]
12 = a

[t]
23 = a

[t]
31 = e−

3
2
At

(
1√
3
sin(αt)− 1

3
cos(αt)

)
+ 1

3
;

a
[t]
21 = a

[t]
32 = a

[t]
13 = −e−

3
2
At

(
1√
3
sin(αt)+ 1

3
cos(αt)

)
+ 1

3
,

where A > 0, α =
√

3
2
A.

LetE[t], t � 0be the correspondingCEA. It is easy to see thatE[t] hasanoscillationbehaviordepend-

ing on time t. Moreover limt→+∞ E[t] = E, where E is an evolution algebra with the multiplication

table

e21 = e22 = e23 = 1

3
(e1 + e2 + e3), eiej = 0, i �= j.

The CEA corresponding to a family of matrices which do not define a process.

Example 2. We shall give a time homogenous CEA which are different from CEAs corresponding to

Markov processes. For n = 2 take

a
[t]
11 = a

[t]
22 = a[t]; a

[t]
12 = a

[t]
21 = b[t].

Then Eq. (2.2) is equivalent to

a[t] = a[τ ]a[t−τ ] + b[τ ]b[t−τ ];
b[t] = a[τ ]b[t−τ ] + b[τ ]a[t−τ ].

Denote f (t) = a[t] + b[t], ϕ(t) = a[t] − b[t], then the last system of functional equations can be

written as

f (t) = f (τ )f (t − τ), ϕ(t) = ϕ(τ)ϕ(t − τ).

Both these equations are known as exponential Cauchy equation and the system of equations has

solution f (t) = λt , ϕ(t) = μt , where λ,μ � 0. Consequently, a[t] = 1
2
(λt +μt), b[t] = 1

2
(λt −μt).

But this solution does not define any Markov process, in general.

LetE[t], t � 0be the correspondingCEA.Dependingonparametersλ andμwegetdistinct behavior

of E[t] for t → +∞, i.e. we have

lim
t→+∞ E[t] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0 if 0 < λ,μ < 1,

E1 if λ = μ = 1,

E1/2 if λ = 1, 0 � μ < 1,

E−1/2 if μ = 1, 0 � λ < 1,

E∞ otherwise,
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whereE0 is anevolutionalgebrawithzeromultiplication;E1 is anevolutionalgebrawithmultiplication

table

e21 = e1, e
2
2 = e2, e1e2 = 0;

E1/2 is an evolution algebra with multiplication table

e21 = e22 = 1

2
(e1 + e2), e1e2 = 0;

E−1/2 is an evolution algebra with multiplication table

e21 = 1

2
(e1 − e2), e22 = −1

2
(e1 − e2), e1e2 = 0;

and E∞ is a vector space which has “infinity multiplication”, or we can say that in E∞ an algebra

structure is not defined. This example shows that a limit of a CEA can be non-evolution algebra.

Example 3. A two-state evolution. Now we shall give an example of time non-homogeneous CEA,

the matrix of structural constants of which also does not define any (time non-homogenous) Markov

process in general. Consider n = 2 and matrix M[s,t] =
(
a
[s,t]
ij

)
i,j=1,2

with

a
[s,t]
11 = 1

2
(1 + α(s, t)+ β(s, t)) , a

[s,t]
12 = 1

2
(1 − α(s, t)− β(s, t)) ,

a
[s,t]
21 = 1

2
(1 + α(s, t)− β(s, t)) , a

[s,t]
22 = 1

2
(1 − α(s, t)+ β(s, t)) .

(2.4)

In this case the Eq. (2.2) is equivalent to (see [9])

α(s, t) = α(τ, t)+ α(s, τ )β(τ, t),

β(s, t) = β(s, τ )β(τ, t), s < τ < t.
(2.5)

The second equation of the system (2.5) is known as Cantor’s second equation, it has very rich family

of solutions: β(s, t) = �(t)
�(s)

, where � is an arbitrary function with �(s) �= 0. Using this function β

for the function α we obtain

α(s, t)

�(t)
= α(τ, t)

�(t)
+ α(s, τ )

�(τ)
.

Now denote γ (s, t) = α(s,t)
�(t)

then the last equation gets the following form

γ (s, t) = γ (s, τ )+ γ (τ, t).

This equation is known as Cantor’s first equationwhich also has very rich family of solutions:γ (s, t) =

(t)−
(s), where
 is an arbitrary function. Hence a solutionM[s,t] =

(
a
[s,t]
ij

)
i,j=1,2

to the Eq. (2.2)

is given by

a
[s,t]
11 = 1

2

(
1 +�(t)(
(t)− 
(s))+ �(t)

�(s)

)
,
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a
[s,t]
12 = 1

2

(
1 −�(t)(
(t)− 
(s))− �(t)

�(s)

)
,

a
[s,t]
21 = 1

2

(
1 +�(t)(
(t)− 
(s))− �(t)

�(s)

)
,

a
[s,t]
22 = 1

2

(
1 −�(t)(
(t)− 
(s))+ �(t)

�(s)

)
.

