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Abstract

We study the extraordinary dimension function dinntroduced by 8epin. An axiomatic
characterization of this dimension function is obtained. We also introduce inductive dimensigns ind
and Ing, and prove that for separable metrizable spaces all three coincide. Several results such as
characterization of dimin terms of partitions and in terms of mappings intdimensional cubes are
presented. We also prove the converse of the Dranishnikov—Uspenskij theorem on dimension-raising
maps.

0 2003 Elsevier B.V. All rights reserved.

MSC: primary 54F45; secondary 55M10

Keywords:Extraordinary dimension theory; Inductive dimensions; Smach product; Join

1. Introduction

In recent years there has been a significant development in Extension Theory. Number
of results of classical dimension theory has been reexamined, better understood and their
far reaching generalizations found. The fundamental problem, studied in this theory, is the
possibility of extendinga map : A — L, defined on a closed subséf a spaceX, with
values lying in a complex, over the wholeX (when all such extension problems are
solvable for a given spack we write L € AE(X); see Section 2 for precise definitions).
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Below we study the dimension function dingenerated by a complex. The dimension

dim; X, introduced by 8epin [25, p. 984], is defined as the smallest integsuch that

X"L e AE(X), where X" L denotes theath iterated suspension @f. It is noted in [25]

that dimy, satisfies all of the Alexandrov’s axioms except the normalization axiom (see
Section 5 for details) and by analogy with homology and cohomology theories is referred to
as an extraordinary dimension function with classifying comgleXVe also introduce the
small and large inductive dimensions jndnd Ind, generated by a complex and prove

that dimy, X = ind. X = Ind; X for any separable metrizable spake(Theorem 3.13).

This allows us to study properties of the dimension gliny using the standard inductive
approach. We would like to mention the following three characterizations.

Characterization of dimy, in terms of partitions (Theorem 4.1).Let X be a separable
metrizable space and > 1. Then the following conditions are equivalent

(a) dimy X <n;

(b) for every collection(A1, B1), (A2, B2), ..., (A,, By) of n pairs of disjoint closed
subsets oK there exist closed setg, Co, ..., C, such thatC; is a partition between
A; andB; andL € AE(()/_; C)).

This result seems to be providing a new insight even for the standard covering dimension
dim.
Another characterization of the dimension ditis contained in the following result.

Characterization of dimy, in terms of mappings into cubes (Theorem 4.9).et X be a
compact metrizable space and> 1. Then the following conditions are equivalent

() dimp X <n.
(i) The set of mapg: X — I" with dim; f =0 forms a dens& s-subset of the space
C(X,1M).
(i) There exists amayp : X — I" such thadim; f =0.

The characterizing property contained in this theorem becomes an axiom in an
axiomatic characterization of dim

Axiomatic characterization of dimy (Theorem 5.3).The dimensiordim; is the only
function, defined on the class of finite-dimensiofial the sense oflim;) compact
metrizable spaces, which satisfies the following axioms

(Cl)—normalization axiomd(X) € {0, 1, 2, ...} andd(X) = 0if and only if L € AE(X).

(C2)—monotonicity axiom:If A is a closed subspace &f, thend (A) < d(X).

(C3)—Poincaré’s axiomif d(X) > 0O, then there exists a closed subspagein X
separatingX and such that/(A) < d(X).

(C4)—Hurewicz’s axiom:If there exists a mag : X — I" such thatd(f~1(y)) = 0 for
everyy € f(X), thend(X) <n.
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It is important to emphasize the significance of the join and the smash product
constructions in the Extension theory. Generalizations of the addition and product theorems
(see Theorems 2.4 and 2.3, respectively), as well as the analog of the Hurewicz’s theorem
on dimension-lowering maps (Theorem 2.10), not only well demonstrate this point, but,
in fact, uncover much deeper roots of the classical prototypes of the mentioned results. In
light of this it is interesting to note that within the theory of the dimension functiory.dim
the role of the smash product construction becomes superior and allows us to state the
corresponding results in a much more familiar manner. Here is the illustration:

Addition Theorem (Proposition 4.2).
dimp,,(XUY)<dimg X +dimg Y + 1.

Product Theorem (Proposition 4.5).
dimpa (X x Y) <dimg X +dimg Y.

Hurewicz’s Inequality (Proposition 4.7).
dimpaz X <dimg Y +dimg, f.

Note that the smash productn L cannot be replaced by itself in neither of the above
results unlesgL A L] =[L]. Of course, this is the case far= S°.

2. Preliminaries

All spaces considered below are assumed to be completely regular and Hausdorff.
LettersL andK are reserved exclusively for locally finite countable simplicial complexes
(alternatively, the reader may assume, in a majority of instances, that spaces denbted by
andK are Polish ANR-spaces).

For a normal space, the notationL € AE(X) means that every map:A — L,
defined on a closed subspadeof X, admits an extensiorf : X — L over X. For a
non-normal spacé, the relationL € AE(X) is understood in a slightly adjusted manner
(see [7,5] for details). For normal spaces the modified definition coincides with the one
presented above.

Following [12], we say that. < K if for each spaceX the conditionL € AE(X)
implies the conditiork € AE(X). Equivalence classes of complexes (Polish ANR-spaces)
with respect to this relation are called extension types. The above defined refation
creates a partial order in the class of extension types. This partial order is denoted by
< and the extension type with representatlvés denoted by L]. Note that under these
definitions the class of all extension types has both maximal and minimal elements. The
minimal element is the extension type of the 0-dimensional spk@nd the maximal
element is obviously the extension type of the one-point sfiai¢€or, equivalently, of any
contractible complex).

CongL) and X" L denote respectively the cone and tth iterated suspension @f.

L % K andL A L denote the join and the smash producLandK .
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For the reader’s convenience in this section we present some facts which are needed
below.

Theorem 2.1[11, Theorem 4]If L € AE(X), thenX' L € AE(X x I).

Theorem 2.2 [13, Proposition 2.3]If a normal spaceX is represented as the union
X =2, F: of its closed subsetg such thatl € AE(F;) for eachi, thenL € AE(X).

Theorem 2.3[14, Theorem 5.6, Corollary 5.7et X andY be finite dimensional compact
spaces. IfL e AE(X) and K € AE(Y), thenL A K € AE(X x Y). If bothL and K are
connected and., in addition, is finitely dominated, then the above conclusion remains
valid for all finite dimensional separable metrizable spaces.

