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a b s t r a c t

The investigation of the extremal case of the Burrows–Wheeler transform leads to study
the words w over an ordered alphabet A = {a1, a2, . . . , ak}, with a1 < a2 < · · · <
ak, such that bwt(w) is of the form a

nk
k a
nk−1
k−1 · · · a

n2
2 a

n1
1 , for some non-negative integers

n1, n2, . . . , nk. A characterization of these words in the case |A| = 2 has been given in
[Sabrina Mantaci, Antonio Restivo, Marinella Sciortino, Burrows-Wheeler transform and
Sturmian words, Information Processing Letters 86 (2003) 241–246], where it is proved
that they correspond to the powers of conjugates of standard words. The case |A| = 3
has been settled in [Jamie Simpson, Simon J. Puglisi, Words with simple Burrows-Wheeler
transforms, Electronic Journal of Combinatorics 15, (2008) article R83 ],which also contains
somepartial results for an arbitrary alphabet. In the present paperwe show that suchwords
can be described in terms of the notion of ‘‘palindromic richness’’, recently introduced in
[AmyGlen, Jacques Justin, SteveWidmer, Luca Q. Zamboni, Palindromic richness, European
Journal of Combinatorics 30 (2) (2009) 510–531]. Our main result indeed states that a
word w such that bwt(w) has the form ankk a

nk−1
k−1 · · · a

n2
2 a

n1
1 is strongly rich, i.e. the word

w2 contains the maximum number of different palindromic factors.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Michael Burrows and David Wheeler introduced in 1994 (cf. [3]) a reversible transformation on words that turns out to
be an extremely useful tool for textual data compression.
Compression algorithms based on the Burrows–Wheeler Transform (BWT) take advantage of the fact that the word

output of BWT shows a local similarity (occurrences of a given symbol tend to occur in clusters) and then turns out to
be highly compressible.
In order to investigate such a ‘‘clustering effect’’ of BWT it is interesting to consider the extremal casewhen all occurrences

of each letter make up a factor of the transform, i.e. the transform produces a perfect clustering. Perfect clustering
corresponds indeed to optimal performances of compression algorithms.
So we consider the set E of the words w over a totally ordered alphabet A = {a1, a2, . . . , ak}, with a1 < a2 < · · · < ak,

for which

bwt(w) = ankk a
nk−1
k−1 · · · a

n2
2 a

n1
1

for some non-negative integers n1, n2, . . . , nk.
The aim of this paper is to describe such words. A complete description of the set E in the case of a binary alphabet has

been given in [9], where it is proved that a word is in E if and only if it is a power of a conjugate of a standard word (cf. [8]).
In the case of a three letter alphabet a constructive characterization of the elements of E has been recently given by Simpson
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and Puglisi in [10]. In the same paper [10] Simpson and Puglisi approach the problem for an arbitrary alphabet and obtain
some partial results (see Theorem 4.2 and Corollary 4.3).
In the present paper we deepen the investigation of the general case and show that the elements of E are ‘‘rich’’ in

palindromes, in the sense that they contain the maximum number of different palindromic factors.
The notion of palindromic richness has been introduced very recently and it appears to play a relevant role in

combinatorics on words. In [5], Droubay, Justin and Pirillo proved that any word w of length |w| contains at most |w| + 1
distinct palindromic factors (including the empty word). Inspired by this result, Glen, Justin, Widmer and Zamboni in [6]
initiated a unified study of both finite and infinite words characterized by this palindromic richness. Accordingly, we say
that a finite word w is rich if and only if it has exactly |w| + 1 distinct palindromic factors, and an infinite word is rich if
all its factors are rich. Rich words appear in many different contexts: in particular, all episturmian words are rich (cf. [5]).
Several characterizations and nice properties of rich words are given in [6,2].
We say that a finite wordw is strongly rich if the infinite wordwω is rich. The main result of the present paper states that

all words in E are strongly rich. The proof makes use of some special properties of the Burrows–Wheeler matrixM and it is
obtained by a detailed analysis of several cases.
Note however that our result does not provide a complete characterization of the set E, since we show that there exist

words which are strongly rich and do not belong to the set E.

