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Effective Models of Periodically Driven Networks
Jason Shulman,* Lars Seemann, and Gemunu H. Gunaratne
Department of Physics, University of Houston, Houston, Texas
ABSTRACT Circadian rhythms are governed by a highly coupled, complex network of genes. Due to feedback within the
network, any modification of the system’s state requires coherent changes in several nodes. A model of the underlying network
is necessary to compute these modifications. We use an effective modeling approach for this task. Rather than inferred
biochemical interactions, our method utilizes microarray data from a group of mutants for its construction. With simulated
data, we develop an effective model for a circadian network in a peripheral tissue, subject to driving by the suprachiasmatic
nucleus, the mammalian pacemaker. The effective network can predict time-dependent gene expression levels in other mutants.
INTRODUCTION
Safe and effective manipulation of gene networks, including
the design of successful therapeutic intervention for hered-
itary diseases, requires the ability to control the associated
networks of genes/proteins/metabolites. The task is non-
trivial. The networks contain a large number of nodes,
coupled through (often unknown) nonlinear biochemical
interactions (1). Adding to the difficulty of therapeutic inter-
vention is the robustness of the solutions of most networks
(2). Biological processes are necessarily insensitive to
perturbations and even small changes to the network itself,
e.g., mutations. Such a feature is required to ensure proper
function and survival in a variable environment. This robust-
ness, however, can complicate traditional therapies and has
led to the inefficacy of medications, especially those de-
signed to act on single molecular targets (2–4). Effects of
an external modification on a gene may propagate through
a large portion of the network, and feedback from down-
stream nodes may negate intended changes. These observa-
tions have led to the suggestion that successful interventions
of complex diseases will require carefully designed multi-
target therapy (2–4), a task that demands a comprehensive,
global understanding of the underlying network. Even
though gene expression levels in an organism can be ob-
tained easily with current microarray technology, the
number of nodes and nonlinearity of the couplings between
them make it extremely difficult to infer an accurate model
of the network (1,5).

These difficulties motivated us to introduce effective
models (6), constructed from empirical data. The basic
assumption in the formulation is the presence of a few
core (or master) nodes, each of which controls actions of
many other nodes on the network. These core nodes may
be transcription factors (7,8) or perhaps microRNAs
(9,10), as both can affect the level of a significant number
of genes within a cell. The expression levels of genes
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outside the core group can be thought of as ‘‘slaved’’ to
the core nodes, i.e., the expression levels of the slaved nodes
are assumed to be algebraically related to those of the
master nodes (11). Although the separation of master and
slave nodes is artificial, the solutions of the effective model
approximate those of the full network under conditions to be
discussed later. Further, it allows for solutions of the full
network to be manipulated by controlling the (small number
of) master genes, suggesting the possibility of its use in the
design of multitarget drugs. Previously, this approach was
used to predict gene expression levels of mutants of an
oxygen deprivation network of Escherichia coli (6). In
this article, we extend the effective network approach to
periodically driven systems (11).

Nearly all organisms possess an internal clock, a biolog-
ical time-keeping device, which allows them to coordinate
internal activities with their environment (12). It is thought
that clocks, which are not required for viability, add to the
survivability of an individual (12) and its robustness against
external changes. Indeed, there is much evidence that circa-
dian rhythms generated by the clock play an important role
in the healthy function of organisms (12,13). Disruption
of rhythms can cause a myriad of adverse effects, from
the molecular level to that of the organism itself (14,15).

Circadian systems have a hierarchical structure (12).
Environmental cues, such as the light/dark or temperature
cycles, entrain an autonomous oscillator called a pacemaker,
which is composed of circadian genes (12,16). The pace-
maker, in turn, entrains and drives rhythms in other oscilla-
tors and genes under clock control (16). In this way, the
circadian system regulates or is involved in a diverse set
of functions and behaviors. The result is a vast network of
genes, far larger than the core circadian system that is driven
by the pacemaker. In mammals, as much as 10% of gene
expression in specific tissues can exhibit circadian rhyth-
micity (17). At least 1% of the genes in Drosophila and
~2–6% in Arabidopsis thaliana are under circadian control
(18). Among many examples are the couplings to the
immune system (18–20), and cell cycle (21,22), as well as
doi: 10.1016/j.bpj.2011.10.008
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the rhythm’s role in tumorigenesis (23). Additionally,
(possibly indirect) couplings have been identified between
key clock and nonoscillatory genes, further expanding the
network influenced by the circadian system (18,20).