Theorem 2.4[16, Theorem 1.2]If a metrizable spac« is the union of two subsets, B
such thatL € AE(A) andK € AE(B), thenL % K € AE(X).

Theorem 2.5 ([13, Theorem 1]; [14, Theorem 3.7])f L * K € AE(X), then for any
map f: A — L, defined on a closed subsé&tC X of a separable metrizable spacg
there exists a closed subsBtC X such thatK € AE(B) and f admits an extension

f:X\B—L.

Theorem 2.6([13, Corollary 2]; [14, Theorem 3.8])f X is a separable metrizable space
such thatL * K € AE(X), then there exists a subsatC X such thatL € AE(A) and
K € AE(X \ A).

Theorem 2.7[22]. For every separable metrizable spakewith L € AE(X), there exists
a completionX of X such thatl € AE(X).

Theorem 2.8[7, Theorem 3.5]L € AE(X) ifand only if L € AE(vX), wherev X denotes
the Hewitt realcompactification of.

Theorem 2.9[6, Corollary 2.2].If L is a finitely dominated complex, théne AE(X) if
and only ifL € AE(8X), whereg X denotes the Ston€ech compactification of .

Theorem 2.10 ([20, Theorem 1.6]; [15, Theorem 1.2])et f:X — Y be a map of
compact spaces with finite dimensional. IL € AE(Y) and K € AE(f~1(y)) for each
yeY,thenL A K € AE(X).

The following statement is closely related to the previous theorem. K i not
assumed to be finite dimensional.

Theorem 2.11[10, Corollary 2.7]Let f: X — Y be a map of compact spacesdinY <
nandL € AE(f~1(y)) for everyy e Y, thenX" L € AE(X).

Theorem 2.12[15, Theorem 1.6]Let f:X — Y be an onto map between metrizable
compact spaces. lf € AE(X) and|f~1(y)| <n + 1foreachy € Y, thenX"L € AE(Y).
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Some other statements, which also are needed below and proofs of which require
spectral technigues, are included in Appendix A.

3. Extraordinary inductive dimensions indy, and Ind,

Recall that¥” L denotes the iterated suspensiorL.oflso, for notational convenience,
we let 0L = L. The relationX” L € AE(X) would be rewritten as dimX < n, n =
0,1,2,....In other words

dim, X =min{n e NU{0}: "L € AE(X)}.

Note that dimgo = dim.

The idea of defining inductive dimensions with respect to classes of spaces is not new.
It has been developed in [1,2] (see also [9]) and consists of replacing the empty set in the
definition of standard inductive dimensions by elements of a given class of spaces. Our
approach is very similar—except the definition starts in the dimension zero.

Definition 3.1.Let L be a CW-complex and be a space. We say that

() Indy X <O0ifandonly if L € AE(X);
(i) Indy X < n,n €N, if for every closed sed C X and every open neighbourhodd
of A, there exists an open sEtC X suchthatA CU CV and Ing. BdU <n — 1,
@ii)y Indy X=niflndp X<rnandIng X >n—1,
(iv) Indy X =0 ifIndy X > n foreachn =0,1,2,....

If the setA in the above definition is assumed to be a singleton then we obtain the
definition of the small inductive dimension ip& .

Note that indo X = indX and Indo X = IndX for any spaceX. It is also clear that
if [L]<[K],thenind X <indy X and Ind X < Ind; X for any spaceX. In particular,
indX <ind, X and IndX < Ind; X.

Of course, these definitions can be extended to higher ordinal numbers. We intend
to investigate transfinite inductive dimensions nand Ing, and associated with them
various types of infinite dimensional spaces (in the sense of the dimension functigh dim
in a separate note.

3.1. General observations
We record the following results for the future references.

Proposition 3.2.Let Y be a subspace of a spade Thenind, Y <indy X andInd, Y <
Ind; Y provided one of the following holds

(a) Y is an F,-subset andX is normal
(b) Y is an arbitrary subset and is perfectly normal.
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Proof. We proceed by induction on ipdX. If ind; X = 0, then, according to Defini-
tion 3.1,L € AE(X). By Theorem A.4L € AE(Y), which, in turn, means that indt’ = 0.
Suppose that our statement is valid for spakewith ind; X < »n and consider a space
with ind, X = n + 1. For a pointy € Y and its open neighbourhodd € X choose a
smaller neighbourhood (iX) V such thaty e V C CIV C U and ing. BdV < n. Clearly
yeVNYCCly(VNY)CUNY. Note that B¢ (V NY) C Bdy V. Since Bd(V NY)

is an F,-subset of B¢ V we may use the inductive assumption (in case (a)) and conclude
thatind. Bdy(VNY)<n. O

Lemma 3.3.Letn > 1 and A and B be disjoint closed subsets of a Lindel6f space
with ind;, X < n. Then there exist disjoint open subséts and G in X so thatA C G4,
B C Gp andX \ (G4 U Gp) is contained in the uniou,fil F;. of closed setg), with
ind, Fp <n—1foreachk=1,2,....

Proof. Choose an open neighbourhadg of A such thatd C U4 C Cl(U4) C X \ B.

For a pointx € Cl(U,) let Ux denote an open neighbourhood of such that
ind, Bd(Ux) <n—1and ClUx) C X\ B. If x e X\ Cl(Uy,) let Ux denote an open
neighbourhood of such that ind Bd(Ux) <n — 1 and C{Ux) € X \ Cl(Uy,). SinceX
is Lindelof space the open covil x: x € X} contains a countable subcoyés; }72 ;.

Let F, = Bd(Uy). By construction, ind F, <n —1foreachk =1,2, ....

Let also

Ga=|J{Ux: tinClUa) #£0} and G =|J{Us: UxNCI(U4) =0}

Itis not hard to verifythal C G4 C U, BC Gp C X \Cl(Uy) andX\ (GAUGpR) C
U]?olek. O

Proposition 3.4.Let X be a Lindelof space. Thetim, X < ind, X.

Proof. We proceed by induction. If indX = 0, then, according to our definitions,
dim; X = 0. Assume now that the statement holds for Lindel6f spaces with<hd — 1
and consider a Lindel6f spaéésuch that ind X < n.