2. Preliminaries

Let A = {a1, a2, . . . , ak} be a finite ordered alphabet (with a1 < a2 < · · · < ak). We denote by A∗ the set of words over
A. Given a finite wordw = b1b2 · · · bn ∈ A∗ with each bi ∈ A, the length ofw, denoted |w|, is equal to n. By convention, the
empty word ε is the unique word of length 0. We denote by w̃ the reversal of w, given by w̃ = bn · · · b2b1. If w is a word
that has the property of reading the same in either direction, i.e. ifw = w̃, thenw is called a palindrome. A word has the two
palindrome property if it can be written as uv where u and v are palindromes or empty.
We say that two words x, y ∈ A∗ are conjugate, if x = uv and y = vu for some u, v ∈ A∗. Conjugacy between words is an

equivalence relation over A∗. We denote by [x] the conjugacy classes containing x. A conjugacy class can also be represented
as a circular word. Hence in what follows we will use ‘‘circular word’’ and ‘‘conjugacy class’’ as synonyms.
A word v ∈ A∗ is said to be a factor (resp. a prefix, resp. a suffix) of a word w ∈ A∗ if there exist words x, y ∈ A∗ such

that w = xvy (resp. w = vy, resp. w = xv). A factor (resp. the prefix, resp. the suffix) is proper if xy 6= ε (resp. y 6= ε, resp.
x 6= ε). If L ⊆ A∗, we denote by F(L) the set of factors of the words in L and by Fh(L) the elements of F(L) of length h. In
particular, F([u]) (resp. Fh([u])) denotes the set of factors (resp. factors of length h) of the conjugates of u.
A factor u of a word w is said to be unioccurrent in w if u has exactly one occurrence in w. Otherwise, u has at least two
distinct occurrences inw, in which case there exists a factor r ofw containing exactly two distinct occurrences of u, one as
a prefix and one as a suffix. Such a factor r is called a complete return to u inw.
A wordw ∈ A∗ is primitive ifw = uh impliesw = u and h = 1. Notice that if a word is primitive, then all of its conjugates

are primitive. A circular word, i.e. a conjugacy class, is primitive if any element of the class is primitive. Recall that (cf. [7])
every word u ∈ A∗ can be written in a unique way as a power of a primitive word, i.e. there exists a unique primitive word
w and a unique integer k such that u = wk.
If u is a word in A∗, we denote by uω the infinite word obtained by infinitely iterating u, i.e. uω = uuuuu . . . .
For all notions and results not explicitly reported here we refer to [8] and [4].

3. The Burrows–Wheeler transform

The Burrows–Wheeler transform was introduced in 1994 by Burrows and Wheeler [3] and represents an extremely
useful tool for textual lossless data compression. The idea is to apply a reversible transformation in order to produce a
permutation bwt(w) of an input sequence w, defined over an ordered alphabet A, so that the sequence becomes easier
to compress. Actually the transformation tends to group characters together so that the probability of finding a character
close to another instance of the same character is substantially increased. BWT transforms a sequence w = b1b2 · · · bn by
lexicographically sorting all the n conjugates ofw and extracting the last character of each conjugate. The sequence bwt(w)
consists of the concatenation of these characters.Wedenote byM thematrixwhich consists of all conjugatesw1, w2, . . . , wn
of w lexicographically sorted. In what follows we will refer to M as the ‘‘Burrows–Wheeler matrix’’ of w. Moreover the
transformation computes the index I , that is the row containing the original sequence in the sorted list of the conjugates.
For instance, suppose we want to compute bwt(w) where w = abraca. Consider the Burrows–Wheeler matrix M

in Fig. 1.
The last column L of thematrixM represents bwt(w) = caraab and I = 2 since the original sequencew appears in row 2.

The first column F , instead, contains the sequence of the characters ofw lexicographically sorted.
Next proposition is an easy consequence of the definition of BWT (cf. [3]).

Proposition 3.1. The following properties hold:
1. For all i = 1, . . . , n, i 6= I , the character L[i] is followed in the original string by F [i];
2. For each character α, the ith occurrence of α in F corresponds to the ith occurrence of α in L.
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Fig. 1. The matrixM of the sequencew = abraca.

From the above properties of the BWT , it follows that the transform is reversible in the sense that, given bwt(w) and the
index I , it is possible to recover the original stringw.
Actually, according to Property 2 of Proposition 3.1, we can define a permutation

τ : {1, 2, . . . , n} → {1, 2, . . . , n} (1)

giving the correspondence between the positions of characters of the first and the last column of thematrixM . For instance,
the permutation τ of the wordw in Fig. 1 is

τ =

(
1 2 3 4 5 6
2 4 5 6 1 3

)
.

Starting from the position I , we can recover the sequencew as follows:

ai = F [τ i−1(I)], where τ 0(x) = x, and τ i+1(x) = τ(τ i(x)). (2)

Notice that the reconstruction algorithm corresponds decomposing the permutation τ into a product of cycles. In our case
there is only one cycle. For instance, the permutation τ of the wordw = abraca can be decomposed in this way:

τ =

(
1 2 3 4 5 6
2 4 5 6 1 3

)
= (2 4 6 3 5 1).