The circadian pacemaker of mammals is the suprachias-
matic nucleus (SCN), a small collection of neurons located
in the hypothalamus (12,16). Within each neuron, the core
circadian system generates oscillations in gene expression,
either autonomously or through entrainment by photic input
received via the optic nerve, while the neuron itself exhibits
oscillations in firing rate (24). These rhythms are respon-
sible for coordinating the cycling of genes in the peripheral
tissues, e.g., liver and kidneys (16,17). The oscillators in
these tissues contain the same genes as in the SCN, but
they cannot be entrained by light or, in general, maintain
sustained oscillations when isolated from the SCN, i.e.,
oscillations in peripheral tissues are damped (17). Addition-
ally, their oscillations are commonly phase-delayed by
several hours relative to those of the identical genes within
the SCN, which has been suggested to be the time required
for the pacemaker signals to travel to the periphery (17).

At the most fundamental level, the circadian system
itself is essentially a time-delayed, negative feedback loop
(12,25). Although simple feedback loops can generate
rhythms, they are sensitive to fluctuations and do not have
robustness against mutations. In particular, for a single feed-
back loop, the elimination of just one component may be
sufficient to destroy rhythmicity; this is not the case for
organisms. Embellishments have been added to the single
loop archetype as more genes and couplings have been
discovered, resulting in multiple loop models that demon-
strate increased robustness and adaptability (26). These
observations motivate the synthetic circadian system we de-
signed to test the effective model methodology. It consists of
two coupled subsystems. The natural frequencies of the
subsystems are chosen to be sufficiently close to each other,
so that the coupling between them can provide frequency-
locking (11). The analysis described below can be extended
to systems that contain more than two feedback loops as
well (17). We have also examined single networks, i.e.,
one system, with results similar to those presented here.

Our goal is to illustrate the power of the effective network
methodology and to demonstrate that it extends beyond
gene networks with steady-state solutions. The construction
of an effective network requires knowledge of the set of N
genes that belongs to it. Genes that cycle with a period of
~24 h are likely to belong to this set. In principle, they
can be identified using several microarray experiments per-
formed throughout the day. The development of an effective
network also requires the identification of n (<<N) master
genes of the network. This requires biological information,
but transcription factors and microRNAs are possible candi-
dates for master nodes. The experimental input necessary to
generate an effective network is comprised of microarray
data from wild-type (WT) organisms and single knock-out
Biophysical Journal 101(11) 2563–2571
(SKO) mutants of each of the n master nodes. We require
additional data to compute the effective network of the first
harmonic; in the derivation below, we use WT data when
the network is driven at a second frequency. This can be
obtained by slightly changing the entraining environmental
factors, such as the light/dark cycle.

For each organism, expression data will need to be
collected 8–10 times over 24 h to extract the time depen-
dences of gene expression levels. Thus, a total of 8 �
(n þ 2) experiments are needed to generate an effective
circadian model. This is a considerable amount of data;
however, it is significantly less than that required to con-
struct a first-principles model of the network, if such a
task were possible. The effective model can be used to
predict gene expression levels in other mutants. We will
demonstrate this by using the model to determine expression
levels of the (N – 2) network genes in double-knock-out
(DKO) mutants. In addition, network behavior can be calcu-
lated for individuals wherein some expression levels have
been modified, e.g., heterozygous knockouts. Such a predic-
tive ability should allow biologists to better design their
experimental program and allow for effective allocation of
their resources. In the future, we plan on demonstrating
how one can externally modify a small number of nodes
such that the entire circadian network is shifted into a pre-
specified state.
METHODS

Construction of the effective model

A detailed description of the development of the effective models has been

presented previously (6). Here, we briefly illustrate the procedure and its

adaptation to periodically driven networks, specifically, a circadian system

in a peripheral (non-SCN) tissue. Let the state of the network with N genes

G ¼ {G1,G2,.GN} be represented by x(t) ¼ {x1,x2,.,xN}, where xi is the

expression level of the ith gene. The dynamics of the network is assumed to

be describable by a set of ordinary differential equations,

_x 1 ¼ F1ðxÞ þ d1ðtÞ;
_x2 ¼ F2ðxÞ þ d2ðtÞ;

«

_xN ¼ FNðxÞ þ dNðtÞ;

(1)

where Fk(x) are unknown functions of x(t), and dk(t) is driving, which may

represent the action of the SCN on clock genes in peripheral tissues. As

mentioned above, these actions are time-delayed by several hours (17).