Let E[s,t], 0 � s � t be the corresponding to this solution CEA. This CEA varies by two parameters, for

example, if t = s we get E[t,t] = E with multiplication table e21 = e1, e
2
2 = e2, e1e2 = 0. Moreover,

choosing functions� and
 one can variate the limit behavior of the CEA. For example, if� and
 such

that limt→+∞�(t)
(t) = limt→+∞�(t) = 0, then for a fixed s we have limt→+∞ E[s,t] = E1/2,

where E1/2 is an evolution algebra with multiplication table

e21 = e22 = 1

2
(e1 + e2), e1e2 = 0.

Example 4. A n-dimensional time non-homogenous CEA. Here for arbitrary nwe shall give an example

of time non-homogenous CEA. Let {A[t], t � 0} be a family of invertible (for all t), n × n matrices.

Define the following matrix

M[s,t] = A[s](A[t])−1,

where (A[t])−1 is the inverse of A[t].
This matrix satisfies the Eq. (2.2). Indeed, using associativity of the multiplication of matrices we

get

M[s,τ ]M[τ,t] = A[s] (
(A[τ ])−1A[τ ]) (A[t])−1 = A[s](A[t])−1 = M[s,t].

Thus each family (with one parameter) of invertible n × n matrices defines a CEA E[s,t] which is time

non-homogenous, in general. But will be a time homogenous CEA, for example, if A[t] is equal to tth

power of an invertible matrix A.

Construction of a family of invertible n × n matrices A[t] is not difficult, for example, one can take

A[t] as a triangular n × nmatrix of the form

A[t] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
[t]
11 0 0 . . . 0

a
[t]
21 a

[t]
22 0 . . . 0

a
[t]
31 a

[t]
32

. . . . . . 0

...
...
. . .

. . . 0

a
[t]
n1 a

[t]
n2 . . . a

[t]
nn−1 a[t]

nn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

which is called lower triangular matrix or one can take an upper triangular matrix. Then the matrices

are invertible iff a
[t]
ii �= 0, for all i = 1, . . . , n and t. So this example also gives a very rich class of

CEAs.
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Example 5. Periodic CEA. To get a periodic CEA, we can consider the E[s,t] constructed in Example 3,

and choose� and
 as periodic (non-constant) functions. Then corresponding CEA is periodic. In this

case for any fixed s, the limit limt→+∞ E[s,t] does not exist in general, moreover its set of limit points

(evolution algebras) can be a continuum set. We shall make this point clear as follows. Construct a

time homogenous CEA which is periodic. Consider n = 2 take

a
[t]
11 = a

[t]
22 = a[t]; a

[t]
12 = −b[t], a

[t]
21 = b[t].

Then Eq. (2.2) is equivalent to

a[t] = a[τ ]a[t−τ ] − b[τ ]b[t−τ ];

b[t] = a[τ ]b[t−τ ] + b[τ ]a[t−τ ].
This system reminds the following identities

cos t = cos τ cos(t − τ)− sin τ sin(t − τ);
sin t = cos τ sin(t − τ)+ sin τ cos(t − τ).

Consequently, one solution M[t] =
(
a
[t]
ij

)
i,j=1,2

to Eq. (2.2) is

M[t] =
⎛
⎝ cos t sin t

− sin t cos t

⎞
⎠ . (2.6)

Since thatmatrix is periodicwith period P = 2π , the corresponding CEA E[t] is also periodic.Moreover

this CEA is very interesting: for arbitrary 2-dimensional evolution algebra E+
a , or E−

a , a ∈ [−1, 1]with

structural constants matrix

M±
a =

⎛
⎝ a ±√

1 − a2

∓√
1 − a2 a

⎞
⎠

respectively, there is a sequence tn = tn(a) of times such that limn→∞ E[tn] = E+
a or E−

a . We have

E±
a �= E

±
b if a �= b. Moreover the following is true

Proposition 2.6. (1) For any a, b ∈ [−1, 1], a �= ±b, the algebras E+
a and E

+
b are not isomorphic. The

algebras E+
a and E

+−a are isomorphic.

(2) For any a, b ∈ [−1, 1], a �= ±b, the algebras E−
a and E

−
b are not isomorphic. The algebras E−

a and

E
−−a are isomorphic.

Proof. (1) Let ϕ =

⎛
⎜⎜⎜⎝
α β

γ δ

⎞
⎟⎟⎟⎠ be an isomorphism of the evolution algebra E+

a to the evolution algebra

E
+
b . Here det(ϕ) �= 0. By the multiplication table of the evolution algebras, we get the following

relation between matrices M+
a andM+

b :

M+
b = 1

det(ϕ)
×
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⎛
⎜⎜⎜⎝
(aδ − √

1 − a2γ )α2 − (aγ + √
1 − a2δ)β2 (aα + √

1 − a2β)β2 − (aβ − √
1 − a2α)α2

(aδ − √
1 − a2γ )γ 2 − (aγ + √

1 − a2δ)δ2 (aα + √
1 − a2β)δ2 − (aβ − √

1 − a2α)γ 2

⎞
⎟⎟⎟⎠ .