Let f:Y — X" L be a map defined on a closed subspaaé the spaceX. Fix an open
neighbourhood of Y such thatf is extendable over @) and denote such an extension
by the same letter. Let Z be a functionally closed subset &f such thatty € Z C 0.
Represent” L = ¥ (X"~1L) as the union of the two “semispeherds” andL_., each
of which is a copy of Coax”~1L) and whose intersectiohg = L_ N L. is a copy of
>rlp etz = fYL)NZ, Zo = fF Y L)nZandZo= f Y LoNZ=2Z_NZ,.
Note thatZ_, Z andZg also are functionally closed subsets¥bfConsequentlyX \ Zp,
being functionally open (and henég) in X, is a Lindelof space.

Note thatZ_ \ Zp and Z, \ Zg are disjoint (functionally) closed subsets ¥f\ Zp.
By Proposition 3.2, ind(X \ Zop) < ind; X < n. By Lemma 3.3, there exist disjoint
open subsetss_ and G+ in X \ Zg sothatZ_\ Zo € G_, Z4y \ Zo € G4 and
(X \ Zo) \ (G4 U Gp) is contained in the uniouj,fil Fi of closed (inX \ Zo) setsFy
withind;, F, <n —1foreachk =1, 2, .... By the inductive assumption, digrFy <n—1
foreachk =1,2,....
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Next consider the following closed subsets ¥f X_ = (X \ G4+) U Zg, X4+ =
(X\GHYUZygand Xo=X_NX,. Observe thatX_NZ =Z27Z_, X.: NZ = Z,,
XoN Z = Zp. Note also thak \ Zg C U,fil Fr. Theorem 2.2 guarantees that dif¥g \
Zo) <dim (U2, Fr) <n — 1. The mapf|Zo: Zo — Lo = X"~1L admits an extension
g0:ClIG — Lo, whereG is an open neighbourhood &fp in Xp. Since, as was noted,
dimz (Xo\ Zo) < n — 1, it follows that the map

gol[(Xo\ Zo) NCIG]: (X0\ Zo)NCIG — Lo

admits an extensiop: Xo \ Zo — Lo onto the wholeXg \ Zp. Let hg: Xo — Lo be the
map which coincides witly on CIG and withgg on Xo \ G.
Next consider the map_: X_ — L_, defined by letting

fx), ifxeZz_,
ho(x), if x € Xo.
SinceL_ is a contractible complex, the map. can be extendedtoamap_: X_ —
L_.
Similarly the maphy : X+ — L., defined by letting
fx), ifxeZzy,
ho(x), if x € Xo,
also admits an extensidi, : X+ — L. Note thatthe mapH_ andH. agree onXg (with

the maphp) and hence define the map: X — X" L, which obviously is an extension of
the originally given magy'. This provesthatdimX <n. O

h_(x)= {

h+(x)={

Remark 3.5.Let L be a connected non-contractible CW complex such that the extension
type[L] is bounded from above by the extension type of some sphere. Without loss of
generality we may assume thdt] £ [§™] for anym. Let n be the smallest integer such
that[L] < [S"]. We show that there exists a compact sp&csuch that dim X is finite,

but ind, X is not even defined. Indeed, consider (@ 2)-dimensional compact space

X, without intermediate dimensions [18] (i.e., i is a closed subspace d&f,, then
either dimF =n 4 2 or dimF = 0). Letk be the smallest non-negative integer such that
the homotopy groupr,1(L) is non-trivial. Note that thefis¥] < [L] and consequently
[§"+2] = [Zrt+2—k(sky) <[22k L]. This implies that dim X,, <7 + 2 — k. Note also

that dimy, X,, > 1 (to see this observe that dinxX,, = 0 simply means thal € AE(X)
which, in light of [L] < [S"], would imply dimX < n contradicting the choice of the
compactumX,). Next suppose that the small inductive dimensiory.ixg is finite, i.e.,

p =ind; X,, > dim; X,, > 0. ThenX, contains a closed subsgtsuch that ind F = 1.

By Proposition 3.4, dim F < ind; F = 1. Since[ ¥ L] < §"*1 we conclude that dint’ <

n + 1. But X,, does not contain positive-dimensional closed subsets of the covering
dimension strictly less tham+ 2. Consequently dilff = 0, which is impossible in view
ofindy F =1.

Proposition 3.6.Let L be finitely dominated. Thelmd, X = Ind; 8X for any normal
spaceX.
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Proof. First we show that IngX < Indy 8X. If Ind; X =0, thenL € AE(8X) which,
by Theorem 2.9, implies that € AE(X). Consequently, IndX = 0. Suppose that the
inequality Ind. X < Ind, 8X is valid for all normal spaceX with Ind, X <n —1
and consider a normal spagesuch that Ind 8X =n. Let A and B are disjoint closed
subsets ofX. Then Chgx A N Clgx B = (. Choose open subsetsandV in X so that
Clgx ACU,Clgx BCVandInd F <n—1whereF =X \ (UUYV). Clearly the set
X N F separates the sesand B in X. Note also thaX N F is normal. SincgsF N X =
Clgx(F N X) C F it follows from the inductive assumption that IndF N X) <n — 1.
This proves that Ing X < n.

Next we prove the inequality Ind8X < Ind; X. If Ind; X =0, thenL € AR(X) and
by Theorem 2.9L € AE(8X). This means that Indg8X = 0. Assume that the inequality
Ind;, BX < Indz X holds for all normal spaces with Ipd( < n — 1 and consider a normal
spaceX with Ind, X =n. Let A and B be disjoint closed subsets gfX. Consider open
subsetsd/ andV in X suchthatA C U CCIU, BCV CClV and CIU NCIlV = 0.
ThenX NCIU andX NCIV are disjoint nonempty closed subsetsofSince Ind X < n,
these closed sets can be separatediby a closed subsdt C X with Ind, F <n — 1.
Obviously Ckx F separates Gl (X NClgx U) and Ckx (X N Clgx V). Note also that

A §C|ﬂxU §C|ﬁx(XﬂU) §C|ﬂx(XﬂC|ﬁx U)
and
B §C|ﬁx \% §C|5x(Xﬂ V) §C|ﬁx(XﬂC|5x V).