The permutation τ also represents the order in which we have to rearrange the elements of F to reconstruct the original
sequencew. We show, for instance, how the reconstruction works for the example in Fig. 1:

a1 = F [2] = a
a2 = F [4] = b
a3 = F [6] = r
a4 = F [3] = a
a5 = F [5] = c
a6 = F [1] = a.

Notice that if we except the index, all the mutual conjugate words have the same Burrows–Wheeler Transform. Actually
the index has the only aim of denoting one representative in the conjugacy class. However this index is not necessary for
the construction of the matrixM from L.
Notice also that BWT is not surjective on the set A∗, that is, there exist somewords in A∗ that are not the image of anyword

by the BWT. Consider for instance the word u = bccaaab. It is easy to see that there exists no wordw such that bwt(w) = u.

4. Extremal case of BWT

In this section, we consider the set E of the words w over a totally ordered alphabet A = {a1, a2, . . . , ak}, with
a1 < a2 < · · · < ak, for which

bwt(w) = ankk a
nk−1
k−1 · · · a

n2
2 a

n1
1

for some non-negative integers n1, n2, . . . , nk.
We recall that in the case |A| = 2, the set E has been characterized in [9] where it is proved the remarkable result that

the set E coincides with the set of power of conjugates of standard words. In the case |A| = 3 a constructive characterization
of the set E has been given by Simpson and Puglisi in [10]. An approach to the general case has been proposed in the same
paper [10] and some partial results are derived (see below).
The next theorem provides a characterization of the words belonging to E in terms of the Burrows–Wheeler matrix M .

We denote by R the matrix obtained from M by a rotation of 180◦. We denote by FM , LM the first and the last column of M
and by FR, LR the first and the last column of R.
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For instance, given the wordw = abraca,M and R are the following:

M
FM LM
a a b r a c
a b r a c a
a c a a b r
b r a c a a
c a a b r a
r a c a a b

R
FR LR
b a a c a r
a r b a a c
a a c a r b
r b a a c a
a c a r b a
c a r b a a

Notice that the rows of R correspond to the conjugates of w̃.

Remark 4.1. By construction, the properties 1 and2 stated in Proposition 3.1 for thematrixM hold true also for thematrixR:

1. For all i, j = 1, . . . , n, i 6= j, the character LR[i] is followed by FR[i] in the jth row of R.
2. For each character α, the ith occurrence of α in FR corresponds to the ith occurrence of α in LR.

As a consequence, given FR and LR, one can uniquely reconstruct thematrix R by the same procedure used for reversing BWT .

Theorem 4.2. A wordw ∈ E if and only if M = R.

Proof. Let w be a word in E and let M be the corresponding Burrows–Wheeler matrix. Since bwt(w) = LM =
ankk a

nk−1
k−1 · · · a

n2
2 a

n1
1 , one has LM = F̃M . Since, by definition of R, LR = F̃M and FR = L̃M , it follows that

LR = LM and FR = FM . (3)

By Remark 4.1,M = R.
Conversely, ifM = R, it follows trivially that bwt(w) = ankk a

nk−1
k−1 · · · a

n2
2 a

n1
1 , i.e.w ∈ E. �

We mention that a result equivalent of Theorem 4.2 has been obtained, with a different proof, by Simpson and Puglisi
[10, Theorem 4.3]. They also derive the following corollary (cf. [10, Corollary 4.4]).

Corollary 4.3. Each conjugate ofw ∈ E has the two palindrome property.

Proof. From Theorem 4.2 one easily derives that for any w ∈ E, w̃ is conjugate of w. Then w = uv and w̃ = vu for some u
and v. It follows that uv = (ṽu) = ũṽ so that u and v are palindromes, andw has the two palindrome property. �

5. Rich words

Recall that (cf. [5]) any wordw of length |w| contains at most |w| + 1 distinct palindromic factors (including the empty
word). Glen et al. in [6,2] introduced and studied richwords, that constitute a new class of finite and infinite words characte-
rized by containing the maximal number of distinct palindromes. We denote by P(x) the set of distinct palindromic factors
of x (including ε).
More precisely, a finite wordw is rich if it has exactly |w| + 1 distinct palindromic factors.
We also mention an explicit description of finite and periodic infinite rich words that are established in [6] and [5] (see

also [1]).

Proposition 5.1. For any finite or infinite wordw, the following conditions are equivalent:

1. w is rich;
2. every factor u ofw contains |u| + 1 distinct palindromes;
3. every prefix (resp. suffix) ofw has a unioccurrent palindromic suffix (ups for short) (resp. prefix (upp for short));
4. for each palindromic factor p ofw, every complete return to p inw is a palindrome.