Since det(M+
a ) = 1, it is easy to see that there are two classes of isomorphisms:

C1 =
⎧⎨
⎩

⎛
⎝ α 0

0 δ

⎞
⎠ : αδ �= 0

⎫⎬
⎭ , C2 =

⎧⎨
⎩

⎛
⎝ 0 β

γ 0

⎞
⎠ : βγ �= 0

⎫⎬
⎭ .

For the class C1 the matrixM+
b must satisfy the following

M+
b =

⎛
⎝ b

√
1 − b2

−√
1 − b2 b

⎞
⎠ =

⎛
⎜⎜⎝

aα
√

1 − a2 α
2

δ

−√
1 − a2 δ

2

α
aδ

⎞
⎟⎟⎠ .

From this equality we get α = δ =
√

1−b2

1−a2
= b

a
if a �= 0,±1 which is satisfied iff a = b. Hence

the isomorphisms from the class C1 can not give an isomorphism from M+
a to M+

b . For a = 0 we get

b = 0. One can take α = δ = ∓1 if a = ±1 and b = ∓1. Hence E
+±1 is isomorph to E

+∓1.

For the class C2 the matrixM+
b must satisfy the following

M+
b =

⎛
⎝ b

√
1 − b2

−√
1 − b2 b

⎞
⎠ =

⎛
⎜⎜⎝

aβ −√
1 − a2

β2

γ

√
1 − a2

γ 2

β
aγ

⎞
⎟⎟⎠ .

From this equality we get β = γ = −
√

1−b2

1−a2
= b

a
if a �= 0,±1 which is satisfied iff a = −b. Hence

the isomorphisms from the class C2 can only give an isomorphism from M+
a toM+−a.

(2) The proof of (2) is similar to the proof of (1). �

Consider now discrete time n, n ∈ N and the CEA {E[n], n ∈ N} given by matrix (2.6).

Proposition 2.7. The discrete time CEA E[n], n ∈ N, is dense in the set {E±
a , a ∈ [−1, 1]} of evolution

algebras, i.e. for an arbitrary evolution algebra E±
a there exists a sequence {nk}k=1,2,... of natural numbers

such that limk→∞ E[nk] = E+
a or E−

a .

Proof. It is known that the sequences {sin n} and {cos n}, n ∈ N, are dense in [−1, 1] (see e.g.[5]).

Hence foranya ∈ [−1, 1] there isa sequence {nk}k=1,2,... ofnaturalnumbers such that limk→∞ cos(nk)

= a. The same sequence can be used to get limk→∞ E[nk] = E+
a or E−

a . �

3. A criterion for an evolution algebra to be baric

A character for an algebra A is a non-zeromultiplicative linear form on A, that is, a non-zero algebra

homomorphism from A to R [11]. Not every algebra admits a character. For example, an algebra with

the zero multiplication has no character.

Definition 3.1. A pair (A, σ ) consisting of an algebra A and a character σ on A is called a baric algebra.

The homomorphism σ is called the weight (or baric) function of A and σ(x) the weight (baric value)

of x.
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In [11] for the evolution algebra of a free population it is proven that there is a character σ(x) =∑
i xi, therefore that algebra is baric. But the evolution algebra E introduced in [15] is not baric, in

general. The following theorem gives a criterion for an evolution algebra E to be baric.

Theorem 3.2. An n-dimensional evolution algebra E, over field the R, is baric if and only if there is a

column
(
a1i0 , . . . , ani0

)T
of its structural constants matrix M = (

aij
)
i,j=1,...,n, such that ai0i0 �= 0 and

aii0 = 0, for all i �= i0. Moreover, the corresponding weight function is σ(x) = ai0i0xi0 .

Proof (Necessity). Take x, y ∈ E with x = ∑n
i=1 xiei, y = ∑n

i=1 yiei. Assume σ(x) = ∑n
i=1 αixi, x ∈ E

is a character. We have

σ(xy) =
n∑

i=1

⎛
⎝ n∑

j=1

aijαj

⎞
⎠ xiyi; σ(x)σ (y) =

n∑
i=1

n∑
j=1

αiαjxiyj.

From σ(xy) = σ(x)σ (y)we get

αiαj = 0 for any i �= j, i, j = 1, . . . , n; (3.1)

n∑
j=1

aijαj = α2
i for any i = 1, . . . , n. (3.2)

It is easy to see that the system (3.1) has a solution α = (α1, . . . , αn) with α2
1 + · · · + α2

n > 0 if

and only if exactly one coordinate of α, say αi0 , is not zero, and all others are zeros. Substituting this

solution in (3.2) we get

aii0αi0 = 0, if i �= i0, i = 1, . . . , n;
ai0i0αi0 = α2

i0
, if i = i0.