This shows that Gly F' is a separator between the setsand B in gX. Since F
is normal and sincg F = Clgx F the inductive assumption implies that in@lgx F <
Ind, F <n—1.ThisshowsthatIndBX <n. O

Corollary 3.7. Let L be a finitely dominated. 1X is a normal space, thedim; X <
IndL X.

Proof. By Proposition 3.6, ind X = ind; X. SinceL is finitely dominated, so are its
iterated suspensions and consequently, by [6, Corollary 2.2}, #im dim; 8X. Then,
according to Proposition 3.4, we have

dimy X =dim; X <indy X <Ind; BX =Ind; X. O
3.2. Inductive dimensioned; andInd;, of perfectly normal spaces

Basic properties of classical inductive dimensions ind and Ind have their counterparts
for the dimensions ind and Ind. in perfectly normal spaces. Proofs of the following
two statements are standard and require only straightforward adjustments based on
Theorems 2.2 and A.4(b).

Theorem 3.8.If a perfectly normal spac& can be represented as the union of a countable
collectionX = [ J2, X; of closed subsets such thatl, X; <n foreachi =1,2,...,then
IndL X <n.
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Theorem 3.9.1f Y is a subspace of a perfectly normal spacethenind; Y < Ind; X.

Theorems 3.8 and 3.9 have several corollaries. Some of them, proofs of which follow
standard schemes, are presented below.

Proposition 3.10.Let L be a finitely dominated complex.Xfis a perfectly normal space,
thenind;, X =Ind; X =Ind; 8X.

Proposition 3.11.If X is a perfectly normal Lindel6f space, thiew;, X = Ind; X.

Proposition 3.12cf. Proposition 4.2Ilf X U Y is perfectly normal, themdy ., (X UY) <
ind, X +ind, Y andIndz,;, (X UY)<Ind, X +Ind. Y.

Proof. Let us prove the inequality Ind, (X U Y) < Ind. X + Ind. Y. Proof of the
remaining one is similar. We proceed by induction with respect to the number
Ind; X + Indy Y. First consider the case= 0. In this caseL € AE(X), L € AE(Y) and
accordingto Theorem A.3,x L € AE(XUY). This simply meansthat Ind; (XUY) =0.

Next suppose that the inequality is correct in situations whenind, X +Ind, Y <m
for somem > 0 and consider the case with= m + 1. Without loss of generality
we may assume that Ipdd > 1. Let A and B be disjoint closed subsets K U Y.
Choose a closed subs€tC X U Y separatingA and B and such that IndiC N X) <
Ind; X. Then the perfectly normal space is represented as the union of two subsets
C=(CNX)U(CnNY). As noted, by the choice of the sét and by Theorem 3.9,
Ind(CNX)+Ind,(CNY)<Ind, X 4+ Ind. Y =m + 1. By the inductive assumption,
INdzxz C < Indz(CNX)+Ind(CNY) <m. This provesthat Ind,, (XUY)<m+ 1=
Ind, X +Ind, Y. O

3.3. Inductive dimensioned; andInd, of separable metrizable spaces

The following statement expresses a basic fact connecting all three dimension functions
dimz, ind, and Ing..

Theorem 3.13If X is a separable metrizable space, thdim; X =ind; X = Ind; X.

Proof. The inequality ind X < Ind; X trivially holds for any space and the inequality
dim; X <indy X, according to Proposition 3.4, is true for all Lindel6f spaces.

Let us prove the remaining inequality Indd < dim;, X. We proceed by induction.
Clearly dimy, X = 0 implies Ind, X = 0. Assume that the inequality is valid for separable
metrizable space¥ with dim, Y < »n — 1 and consider a spacé with dim; X = n,

n > 1. Let A be a closed subset &f andV be its open neighbourhood. Consider the map
frAUX\V)— SOwith f(A)=0andf(X\ V)=1. Note thatZ" L is canonically
homeomorphic to the joir$? « X"~1L. By Theorem 2.5 can be extended to a map
g:X\Y — SO whereY is a closed subset iX such that dimY < n — 1. By the
inductive assumption, IndV <» — 1. LetU = g~1(0). ObviouslyU is open inX and
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ACUCCIUCUUY C X\ g 11 c V. It only remains to note that Bd < ¥ and
consequently, by Proposition 3.2, inBdU <n—1. 0O

Theorem 3.14.Let X be a separable metrizable space amd@> 0. Then the following
conditions are equivalent

(@) ind. X <n;
(b) X can be represented as the unidin= X1 U XoU---U X,,+1, whereL € AE(X1) and
dimX; <Oforeachk=2,...,n+ 1.

Proof. (a)= (b). Ifind; X = 0 the statement is trivially true. Assume that the implication
is true for all separable metrizable spaceéssatisfying the inequality indX <n — 1,
n > 1, and consider a spack such that ind X = n. Take a countable open base
U ={U;: i e N} of X such that ind Bd(U;) < n — 1 for eachi € N. By Theorems 3.13
and 2.2, ind ((J{Bd(U;): i € N}) < n — 1. By the inductive assumptidn/{Bd(U;): i €
N} =X UXoU---UX,, whereL € AE(X1) and dimX; = 0 for eachi = 2,...,n.
Obviously the subspack \ | J{Bd(U;): i € N}, as a space with base consisting of open
and closed subsets, is zero-dimensional. THea X1 U Xo U ---U X,, U X, 11, where
Xn+1 =X\ U{Bd(U;): i € N}, is the needed decomposition ¥f

(b) = (a). Clearly dinilJ!"y X;) <n — 1. In other wordss"~* € AE(U''5 X;). By
Theorem 2.4L % §"~1 € AE(X). Since[X"L] = [L  S"~1, it follows that dim. X < n.
Theorem 3.13 completes the proofa

4. Further properties of the dimension function dimg,
In this section we present several statements related to the dimensign dim
4.1. Characterization afim in terms of partitions

The following is a counterpart of the classical characterization of the dimension dim in
terms of partitions.

Theorem 4.1.Let X be a separable metrizable space amd> 1. Then the following
conditions are equivalent

(a) dimy X <n;

(b) for every collection(A1, B1), (A2, B2), ..., (A,, By) of n pairs of disjoint closed
subsets oK there exist closed set&, C», ..., C, such thatC; is a partition between
A;j andB; andL € AE(")/_; Ci).