The vector d describes the effect on the peripheral gene and not the original

signal in the SCN.

A key requirement in constructing an effective model is the identification

of master nodes. Together, they are needed to control the behavior of the

remaining (slaved) nodes to a large degree. For example, in a gene network

associated with a biological process, the transcription factors could be the

master nodes.

The expression levels of master and slave nodes will be represented by

XM and xs, where M(i) and s(j) denote the ith master and jth slave node,

respectively. Consider the steady-state solutions to the expressions in

Eq. 1 in the absence of driving. If the expression levels of the master nodes

are fixed, the corresponding n equations are no longer valid and the
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expression of the (N-n) slaved genes is determined by solving the remaining

equations subject to the constraints imposed on XM. As the master variables

are changed, the solution for each slaved variable lies on an n-dimensional

surface. Fig. 1 shows a two-dimensional representation of such a surface

from the network used throughout this work.

The unperturbed, WT, system has a unique, stable, steady-state solution

denoted by P(0)¼ {PM
(0), ps

(0)}, which corresponds to a point P0 that lies on

this surface. Further, the steady-state equilibrium for a SKO of the Kth

master gene in the system, P(K), will also be represented by a point on

the surface. Knocking out the n genes of the master system individually,

when combined with the WT P0, gives (n þ 1) surface points that define

a unique n-dimensional plane. Although the size and nonlinearity of the

network prevent access to the surfaces describing the expression of the

slaved genes, experimentally obtaining the points PK with K ¼ 0.n allows

for the determination of the n-dimensional plane. Due to the constraints, the

plane lies close to the surface in the region of interest. Thus, points on the

plane provide approximations to gene expression of the slaved system when

the levels of the master genes are set externally. Consequently, one can

approximately control the behavior of the slaved system by suitable manip-

ulation of a small set of master genes. We next search for a system whose

solutions lie on the plane and, as such, is linear. It can be written as

xk � p
ð0Þ
k ¼

Xn

I¼ 1

BkI

�
XMðIÞ � P

ð0Þ
MðIÞ

�
; (2)
0

plane. The Bkl are determined by the points P0,.Pn. The crucial approxi-
for each slave index k. In Eq. 2 we have used the fact that P lies on the

mation in the construction of the effective model is that solutions of the

network can be determined entirely (but approximately) by the state of

the master system.

We have yet to consider the relationship between the master variables

themselves. Indeed, due to coupling between them, perturbation of one or

a few of the master nodes will modify the others. To continue with the linear

approximation, we assume that the dynamics of the master system only

depends on the master variables, and the relationships are
FIGURE 1 Expression levels of the slave gene G1 (gray surface) as

master genes G7 and G10 are varied in the ranges shown. Lying on the

surface are the WT equilibrium value P0 and those of the two SKO values,

P7 and P10. The remaining master genes have been fixed to their equilib-

rium values to generate a three-dimensional plot for illustration. In general,

the n þ 1 points define an n-dimensional plane, which provides an approx-

imation to gene expression levels of the slaved genes. The set of master

gene values giving rise to the slave gene approximations is shown in the

projection on the X7-X10 plane.
_XK ¼
Xn

I¼ 1

AKI

�
XMðIÞ � P

ð0Þ
MðIÞ

�
: (3)

The AKI values are also obtained from the (experimental) gene expression

data. They represent the effective interactions of genes in the network.

Equations 2 and 3 define an effective empirical subnetwork (EES). Upon

modification of some values of the master system, e.g., by knockout, the

expression levels of the remaining master genes are approximated by

Eq. 3. This information is then used in Eq. 2 to predict expression levels

of the slaved nodes. The error generated by using the EES is often less

than the experimental noise in the microarray data (experimental error

and biological variability) used to generate the EES (27). Thus, the EES

approximations are typically not the principal source of error in such

a method. Use of the effective network results in a significant simplification.

However, it can only be used to compute changes when the master variables

are modified.