From the last equations we get ai0i0 �= 0, aii0 = 0, for all i �= i0 and αi0 = ai0i0 .

(Sufficiency). Assume there is a column
(
a1i0 , . . . , ani0

)T
, such that ai0i0 �= 0 and aii0 = 0, for all

i �= i0. Then it is easy to see that σ(x) = ai0i0xi0 is a weight function, therefore E is a baric evolution

algebra. �

A baric algebra Amay have several weight functions. As a corollary of Theorem 3.2 we have

Corollary 3.3. If the matrix M, mentioned in Theorem 3.2, has several columns
(
a1ij , . . . , anij

)T
, j =

i1, . . . , im, m � n, which satisfy conditions of Theorem 3.2 then the evolution algebra E has exactly m

weight functions σ(x) = aijij xij , j = i1, . . . , im.

There are two types of trivial evolution algebras [15]: zero evolution algebra, which satisfies eiej = 0

for all i, j = 1, . . . , n; non-zero trivial evolution algebra, which satisfies eiej = 0 for all i �= j and

e2i = aiiei, where aii ∈ R is non-zero for some i = 1, . . . , n. By Theorem 3.2we conclude that the zero

evolution algebra is not baric, but any non-zero trivial evolution algebra is a baric algebra. Moreover,

there are baric evolution algebras which are not trivial.

4. Property transition

If a system has parameters (as usually like: temperature, time, interaction, etc.) then a property

of the system can variate by a parameter. For example, the behavior of phases (states) of a system in

physics, depends on temperature T > 0, if for some values of T there is a unique phase and for other
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values there are several phases, then the physical system has a phase transition [8]. Similar transitions

of aproperty canbe seen for systemsof biology, chemistry, etc.Hereweshall defineanotionof property

transition for CEA.

Definition 4.1. Assume a CEA, E[s,t], has a property, say P, at pair of times (s0, t0); we say that the CEA

has P property transition if there is a pair (s, t) �= (s0, t0) at which the CEA has no the property P.

Denote

T = {(s, t) : 0 � s � t};
TP = {(s, t) ∈ T : E[s,t] has property P}
T 0
P = T \ TP = {(s, t) ∈ T : E[s,t] has no property P}.

Definition 4.2. We call the set

TP-the duration of the property P;

T 0
P -the lost duration of the property P;

The partition {TP, T 0
P } of the set T is called P property diagram.

For example, if P = commutativity then since any evolution algebra is commutative, we conclude

that any CEA has not commutativity property transition.

4.3. Baric property transition

Since a CEA is not a baric algebra, in general, using Theorem 3.2we can give baric property diagram.

Let us do this for the above given Examples 1–4.

Example 1′. For the case of Example 1, by Theorem 3.2 we have that E[t] is baric iff

a
[t]
ii = 2

3
e−

3
2
At cos(αt)+ 1

3
= 1.

This has unique solution t = 0. Consequently, Tbaric = {0}, T 0
baric = {t : t > 0}. Thus the CEA E[t] is

baric (even non-zero trivial) evolution algebra only at initial time, and it loses baricity as soon as the

time turned on.

Example 2′. In Example 2, using Theorem 3.2 we obtain that

Tbaric =
⎧⎨
⎩
{0} if λ �= μ;
T if λ = μ.

Thus the CEA E[t] has not baric property transition if λ = μ, and it has a baric property transition, as

in Example 1’, if λ �= μ.

Example 3′. Baric property transition for a two-state evolution. Since in case of Example 3, we have a

rich class of CEA here we shall give a special theory of the baric property transition. Using Theorem

3.2 we obtain that Tbaric is the set of (s, t) such that

1 +�(t)(
(t)− 
(s))− �(t)

�(s)
= 0 or 1 −�(t)(
(t)− 
(s))− �(t)

�(s)
= 0.
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These equations can be rewritten as

θ(t) = θ(s), θ−(t) = θ−(s),

where

θ(t) = 1

�(t)
+ 
(t), θ−(t) = 1

�(t)
− 
(t). (4.1)

Thus

Tbaric = Tbaric(θ) ∪ Tbaric(θ−),

here Tbaric(θ) = {(s, t) ∈ T : θ(t) = θ(s)}.
Remark 4.4. To describe the set Tbaric one has to describe the sets Tbaric(θ) and Tbaric(θ−), both of

which are defined by the parameter functions� and
 . Note that if we replace�with −� or
 with

−
 then these sets transfer to each other. Since � and 
 are arbitrary functions, it will be enough

to describe only Tbaric(θ) for arbitrary θ . Thus in the sequel of this subsection we shall deal with

description of Tbaric(θ).