Proof. (a) = (b). By Theorems 3.13 and 3.1%, can be represented as the unibn=
X1UXoU---UX, 1, WwhereL € AE(X1) and dimX; < O foreachk =2,...,n+ 1. By
[17, Theorem 1.2.11], for eadh=1, ..., n there exists a partitiod; betweenA; and B;
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such thatC; N X;+1 = @. Obviously/_; C; € X \ Uj_; Xi+1 € X1. SinceL € AE(X1)
it follows that L € AE(()/_, Ci).

(b) = (a). The iterated suspensiafi”L is canonically homeomorphic to the join
L % §"~1, which, in turn, is canonically homeomorphic to the iterated jdir S‘f *
% SO, where 2 = {s{,st}, i =1,...,n, is a copy of the zero-dimensional sphere
SO = {s0, s1}. This iterated join is homeomorphic to the subspéﬁ:@f the product
ConeL) x [T'_; Cone(SlQ), defined by letting (see [23, pp.185-188] and [24, pp. 48-50]
for details)

L= {([l, tol, ([xi, t,-])f:l) e CondL) x HCone(S,-O):

i=1

t; =1 for at least oneé =0, ln}

In other words [ is the union of “faces” of the entire product.
Note that there exists a retraction (“central projection”)

r (ConE(L) x ]_[cOne(S,.O)> \ (vo, v1, ..., vx) = L,
i=1
wherevg = (L x [0, 1])/(L x {0}) andv; = (S? x [0,1])/(S? x {O}),i =1,...,n, are the
vertices of the cones Co(k) and Con(aSlQ), respectively.
Let also

70:CondL) x HCone(SiO) — CongL)
im1

and

n
m;:CondL) x [ [ Cong(s?) — Cond(s}). i=1.....n,
i=1
denote the standard projections onto the corresponding coordinates.

Next consider a mag : A — L, defined on a closed subsétof a spaceX. In order
to prove our statement it suffices to exteridover the wholeX. Since the product
Con€L) x []i_; Cone(Sl.O) is an absolute extensor there exists an extengio —
CongL) x [[/_, Congs?) of f over the wholex.

For eachi =1,...,n consider disjoint closed set$; = F‘l(ni‘l([sé, 1)) andB; =
F‘l(ni‘l([si, 1])) of the spaceX. According to condition (b), foreach=1, ..., n, there
exists a closed partitiofi; in X between the set8; and B; such thatL. € AE(()/_; C)).
Choose a functiog; : X — Cone{SiO) such that

[s5, 11, ifandonlyifx € A;,
gi(x)=1 v, if and only if x € C;,
[si,1], ifandonlyifx € B;.
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Next consider the closed subspa€e= (/_; C; = (/-1 & “(v;) of X. SinceL ¢
AE(C), it follows that the restriction

0o FI(ANC):ANC — L x {1} C CongL)

admits an extensioh: C — L x {1}. Finally letgo: X — CongL) be an extension of the
maph:AUC — L x {1} C CongL), defined by letting

moo F(x), ifxeA,
h(x), if xeC.

Note thatgo|A = mgo F|A andgo(C) € CondL) \ {vo}.

The diagonal producg(x) = (go(x), ..., g:(x)), x € X, defines the mag: X —
ConeL) x [, Cone{SiO) such thatr; o g = g; for eachi = 1,...,n. Since(v))!_; ¢
g(X) we conclude that the compositigh=r o g: X — L is well defined. Note that
g|A ~ f as maps intaL. The corresponding homotopy can be defined by assigning to
everyx € A and each number € [0, 1] the point H(x,t) which divides the interval
(along the paths of the corresponding cones_constituting the “faces” of the product
CondL) x [, Cone(S?) forming the subspacé) with end-pointsf (x) and g(x) in
the ratio oft to 1—. Consequently, by the Homotopy Extension Theorem, there exists the
required extensiorf : X — L of the originally given magf. O

h(x) =

4.2. Dimensional properties of unions and products

Extensional properties of the unidghU Y are well understood (see Theorems 2.4, 2.5
and 2.6). Theorem A.3 allows us to give a more familiar form to the union theorem for the
dimension dim .

Proposition 4.2. Let X and Y be z-embedded subsets of the unidhU Y. Then
dimp (X UY) <dimg X +dimg Y + 1.

Proof. Let dimy X =n and dim, Y =m. ThenX"L € AE(X) and X™ L € AE(Y). By,
Theorem A.3X"L x« XY™ € AE(X UY). Next note that

[ZL+ L] =[(L*S" ) % (LxS" )] =[L*Lx5"1xsm1]
=[L*Lxs"™ =2 (L *L)]
=[z"(2(L A L)]=[Z"TH(L A L.
Consequentlyz™t™+1(L A L) e AE(X U Y). The latter, by definition, means that

dimoa(XUuY)<n+m+1=dimy X +dim; Y + 1. O

Corollary 4.3. Under the assumptions of Propositign2, dim; (X U Y) < dimy X +
dimY + 1.

Proof. Note that dint’ = dimgo ¥ and thafZ A S°] =[L]. O
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Remark 4.4.Generally speaking, the inequality diny (X UY) <dim; X +dim, Y +1
cannot be replaced by dimiX U Y) < dimy X + dim, Y + 1. Indeed, letL. = S* with
k>0.LetalsodinXK =n >k, dimY =m >kanddimXUY)=n+m+ 1. Then

dm,(XUY)=m+m+1)—k>m—-k+(m—-k)+1
=dimy X +dim;, Y + 1.

Theorem 2.3 also can be given a more familiar form.

Proposition 4.5.Let L be finitely dominated. X andY are finitely dimensional and their
productX x Y is Lindel6f, therdimz o7 (X x Y) < dimz X +dimz Y.

Proof. Let dim; X =n and din, Y = m. Recall that this means that" L € AE(X) and
XML e AE(Y), respectively. Sincé is finitely dominated, we conclude, by Theorem 2.9,
thatX”L € AE(BX) andX™L € AE(BY). By Theorem 2.3(X" L) A (2" L) € AE(BX x
BY). Finally, by Theorem A.4(d,~" L) A (X™ L) € AE(X x Y). Next note thaf(X" L) A
(Z™L)] = [Z"t" (L A L)]. Indeed, sincéX L] = [L A S1], we have

[E”L/\E’"L]=[(L/\Sl/\-u/\Sl)/\(L/\Sl/\u-/\Sl)]

n m
=[L/\L/\Sl/\-u/\Sl]=[Z‘”+’"(L/\L)].
n+m

ConsequentlyX" (L A L) € AE(X x Y). This means that digh; (X x Y) <n +
m. O

Corollary 4.6. Under the assumptions of Propositidn5, dimz (X x Y) < dimg X +
dimY.