In this article, we adapt the EES methodology to analyze periodically

driven networks. Here, the expression levels oscillate about the equilibrium

values P(0) for the WT and P(K) for the SKO mutants. The oscillations of

the slaved genes lie on the n-dimensional surface (gray surface in

Fig. 1). Corresponding oscillations of the EES occur on the plane. If the

equilibrium of another mutant, e.g., a DKO, is reasonably close to a PK

or if the surface is sufficiently flat, it is likely that the slope of the plane

will be close to that of the surface. Then, the predicted oscillations will

resemble that of the actual system, again providing an approximation to

the time-dependent gene expression levels.

Here, we will concern ourselves with predicting behavior of the 0th and

first harmonics of gene expression levels (the EES formalism is adaptable to

higher harmonics as well). The required time-dependent WT and SKO

experimental input is Fourier-transformed to obtain the harmonics. For

time-dependent gene expression, the EES construction for the 0th harmonic

is simply that of the steady-state case (Eqs. 2 and 3). For the first harmonic,

the system of differential equations describing the dynamics of the master

nodes is

_X1:KðtÞ ¼
Xn

I¼ 1

A
ð1Þ
KI X1:MðiÞðtÞ þ DKðtÞ; (4)

or in Fourier space,
iUdX1:K ¼
Xn

I¼ 1

A
ð1Þ
KI X1:MðIÞ þ DK; (5)

whereDk(t) represents sinusoidal driving (from the SCN) at a frequencyUd.

The value X1:K is the first harmonic of the expression level, and is complex

with an amplitude and phase. The first harmonic expression of the

slaved nodes, in analogy with Eq. 2, is a linear combination of the master

variables, i.e.,

x1:k ¼
Xn

I¼ 1

B
ð1Þ
kI X1:MðIÞ þ Dk: (6)

Equations 2, 3, 5, and 6 are used to calculate the matricesA and B for the 0th

and first harmonics and the first harmonic driving vector D, which com-
pletely define the effective model. The model so constructed can be used

to predict expression levels of mutant species.

The EES approach is unique in that its only input is expression data from

microarray experiments. It does not require or assume connectivity or func-

tional relationships between genes, nor does it need coupling parameter

information, either experimental or estimated by spanning the parameter

space. Despite its linearity, the EES is able to accurately describe gene

expression of nonlinear networks due to the constrained geometry associ-

ated with its construction.
Biophysical Journal 101(11) 2563–2571



FIGURE 2 Graph of the synthetic gene network. The network is com-

posed coupled subgroups, genes (1–10) and (11–20). Full coupling exists

within the subgroups, and each gene influences two genes in the opposite

subgroup. (Arrows and bars) Activating and inhibitory interactions, respec-

tively. Each subgroup is constructed with a natural period close to 24 h.
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A synthetic circadian system

The expression level input required to generate the EES is rather specific.

As such, experimental data with which we can test this approach is not

available. In lieu of such data, we developed a class of synthetic circadian

networks to generate oscillatory expression levels. We will demonstrate the

viability of the effective network approach using data generated from a

synthetic circadian system with N ¼ 20 genes. However, the method has

been tested extensively, for many networks of various sizes and with

different forms of coupling.

The synthetic network was designed to represent a circadian system in

a peripheral tissue, containing the core circadian genes and those under

circadian control, which is subject to driving from the SCN. As is common

for mathematical descriptions of biochemical reactions, the functions Fk(x)

in the expressions in Eq. 1 are chosen to be linear combinations of

sigmoidal Hill functions,

Hðx; cÞ ¼ xh

xh þ ch
:

That is,

FkðxÞ ¼
XN
i¼ 1

aki

h
Hðxi; ckiÞ � H

�
P
ð0Þ
i ; cki

�i
; (7)

with Pi
(0) representing the equilibrium expression level of the ith gene and h

chosen to be 2. Note that Fk(x) ¼ 0 if, for each i, xi ¼ pi
(0). The coefficient

aki describes the nature and strength of the effect gene i has on gene k. It can

be activating, inhibitory, or absent, corresponding to aki being positive,

negative, or zero, respectively. The driving terms dk(t) in the expressions

in Eq. 1 are sinusoidal, with frequency dictated by environmental signals

or the endogenous free running period of the pacemaker. The values of

a few driving terms are chosen to be zero, rendering the corresponding

genes free from direct pacemaker control; their behavior is solely influ-

enced by the actions within the network.