The function θ(t) is called baric property controller of the CEA. Because, it really controls the baric

duration set, for example, if θ is a strongmonotone function then the duration is “minimal”, i.e. the line

s = t, but if θ is a constant function then the baric duration set is “maximal”, i.e. it is T . Since � and


 are arbitrary functions, we have a rich class of controller functions, therefore we have a “powerful”

control on the property to be baric.

For a special choose of θ we have

Proposition 4.5. If�(t) = λt , λ > 0 and
(t) = ct, c ∈ R. Then

Tbaric(θ) = Tbaric(λ, c) = {(s, t) : s = t} ∪
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅ if 0 < λ � 1, c � ln λ; or

λ > 1, c ∈ (−∞, 0] ∪ [ln λ,+∞),

{(s, t) : 0 � s � tc, tc � t � t′c, θ(s) = θ(t)} if 0 < λ � 1, c < ln λ; or

λ > 1, c ∈ (0, ln λ),
where tc and t′c serve as critical times, which defined by tc = 1

ln λ
ln

(
ln λ
c

)
and t′c > 0 is a unique solution

to θ(t′c) = 1.

Proof. Under the conditions of the proposition we have θ(t) = λ−t + ct, and the simple analysis of

the equation θ(s) = θ(t) for this θ gives the full set Tbaric(λ, c). �

In Fig. 1, the baric property diagram is given.

As a corollary of Proposition 4.5 we have

Corollary 4.6. (1) For any fixed s, with 0 � s < tc (resp. tc � s � t), the time t has two (resp. one)

critical values: t
(1)
c = s (resp. s) and t

(2)
c which is a unique solution of θ(t

(2)
c ) = θ(s).

(2) For any fixed t, with 0 � s � t � tc or t
′
c < t (resp. tc < t � t′c), the time s has one (resp. two)

critical values: s
(1)
c = t (resp. s

(1)
c = t and s

(2)
c which is a unique solution of θ(t

(2)
c ) = θ(s)).

Let us discuss some more examples of the controller θ . If θ(t) = tan(t) then tan(s) = tan(t) has
solution t = s+πk, k ∈ Z. The intersection of this family of lines with T gives the family of half lines,
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Fig. 1. The baric property diagram for θ(t) = λ−t + ct.

s

tt1 t2 t3 t4 t5 t6t7t8t9t10 t11

Fig. 2. An example of controller θ .

i.e.

Tbaric(tan(t)) = ⋃
k=0,1,2,...

{(s, t) ∈ T : s = t − πk} .

If θ(t) = sin(t) then sin(s) = sin(t) has two family of solutions: s = t + 2πk, k ∈ Z and s =
−t + (2k + 1)π , k ∈ Z. The intersection of these families of lines with T is

Tbaric(sin(t)) = ⋃
k=0,1,2,...

{(s, t) ∈ T : t = s + 2πk or t = −s + (2k + 1)π} .

In all above considered examples we obtained a set Tbaric(θ) which has zero Lebesgue measure.

But there is controllers for which this set has non-zero Lebesgue measure, for example, if θ(t) is a

controller function with the graph as shown in Fig. 2, then the corresponding baric property diagram

is as shown in Fig. 3. Thus any “constant part” of the graph of the controller gives a full triangle in the

diagram, moreover, any “non-constant part” gives several curves. In this case the set Tbaric(θ) has a

non-zero Lebesgue measure.
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tt1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

t1

t2

t3

t4

t5
t6

t7

t8

t9

t10

t11

s

Fig. 3. The baric property diagram for the controller θ with graph as in Fig. 2.

Let θ(t) = D(t) be the Dirichlet function defined by

D(t) =
⎧⎨
⎩ 1 if t rational;

0 if t irrational.

In this case we have a rich set of baric property duration, i.e.

Tbaric(D(t)) = {(s, t) ∈ T : t and s rational} ∪ {(s, t) ∈ T : t and s irrational}.
Definition 4.7. A function θ defined on R is called a function of countable variation if it has the

following properties:

1. it is continuous except at most on a countable set, (which is denoted by Xc = {x1, x2, . . . }), it
has only jump-type discontinuities (denote the one-sided limit from the negative direction by θ(x−

i )

and from the positive direction by θ(x+
i ), i = 1, 2, . . . );

2. it has at most a countable set of singular (extremum) points (which is denoted by Xe =
{y1, y2, . . . }).

Note that any function of countable variation has not “constant parts” in its graph.

The following theorem gives a characteristics of the baric property duration set.

Theorem 4.8. If the controller θ (see Eq. (4.1)) is a function of countable variation, then the baric duration

set Tbaric(θ) has zero Lebesgue measure, that is the corresponding CEA is not baric almost surely.

Proof. Using the (finite or infinite) sequences Xc and Xe we construct the sequences {t−i,k}k=1,2,...,

i = 1, 2, . . . with θ(t−i,k) = θ(x−
i ) for all k; {t+i,q}q=1,2,..., i = 1, 2, . . . with θ(t+i,q) = θ(x+

i ) and

{tej,l}l=1,2,..., j = 1, 2, . . . , where θ(tej,l) = θ(yj) for all l. Now define a sequence {ti}i=1,2,..., with
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t1 < t2 < t3 < . . . as follows

{ti}i=1,2,... = Xc ∪ Xe

⋃
i

(
{t−i,k}k=1,2,... ∪ {t+i,q}q=1,2,...