Proof. Note that dint’ = dimgo ¥ and thafZ A S°] =[L]. O
4.3. Mappings and dimension
Hurewicz’s theorem on dimension-lowering maps also has a familiar appearance for the
dimension function dim. As usual, fora mag : X — Y we let
dim;, f = sup{dim, f~(y): y e ¥}.

Proposition 4.7. Let f:X — Y be a map of metrizable compacta witki finite
dimensional. Thedim, ., X < dimg Y 4+ dimg f.

Proof. This is a particular case of Theorem 2.10 (alternatively, under an additional
assumption of finite dimensionality df, one can use Proposition 4.5 and [4, Corollary
3.2]). Indeed, let dimY =n and diny, f = m. Then X"L € AE(Y) and XL €
AE(f~1(y)) for eachy € Y. By the cited result(X"L) A (¥™L) € AE(X). As in the
proof of Proposition 4.5, the latter implies the required inequality, dimX <n+m. O
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Proposition 4.8.Letdim; X < n. Then the set of maps: X — I" such thatdim; f =0
forms a dens& s-subset in the spac€(X, 1) of all continuous maps of into the cube
I" equipped with the compact open topology.

Proof. By Theorem 3.14(b)X = X1 U X2 such that dimp X1 =0 and dimX, <n —1. By
Theorem 2.7, we may assume thatis a Gs-subset ofX. ThenX \ X; can be written as
the union of an increasing sequemeC B; C - -- of closed at mostz — 1)-dimensional
subsets o . By Hurewicz's theorem [19, Chapter IV, 845(VIII)], the subset

Ci ={geC(X,I"): g|B; is of order< n}

is dense (ands;) in the space” (X, I") for eachi (the order of a mag does not exceed
k if the cardinality of each fiber is at most+ 1). Then the intersectiod = () C; is
still dense (andGs) in C(X, I"). Note that for anyg € C, the order of the restriction
gl(X \ X1):X \ X1 — I" does not exceed, i.e., |g~1(y) N (X \ X1)| < n for each
y € I". For any suchg we haveg~1(y) = (¢~1(y) N (X \ X1)) U (g~ 1(y) N X1). Since
dimz (g~1(y) N X1) <dimy X1 =0, it follows that dim, g~ 1(y) =0 foranyy e I". O

The following statement provides a characterization of spaces with dimensigmaimn
exceeding:. It will be used in Section 5.

Theorem 4.9.Let X be a compact metrizable space and> 1. Then the following
conditions are equivalent

() dim; X <n.
(ii) The set of mapg: X — I" with dim;, f =0 forms a dens&s-subset of the space
C(X, 1.
(iii) There exists amap : X — I" such thaddim; f =0.

Proof. The implication (i)= (ii) is proved in Proposition 4.8 and the implication (#
(iiii) is trivial. The remaining implication (iii)= (i) is contained in Theorem 2.11.00

The following statement is the converse of Dranishnikov—Uspenskij result (Theo-
rem 2.12). In the case = S° it has been proved in [21].

Proposition 4.10. The following conditions are equivalent for any metrizable com-
pactumX:

(i) dimp Y <n.
(i) There exists a map : X — Y of a compactunX with dim; X =0 ontoY such that
|f~X(y)| <n+1foreachyeY.

Proof. (i) = (ii). Since dim. Y < n, there exists, by Theorem 4.9, a mapY — ["
such that dim p = 0. Let Y = p(Y). Since dim¥’ < n, there exist a zero- -dimensional
compacturﬂ( and amag : X — Y ontoY such thatq—l(y)| <n+1foreachy € Y. Now
letX ={(X,y) € X x Y :1q(X) = p(y)}. Letalsof =ny|X: X — Y andg = 77X X —>



A. Chigogidze / Topology and its Applications 138 (2004) 1-20 15

X, wherery : X x Y — Y andry: X x ¥ — X denote the corresponding projections. In
other words the following diagram

x—1-y

X—=Yy
is a pullback square. Clearly fibers of the majare homeomorphic to the fibers of the
map p and therefore dimg = 0. Since dimX = 0, we conclude, by Theorem 2.11, that
dim; X = 0. It only remains to note that the fibers of the m@pre homeomorphic to the
fibers of the mag. Consequently,f ~1(y)| <n + 1 for eachy € Y.
(i) = (i). This implication, as mentioned above, coincides with Theorem 2.12.

4.4, Extensional properties of coronas

In this section we investigate dimensional properties of the Stoeek increment
BX \ X of a spaceX.

We say that. is an absolute extensor for a spacevith respect to the class of compact
spaces if any mag: A — L, defined on a closed subsétC X, admits an extension
f:Clx G — L, whereG is an open neighbourhood dfin X such thatX \ G is compact.
In such a case we write € AE®(X).

Theorem 4.111f L is finitely dominated, then following conditions are equivalent for any
metrizable locally compact space

@) L e AE(BX \ X);
(b) L e AES(X).