In keeping with models of circadian systems, the synthetic network

contains a number of coupled subsystems (two), each of which is chosen

to have a natural period close to 24 h. Oscillations in the peripheral tissues

are not self-sustained. That is, they dampen when uncoupled to the pace-

maker (17). Thus, our synthetic peripheral network must be damped as

well. To achieve this, a linearization of Eq. 7 was used to compute the aki
for the subsystems. We begin the construction by setting the eigenvalues

of each subsystem. We require a pair of complex conjugate eigenvalues

whose real parts, εr, are slightly negative and whose imaginary parts corre-

spond to a period close to 24 h. The remaining eigenvalues are chosen to be

smaller than –εr. Thus, each subsystem is a damped driven oscillator,

and a sufficiently large driving at a period close to 24 h will drive them

to a periodic solution.

We now perform a random orthonormal transformation on the diagonal

matrix containing the eigenvalues of each subsystem. After the transforma-

tion, we have two nondiagonal matrices whose eigenvalues were predeter-

mined. Each of the two subsystems contains 10 genes, numbered 1–10 and

11–20 for subsystems 1 and 2, respectively. Next, the genes between the

two subsystems are sparsely coupled such that the coupling matrix has

the form

a ¼

0
BBBBB@

0
@

a1;1 . a1;10
« 1 «

a10;1 / a10;10

1
A

0
@

a1;11 / a1;20
0 0 0

a10;1 0 0

1
A

0
@

a11;1 / a11;10
0 1 0

0 0 a20;10

1
A

0
@

a11;11 . a11;20
« 1 «

a20;11 / a20;20

1
A

1
CCCCCA
:

(8)
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The diagonal blocks represent the intrasubsystem couplings whereas the

off-diagonal blocks describe the couplings between the two systems. One

gene from each subsystem (genes 1 and 11) is subject to the influence of

all genes in the opposite subsystem. The range of the coupling parameters

is5 the average of the intrasubsystem couplings. Further, each of the other

genes impacts exactly one gene in the opposite subsystem, with a range of

values for the magnitude reduced by a factor of 5. The weak and sparse

coupling between the subsystems does not significantly change the eigen-

values of Eq. 8 from those of the uncoupled systems. A graph of the

network is displayed in Fig. 2. We emphasize that many coupling schemes

have been analyzed, in addition to varying system size, with results similar

to those presented here.

Synthetic WT data are obtained by solving the expressions in Eq. 1 for

the time-dependent gene expression levels x(t). For SKO mutants of the

ith gene, the ith equation in the expressions in Eq. 1 is no longer valid as

its level is externally set to zero. Data for the mutant are calculated by

solving the remaining (N – 1) equations with xi ¼ 0. The mutant input

required for the model is not limited to the homozygous knockouts

described here; heterozygous knockouts and mutants in which a gene is

fixed to a nonzero value can also be incorporated into the methodology.

Fig. 3 shows the time dependence of expression for a selected set of genes

(G1, G16, G17) after entrainment to a 24-h environmental cycle. Upon

knockout of a network gene, the expression of the remaining nodes is modi-

fied and manifested by changes in amplitude and phase of the principle and

higher harmonics. The extent of the modification is determined by the

coupling strength between the nodes. As an example, knocking out gene

3 has a significant effect on the expression of gene 1 (dashed line in

Fig. 3). In contrast, it has only a minor influence on G16 and G17, members

of subgroup 2. In general, modification of a gene results in significant

changes to other members of the subnetwork and negligible-to-moderate

adjustments of expression levels of genes in the complementary

subnetwork.

This synthetic nonlinear circadian network will be used to generate the

WT and SKO data, necessary to construct effective models for the 0th

and first harmonics. Additionally, the network will provide DKO data

that will be used to test the predictive abilities of the effective model. We

emphasize that the synthetic system is simply a platform for testing the

ability of the EES to predict periodic gene expression. Its role is to produce

data, because the necessary experimental data are currently unavailable.

The EES is constructed from the data, but is otherwise entirely independent

of the system used to generate it.
RESULTS

We randomly selected three genes from each subsystem as
master nodes. These are genes [G3, G7, G10, G11, G17, G18].



FIGURE 3 Partial collection of output from the synthetic network under

24 h entrainment. WT gene expression levels for G1 (C),G16 (-), and G17

(A) are shown. The impact of a knockout of gene 3 on gene 1 is included

(dashed line). Only the real parts of the expression levels are shown.