) ⋃
j

{tej,l}l=1,2,....

Since θ is a function of countable variation, the sequence {ti}i=1,2,... is at most countable. In a case, if it

is a bounded sequence (in particular, a finite sequence), thenwe add the last term to be+∞. Consider

rectangles

Tij =
{
(s, t) ∈ R

2 : ti � s � ti+1, tj � t � tj+1

}
.

Denote G(θ) = {(t, y) : y = θ(t)}.
By the construction, the rectangles have the following properties:

– The set of all rectangles is at most a countable set;

– The intersection G(θ) ∩ Tij is empty or contains a monotone part of the graph G(θ).
If G(θ) ∩ Tij is empty then we say Tij is empty.

Now we shall construct the set Tbaric(θ). Fix i, j such that the rectangle Tij is not-empty (an empty

rectangle does not give any contribution to the set Tbaric(θ)), then we have

Tbaric(θ) ∩ Tkj = a curve giving an one-to-one corespondence between [tj, tj+1]
and [tk, tk+1] if Tik �= ∅, k = 1, . . . , j − 1.

Thus we have

Tbaric(θ) = ⋃
kj

(
Tbaric(θ) ∩ Tkj

)
.

Since there are a countable set of rectangles and in each rectangle wemay have at most a curve which

has Lebesgue measure zero (because, these curves give one-to-one correspondences), we conclude

that the set Tbaric(θ) also has zero Lebesgue measure. �

Example 4′. Consider the CEA E[s,t] constructed in Example 4 by a family of invertible lower (or upper)

triangular matrices A[t], t � 0.

Theorem 4.9. For any pair of time (s, t) the n-dimensional evolution algebra E[s,t], constructed by a

family of (lower or upper) triangular invertible matrices is baric. Moreover, E[s,t] has a weight function

σ(x) = M[s,t]
nn xn, whereM[s,t]

ii , i = 1, . . . , n are diagonal entries ofM[s,t] = A[s](A[t])−1.

Proof. It is known that the standard operations on triangular matrices conveniently preserve the

triangular form: the sum and product of two lower triangular matrices is again lower triangular. The

inverse of a lower triangular matrix is also lower triangular, and of course we can multiply a lower

triangularmatrix by a constant and itwill still be lower triangular. Thismeans that the lower triangular

matrices form a subalgebra of the ring of squarematrices for any given size. The analogous result holds

for upper triangular matrices. Using these properties we get that M[s,t] is also a triangular matrix.

Moreover, since A[t] is invertible, its determinant is non-zero for all t. Thus

det(M[s,t]) =
n∏

i=1

M[s,t]
ii = det(A[s]) det((A[t])−1) �= 0.

Consequently, all diagonal entries of the matrix are non-zero. In particular, M[s,t]
nn �= 0, and Theorem

3.2 completes the proof. �

Corollary 4.10. The CEA E[s,t] constructed by triangular invertible matrices has not baric property transi-

tion.
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4.11. Absolute nilpotent elements transition

The element x of an algebra A is called an absolute nilpotent if x2 = 0.

Let E = R
n be an evolution algebra over the field R with structural constant coefficients matrix

M = (aij), then for arbitrary x = ∑
i xiei and y = ∑

i yiei ∈ R
n we have

xy = ∑
j

⎛
⎝∑

i

aijxiyi

⎞
⎠ ej, x2 = ∑

j

⎛
⎝∑

i

aijx
2
i

⎞
⎠ ej.

For a n-dimensional evolution algebraR
n consider operator V : R

n → R
n, x �→ V(x) = x′ defined

as

x′
j =

n∑
i=1

aijx
2
i , j = 1, . . . , n. (4.2)

This operator is called evolution operator [11].

We have V(x) = x2, hence the equation V(x) = x2 = 0 is given by the following system

∑
i

aijx
2
i = 0, j = 1, . . . , n. (4.3)

If det(M) �= 0 then the system (4.3) hasunique solution (0, . . . , 0). If det(M) = 0and rank(M) =
r then we can assume that the first r rows ofM are linearly independent, consequently, the system of

Eq. (4.3) can be written as

x2i = −
n∑

j=r+1

dijx
2
j , i = 1, . . . , r, (4.4)

where dij = det(Mij)

det(Mr)
with Mr = (

aij
)
i,j=1,...,r ,

Mij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 . . . ai−1,1 aj1 ai+1,1 . . . ar1

a12 . . . ai−1,2 aj2 ai+1,2 . . . ar2

. . . . . . . . .

a1r . . . ai−1,r ajr ai+1,r . . . arr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

An interesting problem is to find a necessary and sufficient condition on matrix D = (dij) i=1,...,r
j=r+1,...,n

under which the system (4.4) has unique solution. The difficulty of the problem depends on rank r,

here we shall consider the case r = n − 1.