Proof. (a)= (b). Let f: A — L be a map defined on a closed subsedf X. Obviously,
Clgx A is the Stone€ech compactificatioffA of A. Consequently, sincé is finitely
dominated, there exists a mgpClgx A — L such thafg|A >~ f. SinceL € AE(8X \ X)
there exists amap': (BX \ X) — L such thatg’|(Clgx A \ X) = g|(Clgx A \ X). Since
X is locally compact, the uniom U (8X \ X) is closed ingX. Therefore the map
g’ AU(BX\ X)— L, defined by letting

v |8, if x €A,
ggj_{’u) if x € BX \ X,

demits an extensiof: V — L onto an open séit € X suchthah U (BX \ X) C V. Let
G be an open subset BfX such tha’rA U(BX\X)C GC Clgx GCV.LetG=GnNX.
Obviously,A C G, X\ G =8X\ Gis compact an¢|A = g|A >~ f. By the Homotopy
Extension Theoremy admits an extensiofi : Clx G — L which proves that € AES(X).
(b)= (a). Letf: A — L be a map, defined on a closed subse&t SX \ X. Let alsoU
andV be open subsets @fX such thatd €V C Clgyx V € U and f admits an extension
f:U — L. The setX N Clgx V is nonempty and closed i&X. Since L € AE®(X),
there exist an open sé& € X and a mapf”:Clx G — L such thatx N Clgx V € G,
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X \ G is compact andf”|(X N Clgx V) = f'[(X N Clgx V). Compactness ok \ G
guarantees that @k G = Clgx (Clx G) is the Stone€ech compactification of GIG and
BX\ X CClgx G. Since Ck G € Cly GUClgx V C Clgx G it follows that Chx G is the
Stone-€ech compactification of the sum G U Clgy V as well. Next consider the map
g:Clx GUCIgx V — L, defined by letting

f(x), ifxeClgxV,
f"(x), ifxeClyaG.
SinceL is finitely dominated, we can find a mau Clgx G — L such thatg|(Clxy G U

Clgx V) ~ g|(Clx G U Clgx V). In particular,g|A ~ f. According to the Homotopy
Extension Theorem (recall that € X \ X C clgx G) the mapf admits an extension

f:BX\ X — L.This provesthal. ¢ AE(8X \ X). O

gx) = {

5. Axiomatic characterization of dim,

A compact metrizable spacE such that dim X = n, is a generalized Cantat,,-
manifold if there is no closed subsEtof X, satisfying the inequality dimY < n — 2,
such thatX \ Y is disconnected.

Lemmab5.1.Let f, g: X — X" L be continuous maps of a separable metrizable space
Ifdimp({x e X: f(x) #gx)}) <n—1thenf ~g.

Proof. LetY ={x € X: f(x) # g(x)} and consider the map
hi(X x{0,1})U((X\Y)x[0,1])—> "L,
defined by letting
f), if (x,1) e X x {0},
hix,t) =1 f(x), if(x,r)e(X\Y)x][0,1],
gx), if(x,1)e X x {1}
Note thatX x [0, 1]\ (X x {0, 1H U(X \Y) x [0, 1]) C Y x [0, 1]. By our assumption,
dim; ¥ <n—1.InotherwordsX" 1L € AE(Y). By Theorem 2.1X"L = ¥ (X" 1L) e

AE(Y x [0, 1]). Obviously this suffices to conclude that the mapdmits an extension
H:X x[0,1] - X" L which provides a needed homotopy between the nfagaisdg. O

Theorem 5.2.Let X be a metrizable compactum.dfm; X =n > 2, thenX contains a
generalized CantoL,,-manifold.

Proof. Since dim X = n it follows that X" L € AE(X), but ¥"~1L ¢ AE(X). Thus
there exists a mag : F — X"~1L, defined on a closed subsét of X, which is not
extendable oveX. Let F denote the partially ordered set (by inclusion) of all closed
subsets” C X such that the map cannot be extended ovéru Y. This set is nonempty,
since X € F. Using the compactness &, the fact thatz”~1L is an ANR-space and
the Kuratowski—Zorn lemma, we conclude, following the standard argument, Ahat
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contains a maximal elemeiit. In other words, there exists a closed subds&t X such
that f is not extendable oveF U Y, but is extendable oveF U Y’ for any proper
closed subset’ of Y. We claim thatY is a generalized Cantok,-manifold. First
note that dim Y < dimy X = n. Next suppose that is represented as the union of
its two proper closed subsels and Y,. The proof will be completed if we show that
dimy (Y1 N Y2) > n — 1. Assume the contrary, i.e., that diiiY1 N Y2) <n — 2. By
construction,f can be extended ovefi: F U Y; — X"1L, for eachk = 1,2. Since
{x e FUX1NY2): fi(x) # fa(x)} € Y1 N Y2, we conclude, by Lemma 5.1 and by
our assumption, thafy|(F U (Y1 N Y2)) =~ f2|(F U (Y1 N Y2)). The Homotopy Extension
Theorem guarantees thaf|(F U (Y1 N Y»)) admits an extensiofy: F U Yo — X"~ 1L,
Thenthe mag: FUY — X"~1L, which coincides withf; on FUY; and withfl: FUY>,

is continuous and extends. This contradicts the choice gf andY and completes the
proof. O

Below let IC denote the class of finite dimensional in the sense of dim metrizable
compact spaces. Similarlg; denotes the class of finite dimensional in the sense of dim
metrizable compacta.

Letd: X — {—1,0,1,2,...} be an integer-valued function which assigns same values
to any pair of homeomorphic spaces. In 1932 Alexandrov gave (see [3, Chapter 5, 8§10,
Theorem 19] the following characterization of the dimension function dim.

Alexandrov’s Axiomatization. The Lebesgue covering dimensitim is the only function
d which satisfies condition#\1)—A(4) in the classC:

(Al)—normalization axiomd (@) = —-1,d(I")=nforn=0,1,2,....

(A2)—sum axiom: If the spaceX € K is represented as the union of two closed subspaces
X1 and X», thend (X) = maxXd(X1),d(X2)}.

(A3)—Poincaré’s axiomFor everyX € K with | X| > 1 there exists a closed s&t C X
separatingX and such that/ (X') < d(X).

(A4)—Brouwer’s axiom: For every spac& € K there exists an open coversuch that if
f:X — Y isanw-map ofX onto a space€’ € K, thend (X) <d(Y).

Itis not hard to see (see, for instance, [25, footnote on p. 976]) that the Brouwer’s axiom
can be replaced by either of the following conditions:
(A5)—continuity axiom: IfS = {Xk, p,’j*l} is an inverse sequence of spaces filonthen
d(limS) < sudd(Xy)}.
(AB)—Hurewicz’s axiom: If there exists a map: X — 1" such thatd(f ~1(y)) = 0 for
everyy € f(X), thend(X) <n.

In order to characterize extraordinary dimension function ;dimith classifying
complexL we need to adjust some of the above axioms and replace Brouwer’s axiom
by Hurewicz’s axiom.
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Theorem 5.3.The dimensiomim;, is the only function, defined on the cla§g, which
satisfies the following axioms

(C1)—normalization axiomd (X) € {0,1, 2, ...} andd(X) = 0if and only if L € AE(X).