FIGURE 4 Expression levels (real part) for genes in a DKO[3, 11]

mutant. (Solid lines) Solutions of the double knockout. (Dashed lines)

Corresponding predictions from the EES. Despite the approximate nature

of the effective model, the time dependence of the predictions matches

that of the actual values quite well. Note that, by construction, the effective

model only contains the 0th and first harmonics.
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All others are relegated to the slave system. Construction of
the EES requires (time-dependent) gene expression levels
from the six mutants with the master nodes individually
knocked out, plus the WT organism at two driving frequen-
cies. This is obtained by solving the expressions in Eq. 1
under the appropriate conditions. The 0th and first harmonics
are extracted from the data, and the model matrices (A and
B) for each harmonic as well as the driving vector D for the
first harmonic are calculated.

The expression of the master nodes can now be used to
approximate the behavior of the rest of the network. Con-
sider the example presented in Fig. 1. The gray surface
describes the expression level of G1 as a function of X7

and X10, the expression levels of G7 and G10, respectively.
The EES predictions for G1 lie on the plane defined by
steady-state points (data) [P0, P7, P10]. The difference
between the surface and plane is the error of the prediction.
Given the master gene values denoted by the projection of
the EES plane on to the X7-X10 plane in Fig. 1, the quality
of the predictions for G1 has been evaluated. The average
difference between an actual and EES solution is 3.1%,
with a maximum of ~10%.

To demonstrate the predictive ability of the EES on the
entire network, we will choose two master nodes and exter-
nally set their expression levels to zero, i.e., a DKO mutant
will be constructed. The full network will accommodate this
manipulation by an adjustment in gene expression, as deter-
mined by the couplings (Eq. 7 for the synthetic network).
For the effective model, the result of fixing these values
on the other master and slaved nodes is determined by
Eqs. 2, 5 and 3, 6, respectively. These are the predictions
of the model. They will be compared to the actual expres-
sion levels, the solutions to the expressions in Eq. 1, subject
to the DKO constraints.
As an example, consider the effect of knocking out genes
3 and 11. There are 18 expression levels of the mutant to be
estimated. The average error between the predicted and
actual 0th harmonic values is 0.93%, whereas that of the
amplitude and phase of the first harmonic is 1.35% and
1.40�, respectively. These results are typical for this system.
One can gain a qualitative appreciation for the accuracy of
the predictions by examining the time dependence of the
gene expression. This is shown for a representative set of
genes in Fig. 4. The actual expression levels from the full
network are plotted as solid lines, which clearly demonstrate
the presence of higher harmonics. The corresponding pre-
dictions of the EES are used to construct an approximate
time dependence, xkðtÞ ¼ x0:k þ x1:ke

iUd t, where xi,k is the
ith harmonic prediction forGk. This is represented by dashed
lines in the figure. The predicted expression levels (by con-
struction) contain only the primary harmonic, yet the magni-
tude and phase are aligned well with the actual values from
the synthetic system.

To fully analyze the predictive ability of the effective
model, gene expression from all possible DKO mutants
was predicted and evaluated in a manner similar to that
described for the DKO[3, 11] mutant. For a six-member
master system such as the one provided above, there are�
6

2

�
¼ 15 such DKO mutants. Each of these exhibited

oscillatory, bounded expression levels, which was consid-
ered the criterion for viability of the synthetic mutant.
With 18 functioning genes in each mutant, there are 15 �
18 ¼ 270 gene expression levels to be predicted. For the
0th harmonic, the average error is 0.63%. There are 220
predictions (81%) that are within 1% of their exact values
Biophysical Journal 101(11) 2563–2571



TABLE 1 Number and percentage of genes (out of 270)

predicted within an error range

Error range (percent or degree)

0th harmonic First harmonic

Amp Amp Phase

(0,1) 220 (81%) 153 (57%) 162 (60%)

(1,5) 47 (17%) 99 (37%) 95 (35%)

(5,N) 3 18 13

Error has units of percent for amplitudes and degrees for phase.

2568 Shulman et al.
whereas 47 (17%) fall between 1 and 5%. Only three genes
have 0th harmonic errors >5%. These results are summa-
rized in the histogram of Fig. 5 and Table 1.