Proposition 4.12. (1) Ifdet(M) �= 0 then the finite dimensional evolution algebraR
n has unique absolute

nilpotent (0, ..., 0).
(2) If det(M) = 0 and rank(M) = n − 1 then the evolution algebra Rn has unique absolute nilpotent

(0, ..., 0) if and only if

det(Mi0n) · det(Mn−1) > 0, (4.5)

for some i0 ∈ {1, . . . , n − 1}.
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Proof. (1) Straightforward.

(2) If rank(M) = n − 1 then from (4.4) we get

x2i = − det(Min)

det(Mn−1)
x2n, i = 1, . . . , n − 1. (4.6)

From (4.6) it follows that the condition (4.5) is necessary and sufficient to have unique solution

(0, . . . , 0). �

For a CEA E[s,t] with matrixM[s,t] denote

Tnil = {(s, t) ∈ T : E[s,t] has unique absolute nilpotent}, T 0
nil = T \ Tnil.

The following theoremgives anansweronproblemof existenceof “uniquenessof absolutenilpotent

element” property transition.

Theorem 4.13. (1) There are CEAs which have not “uniqueness of absolute nilpotent element” property

transition.

(2) There is CEA which has “uniqueness of absolute nilpotent element” property transition.

Proof. Denote d(s, t) = det(M[s,t]). By Eq. (2.2) we get

d(s, t) = d(s, τ )d(τ, t), for all τ, s < τ < t. (4.7)

As it was mentioned above, the Eq. (4.7) is known as Cantor’s second equation.

(1) The Eq. (4.7) has solutions d(s, t) = �(s)
�(t)

, where �(t) �= 0 is an arbitrary function. Thus for

such solutionswe conclude that if d(s0, t0) �= 0 for some (s0, t0) then d(s, t) �= 0 for any (s, t). Conse-
quently, corresponding CEAs have not “uniqueness of absolute nilpotent element” property transition.

(2) Note that the Eq. (4.7) has solution d(s, t) = f (t), where f (t) = 1 for t < 1 and f (t) = 0

otherwise. For this solution we have d(s, t) = 1, s < t < 1 and d(s, t) = 0, t � 1. For some t � 1

one can construct a matrix M[s,t] which does not satisfy uniqueness condition mentioned in part 2)

of Proposition 4.12. Indeed let us consider the matrix M[s,t] =
(
a
[s,t]
ij

)
i,j=1,2

with entries as in (2.4).

The second equation of the system (2.5) has a solution:

β(s, t) =
⎧⎪⎪⎨
⎪⎪⎩

1, if s < t < 1

0, if t � 1.

Substituting this solution in the first equation of (2.5) we obtain

α(s, t) =
⎧⎪⎪⎨
⎪⎪⎩
ψ(t)− ψ(s), if s < t < 1

g(t), if t � 1,

whereψ and g are arbitrary functions. The corresponding matrix has the following form

M[s,t] = 1

2

⎛
⎜⎜⎝

2 + ψ(t)− ψ(s) −ψ(t)+ ψ(s)

ψ(t)− ψ(s) 2 − ψ(t)+ ψ(s)

⎞
⎟⎟⎠ , if s < t < 1,
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and

M[s,t] = 1

2

⎛
⎜⎜⎝

1 + g(t) 1 − g(t)

1 + g(t) 1 − g(t)

⎞
⎟⎟⎠ , if t � 1. (4.8)

We have

d(s, t) = det(M[s,t]) =
⎧⎪⎪⎨
⎪⎪⎩

1, if s < t < 1

0, if t � 1.

Assume g(t) �= −1 then for (4.8) the Eq. (4.6) has the form

x21 = −1 − g(t)

1 + g(t)
x22.

This equation has infinitely many solutions if |g(t)| > 1 for some t � 1. Thus corresponding CEA has

“uniqueness of absolute nilpotent element” property transition. �

Now let us construct the set Tnil for Examples 1–5: It is easy to see that

det(M[s,t]) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e−3At, for Example 1;
(λμ)t, for Example 2;
�(t)
�(s)

, for Example 3;∏n
i=1 M

[s,t]
ii , for Example 4;

1, for Example 5.

Thus in each one of the considered examples we have det(M[s,t]) �= 0, consequently, Tnil = T , i.e. the

CEAs constructed in Examples 1–5 have not “uniqueness of the absolute nilpotent element” property

transition.

There are CEAswhich have infinitelymany absolute nilpotent elements independently on time. For

example, take M[s,t] with identical rows (�(s)
�(t)

, 0, 0, . . . , 0), where � is an arbitrary function with

�(t) �= 0 for all t. It is easy to see that this matrix satisfies the Eq. (2.2), hence it determines a CEA,

E[s,t], which has infinitely many absolute nilpotent elements: (0, x2, . . . , xn), where x2, . . . , xn ∈ R

are arbitrary numbers. Thus for this example we have Tnil = ∅, T 0
nil = T . In other words the CEA has

not “non-uniqueness of absolute nilpotent element” property transition.