(C2)—monotonicity axiom:If A is a closed subspace &f, thend (A) < d(X).

(C3)—Poincaré’s axiomif d(X) > 0, then there exists a closed subspagein X
separatingX and such that/(A) < d(X).

(C4)—Hurewicz’s axiom:If there exists a mayf : X — I” such thatd(f ~1(y)) = 0 for
everyy € f(X), thend(X) < n.

Proof. First let us show that/(X) < dim; X for every X € K. If dimy X < n, then,

by Proposition 4.8, there exists a mgp X — I” such that dim f~1(y) = 0 for each

y € f(X). By (C1),d(f1(y) =0 for eachy € f(X). Consequently, by (CA).(X) < n.
Next we show that dimX < d(X) for every X € K. If d(X) = 0, then, by (C1),

dimy; X = 0. Suppose that the inequality din < d(Y) has been proved for spaces

Y e Ky withd(Y)<n—1,n>1, and consider a spaéeec K such that/(X) = n. Next

assume the contrary, i.e., dilX = m > n. Note thatm > 2. By Theorem 5.2X contains

a CantorL,,-manifold Z. By (C2),d(Z) < d(X) = n. Note thatd(Z) > 0 (otherwise, by

(C1), we get O=dim; Z = dim;y X = m > 2). By (C3), there exists a closed subspace

Y of Z which separateg and such thatl/(Y) < d(Z) < n. Thend(Y) <n — 1. By the

inductive hypothesis, dimY <d(Y) <n —1<m — 1. Consequently the closed subspace

Y of dimension dim Y < m — 1 separates the Cantby,-manifold Z. This contradiction

completes the proof. O

Appendix A. Spectral characterizations of the relationL e AE (X)

In this section we present spectral characterizations of the relatio®E(X) which
have been used in the proofs throughout this paper. Definitions of concepts related to
inverse spectra can be found in [8].

The standard situation we would like to analyze is as follows. We are given a
realcompact and-embedded subspade of a realcompact spack (recall thatY is z-
embedded irX if for every functionally closed subset of Y there exists a functionally
closed subsefF of X such thatZ = F N Y). Also we have a Polish spectruy =
{Xq, pg?, A} suchthatX = lim Sx. Let us see how the relatiofise AE(X) andL € AE(Y)
can be characterized in term of the given spect&ym Answer to the first question has
been given in the following statement.

Theorem A.1 [7, Theorem 4.4].Let L be a Polish ANR-space. Then the following
conditions are equivalent for any realcompact spaXeand Polish spectrumSy =
{Xq, pE, A} with X = lim Sy:

(8) L e AE(X).
(b) There exists a cofinal an@-complete subsef’ of the indexing setd such that
L € AE(X,) for eacha € B.
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Let us now analyze the relatidne AE(Y). Of course, sincé itself is a realcompact
space, one can apply Theorem A.1 to any Polish spec8ur {Ya,qf, A} with Y =
lim Sy and find a cofinal and>-complete subsed” C A such thatL € AE(Y,) for each
a € A”. Problem is that the spectrufly in no way reflects the fact that is a subspace of
X: we cannot assume, evendf = A”, thatY,, is a subspace oX,, for sufficiently many
indices. A logical way to establish such a connection would be to consider the induced
spectrumS = {pq (), p;j Ipg(Y), A} and then to apply the Spectral Theorem [8, Theorem
1.3.6] to the spectr&y, S and to the inclusion map:Y — X. In order to be able to
proceed this way we need to know that the speciflisialso factorizing ane-continuous.
While it is indeed factorizing (this follows from [8, Propositions 1.1.22 and 1.1.24]), it is
clearly notw-continuous. Nevertheless it is still possible to extract some information about
the relationL € AE(Y) from the spectrun®. We record this information in the following
statement proof of which can be extracted from the proofs of [8, Theorem 1.3.6] and [7,
Theorems 4.4 and 6.5].

Proposition A.2. Let Y be a realcompact and-embedded subspace of a realcompact

spaceX. Let alsoSy = {X,, pg, a} be a Polish spectrum such that=lim Sy and L be
a PolishANR-space. Then

(@) If L € AE(Y), then there exists a cofinal and-complete subset’ € A such that
L € AE(pq(Y)).

(b) If L € AE(py(Y)) for eacha € A’, whereA’ is a cofinal andv-complete subset of,
thenL € AE(Y).

The following statement for metrizable spaces appears in Theorem 2.4.

Theorem A.3. Let X and Y be z-embedded subspaces of the union= X U Y. If
L e AE(X) andK € AE(Y), thenL x K € AE(Z).

Proof. Let vZ be the Hewitt realcompactification &f and letX denote the intersection
of all functionally open subsets ofZ, containingX . Note thatX is homeomorphic to X
and is az-embedded inZ (see [8, Proposition 1.1.24]). Lét has the similar meaning.
By Theorem 2.8L € AE(X) andK € AE(Y). Note also that'Z = X U ¥. Next consider
any Polish spectrur§, z = {Z,, p;j, A} such thatwZ = lim S,,z. By Proposition A.2(a),
there exist cofinal an@-complete subsetdx, Ay C A such thatl. € AE(p, (X)) for each

a € Ax andkK € AE(pa()N’)) for eacha € Ay. By [8, Proposition 1.1.27], the intersection
Ax N Ay is cofinal andw-closed inA. SinceZ, is metrizable (and even separable), we
conclude, by Theorem 2.4, thatx K € AE(py(vZ)) for eacha € Ax N Ay (note here
that p,(vZ) generally speaking is a proper subseZgfand consequently we are not able
to conclude thaL * K € AE(Z,,)). Proposition A.2(b) guarantees that K € AE(vZ).
Once again applying Theorem 2.8 we conclude thatk € AE(Z). O

Similar considerations prove the following corollary.
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Theorem A.4[7, Proposition 6.8]Let Y be az-embedded subset of a spakelf L e
AE(X), thenL € AE(Y). In particular, the latter holds if

(a) Y is an F,-subset of a normal spacke;

(b) Y is any subset of a perfectly normal space

(c) Y is an open or a dense subset of a perfectiyormal spaceX;

(d) Y is a Lindelof subspace of a completely regular and Hausdorff space.
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