The coefficient of each first harmonic is complex, and
illustrated using the amplitude and phase. The accuracies
of these components were investigated individually (see
Table 1). The average amplitude error was found to be
1.68% whereas that of the phase was 1.31�. Fig. 6 displays
the results of the first harmonic calculations in polar form
with the radial axis representing the ratio of the amplitudes
(jX1:pj=jX1:ajor jx1:pj=jx1:aj) and the angular axis correspond-
ing to the phase difference between the predicted (p) and
actual (a) expression levels. Thus, the point (1,0) corre-
sponds to an exact prediction. The ratios for the DKOs
closely scatter about this location. The size and proximity
of the data points render it difficult to accurately judge the
quality of the predictions, so the inset of Fig. 6 displays
an expanded view that includes predictions that are accurate
to within 5� and 5% in amplitude. This accounts for 91% of
the predictions.

We have thus far only considered differences between the
solutions to the synthetic system and predictions of the
effective model. However, in any real-world application of
the EES, the input expression levels will contain experi-
mental error. The effect of such error must be small if the
method is to be useful. Consider, as an example, the DKO
[3,11] introduced previously. To model experimental error,
we multiply the input data for the EES (i.e., solutions
from the synthetic model) by a random value from a normal
distribution with a mean of 1 and standard deviation ε.
Levels of the DKO[3,11] mutant were calculated for
10,000 such experiments. For realistic values of ε (27), the
difference between the predicted and exact expression levels
is principally governed by the experimental error, with
a smaller contribution due to use of the EES. Of course, if
the measurement errors are small, the EES is the primary
source of error in the analysis, although, in this case, it
also is quite small (<2%). The phase predictions of the first
FIGURE 5 Histogram for the ratio of the predicted (p) and actual (a) 0th

harmonics of DKO mutants. All predictions are within 10% of the actual

values.
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harmonic are somewhat insensitive to the experimental
error. The average ranged from 1.4 to 2.59� as the experi-
mental error varied from 0 to 10%. Thus, we note that exper-
imental error in microarray data is more significant than
error due to the approximations used in the EES.

It is clear that the effective model can accurately predict
the time-dependent expression levels of the circadian
network. It should be noted that the utility of the EES is
not limited to predictions in DKOs. Any manipulations of
the master system (but only of the master system) can be
approximated by the effective model. This includes up-
or downregulation of the master genes as well as triple
knock-outs, etc. Such considerations, combined with the
quality of the results, justify the use of the EES formulation
to study of nonlinear, periodically driven gene networks.
DISCUSSION AND CONCLUSIONS

Large nonlinear models have been proposed for circadian
systems (28,29). However, a great deal of effort goes into
FIGURE 6 Plot indicating quality of first harmonic predictions in DKO

mutants. The ratio of the predicted/actual magnitudes is plotted in the radial

direction. The angular direction indicates phase difference. The data cluster

around the point (1,0), indicating the predictions accurately describe the

first harmonics generated by the network. (Inset) Expanded view of main

figure. Includes predictions within 5% amplitude and 5� of phase.



FIGURE 7 Slave gene predictions for a three-node network when the

master system contains one gene (a) and two genes (b). By choosing the

expression level of G1 to be equal to Q1, the remaining genes, master or

slave, will be determined. In each case, the final state of the network is pre-

dicted to be (Q1, Q2, Q3) ¼ (3, 5, 6.25). In general, the predictions are inde-

pendent of size or membership of the master system. Of course, a larger set

of predictions can be made with a larger set of master nodes.
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determining the governing equations, interactions, and
control parameters. Often, such information (for example,
reaction rates, diffusion constants) is unknown or known
only approximately, so such models can only be used to
infer qualitative features of the underlying system. We
have introduced an alternative approach to modeling that
relies not on biochemical information but microarray data.
For example, the complex role that proteins play within
the network, which is not generally understood, is not
needed for our effective model approach. Further, in the
synthetic system, we used Hill functions to couple genes,
yet the construction of the EES does not rely on this fact.
However, it is important to appreciate that the effective
network can only make a limited set of predictions about
the underlying network.

One might suspect that increasing the size of the master
system, i.e., inputting more data into the model, would in-
crease its accuracy. Consider the extreme case of including
all network genes in the master system. When this is done

for the synthetic network, there are
�
20

2

�
¼ 190 possible

DKO combinations. Four of these mutants were found to
be not viable. There are 18 active genes in each of the 186
DKO mutants, resulting in 3348 gene expression levels to
be calculated. The average error for the predictions is
0.66% and 1.98% for the amplitudes of the 0th and first
harmonics, respectively. The average phase error for the first
harmonic is 1.32�. This is very similar to what was found for
the six-member master system above, despite the inclusion
of significantly more data. This example illustrates that
enhancing the set of master nodes does not increase the
accuracy of the predictions. However, more such predictions
can be made.