Remark 4.14. These examples (Examples 1–4) of “uniqueness of nilpotent element” property transi-

tion of CEAs with time-parameter are similar to the “uniqueness of Gibbs phase” property transition,

i.e. phase transition of physical systems with respect to temperature-parameter, T > 0. Usually there

is a phase transition if the temperature is very low (T ∼ 0) or if it is very high (T ∼ +∞) (see [8]).

Example 5 is an analogue of a physical system which has unique (Gibbs) phase for any temperature.

There a lot of examples of such physical systems (see e.g. [8]).

4.15. Idempotent elements transition

A element x of an algebra A is called idempotent if x2 = x; such points of an evolution algebra are

especially important, because they are the fixed points (i.e. V(x) = x) of the evolution operator V ,

(4.2). We denote by Id(E) the idempotent elements of an algebra E. Using (4.2) the equation x2 = x
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can be written as

xj =
n∑

i=1

aijx
2
i , j = 1, . . . , n. (4.9)

The general analysis of the solutions of the system (4.9) is very difficult. We shall solve this problem

for the CEA E[t], t � 0, corresponding to the Example 2. In case of Example 2 the system (4.9) has the

following form{
2x = (λt + μt)x2 + (λt − μt)y2;
2y = (λt − μt)x2 + (λt + μt)y2,

(4.10)

where λ > 0, μ > 0 and t � 0.

Case λ = μ. It is easy to see that if λ = μ then the system (4.10) has only four solutions 0 =
(0, 0), z1 = z1(t) = (0, λ−t), z2 = z2(t) = (λ−t, 0), z3 = z3(t) = (λ−t, λ−t).

Case λ �= μ. For λ �= μ the solutions 0 and z3 still exist. If x = 0 or y = 0 there is no any new

solution. Thus we consider the case xy �= 0. Denote

u = x

y
, γ (t) = λt − μt

λt + μt
= (λ/μ)t − 1

(λ/μ)t + 1
.

For t > 0 it is easy to see that if λ < μ then −1 < γ (t) < 0 and if λ > μ then 0 < γ (t) < 1. Note

that for t = 0 there is no any new solution. From system (4.10) we get

γ (t)u3 − u2 + u − γ (t) = (u − 1)
(
γ (t)u2 + (γ (t)− 1)u + γ (t)

)
= 0. (4.11)

Subcase λ < μ. In this case for any t > 0 the Eq. (4.11) has three solutions

u1 = 1, u± = 1 − γ (t)±
√
1 − 2γ (t)− 3γ 2(t)

2γ (t)
. (4.12)

Subcase λ > μ. In this case the number of solutions to the Eq. (4.11) varies by γ , i.e.

solutions to (4.11) =
{
1, if 1

3
� γ (t) < 1;

1, u−, u+ if 0 < γ (t) < 1
3
,

(4.13)

where u± are defined in (4.12).

Now we shall describe x, y corresponding to the solutions of (4.11). The case u = 1, i.e. x = y does

not give any new solution. For u = u± we have x = u±y, substituting this in the second equation of

(4.10) after simple calculations we get the following two non-zero solutions to (4.10):

x± = μt ± √
λt(2μt − λt)

μt(λt ± √
λt(2μt − λt))

, y± = λt − μt

μt(λt ± √
λt(2μt − λt))

.

Note that x±, y± are well defined for any λ �= μ. For λ > μwe have critical time

tc = ln 2

ln λ− lnμ
, (4.14)

which is the unique solution to the equation γ (t) = 1
3
.

Thus we have proved the following
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Proposition 4.16. We have

Id(E[t]) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{0, z1, z2, z3}, if λ = μ;
{0, z3, (x−, y−), (x+, y+)}, if λ < μ;
{0, z3}, if λ > μ; t � tc

{0, z3, (x−, y−), (x+, y+)}, if λ > μ, t < tc.

This proposition gives a very interesting “a fixed set of idempotent elements” property transition,

i.e. we have

Corollary 4.17. The CEA E[t] constructed in Example 2 has not “a fixed set of idempotent elements” property

transition if λ � μ; it has such property transition if λ > μ. Moreover the transition point (the critical

time) is t = tc defined by formula (4.14).

Remark 4.18. There are exactly solvable models in statistical mechanics, here an imprecise notion of

“exactly solvable” as meaning: “The solutions can be expressed explicitly in terms of some previously

known functions” is also sometimes used [1]. In such models, for example, the critical temperature

can be expressed explicitly. Comparing this with our examples of a property transitionwe also can say

that a property transition of a CEA is exactly solvable if the critical time can be found exactly. Thus our

Example 2 is exactly solvable for investigation of properties of idempotent elements.
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