This puzzling property is due to the nature of the EES
construction. Given two master systems, possibly of dif-
ferent sizes, master and slave node predictions common
to both systems will be identical. For example, the
DKO[3,11] mutant described above can be calculated with
both the 6- and 20-member master systems. The two effec-
tive models predict the 0th harmonic expression of, for
instance, G1 to be 0.85. Similar equivalence is found for
the 0th and first harmonics of the remaining genes in the
mutant. This effect will be illustrated graphically on a
three-node network with steady-state expression levels
(the mathematical treatment for master systems of dif-
ferent sizes is provided in the Supporting Material).
Consider a three-node network in which G1 is the sole
member of the master system. In this case, the EES re-
quires the WT P(0) and the SKO of G1, P(1). As in
Fig. 1, the slave system expression can be written in terms
of the master expression level (Fig. 7 a). Here, however,
the plane has been replaced by a line formed by the two
points P0 and P1. As before, by fixing the expression level
of G1 (to a value Q1), the predicted values of the slave
system are determined (Q2 and Q3). If, however, genes
G1 and G2 are chosen to form the master system, the
required points P0, P1, and P2 define a plane that approx-
imates the slave gene G3 (Fig. 7 b). To compare the pre-
dictions from the two master systems, one must limit
consideration to those common to both systems. Thus,
the plane of the larger system must be restricted to the
line defined by P0 and P1. Again, if one chooses X1 ¼
Q1, the values of the other master variable, X2, and the
slave variable will be determined (see Eqs. 2 and 3 for
the 0th and Eqs. 5 and 6 for the first harmonics). This
can be seen by considering the projections of the line on
to the X1-X2 plane and the X1-x3 plane, respectively. Fixing
X1 determines a point on each of these projections, result-
ing in X2 ¼ Q2 and x3 ¼ Q3. Thus, by predetermining X1,
Biophysical Journal 101(11) 2563–2571
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both systems predict the same values for the remaining
members of the network.

Such a feature has some important implications. First,
note that the solution surfaces of the full network are not
dependent on the choice of the master system. We have
just shown that predictions are also independent of size
and membership of the master system. Thus, the differences
between the solution surfaces and the predictions, i.e., the
prediction error, are also independent of the master system.
Therefore, the accuracy of the predictions is not sensitive to
the choice of master system. Without detailed knowledge of
the full network, determination of a suitable master system
may be difficult. The equivalence described above ensures
that the model accuracy does not suffer if the size of the
master system is underestimated. As an example, consider
a gene that strongly regulates many others and, therefore,
is a natural candidate for the master system. If a mutant is
not viable, one cannot include the gene and loses the ability
to utilize it to influence the other members of the network.
However, based on the discussion above, one can be sure
that the accuracies of the predictions generated by the
chosen master system will be the same as those if the
gene in question had been included.

It should be noted that, although the predictions common
to both systems are identical, the larger system allows for
more control over the network. For the hypothetical three-
node network above, with the larger system, one can use
both G1 and G2 to manipulate the expression of G3, with
the possible values indicated by the plane. For the smaller
system, only those values along the lines in Fig. 7 a are
available through control of G1 alone.

The adaptation of the EES methodology to periodically
driven systems extends the applicability of the technique
beyond the steady-state gene networks to include, in partic-
ular, circadian networks of peripheral tissues. Through its
many couplings to other subnetworks, such as those govern-
ing immune response and tumorigenesis, the circadian
machinery has a vast influence on an organism. The ability
to control the key clock genes may perhaps open novel
avenues for potential treatment of complex diseases. The
EES formulation has potential to provide such control while
simultaneously requiring relatively few resources. This is
evidenced by the quality of the DKO predictions. The
majority of the amplitude predictions, for both the 0th and
first harmonics, were within 1% of the actual values,
whereas the majority of the phase predictions were within
1�. This is true for both the 270 predictions using the six-
node master system as well as the 3348 for the 20-member
master system. Further, the 0th and first harmonics combine
to generate the predicted time-dependent gene expression
levels, which closely match those of the underlying
network, e.g., Fig. 4.

We hope our work motivates an experimental study on the
construction of effective networks and a validation of the
methodology outlined here.
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SUPPORTING MATERIAL

Additional information with supporting equations is available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(11)01197-0.
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