Proposition 5.2. For a finite wordw, the following properties are equivalent:

1. wω is rich;
2. w2 is rich;
3. w is a product of two palindromes and all of the conjugates ofw (including itself) are rich.

We say that a finite wordw is strongly rich if the infinite wordwω is rich.

Remark 5.3. The hypothesis that all of the conjugates of w are rich is not sufficient in order to have a strongly rich word:
abc is rich, but it is not strongly rich. The hypothesis thatw is rich and a product of two palindromes is not sufficient either:
w = ba2bab2aba2b is a rich palindrome, but the conjugatew′ = a2bab2aba2b2 is not rich.

The following propositions (cf. [2]) will be useful in what follows.

Proposition 5.4. A finite or infinite wordw is rich if and only if, for each factor v ∈ F(w), any factor ofw beginning with v and
ending with ṽ and not containing v or ṽ as an interior factor is a palindrome.
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Proposition 5.5. Supposew is a richword. Then, for any non-palindromic factor v ofw, ṽ is a unioccurrent factor of any complete
return to v inw.

Remark 5.6. The above proposition tells us that for any factor v of a rich wordw, occurrences of v and ṽ alternate inw.

Clearly, ifw has a upp, say p, then p is the unique upp and the longest palindromic prefix ofw.
The following lemmas, which are fundamental for the proof of our main result (Theorem 6.2), take into account two

words of the form bw andwa, wherew ∈ A∗ and a, b ∈ A. We suppose that bw andwa are rich and we denote by p the upp
ofwa and q the upp of bw. Remark that |p|, |q| ≤ |w| + 1.

Lemma 5.7. |q| ≤ |p| + 2.

Proof. By contradiction, assume |q| > |p| + 2, hence bp is a prefix of q, it follows that pb is a suffix of q, so p has two
occurrences inwa, which is a contradiction. �

Lemma 5.8. If |q| > 1 and |p| ≤ |q| then bwa is rich.

Proof. We have to prove that bwa has a upp. We set |wa| = |bw| = h, hence |p|, |q| ≤ h. Since |q| ≤ |p| + 2, the following
cases are allowed.
Case 1: |p| < |q| ≤ |p| + 2.
Suppose, by contradiction, that bwa is not rich, so there are two different occurrences of q in bwa; since p is a factor of q,
there are also two occurrences of p inwa, and then p is not a upp ofwa, a contradiction. So P(bwa) = P(wa)∪ {q} and bwa
is rich.
Case 2: 1 < |q| = |p|.
In this case one has that q = bz and p = zc , for some z ∈ A∗ and b, c ∈ A. Since p, q are palindromes, it follows, from the
property of the palindrome word, that z = (cb)j, with j > 0, so we can write q = b(cb)j = (bc)jb, p = c(bc)j = (cb)jc and
q = bz = z̃b.
Consider first the case b 6= c. We suppose, by contradiction, that bwa is not rich. So q is not a upp of bwa and there are

at least two occurrences of q in bwa. It follows that a = b. If the two occurrences of q overlap or are separated by one letter,
then p = w and bpb is the upp of bwb, so P(bwb) = P(wb)∪{bpb} and bwb is rich. Otherwise bwb is of the form bwb = qxq
for some word x ∈ A∗ and |x| ≥ 2:

bwb =

q︷︸︸︷
bz c · · ·︸︷︷︸

x

q︷︸︸︷
z̃b .

Since p is the only upp of wb, it follows that the final letter of x is not c , so x is not a palindrome. As wb is rich, by
Remark 5.6, the factors z and z̃ alternate in wb. Hence bwb = b zrz̃tzsz̃︸ ︷︷ ︸

w

b, where the factors z and z̃ do not appear in zrz̃

except as prefix and suffix, and t, s can contain the factors z and z̃ alternating. So, by Proposition 5.4, the factor zrz̃ is a
palindrome and is a palindromic prefix ofwa of length greater than |p| and |q|, which leads contradiction. Hence q = b(cb)j
occurs once in bwb, P(bwb) = P(wb) ∪ {b(cb)j}, so bwb is rich.
In the case b = c , since q is the longest palindromic prefix of bw, one has that |p| = |q| = h and v = bh+1. Indeed, if
|p| = |q| = j < h, then bj+1 is the longest palindromic prefix of bw, so |q| > |p|, which is a contradiction. So p = bh,
q = bh, it follows that bwb = bh+1 and thus bwb is a palindrome and the upp of itself, so P(bwb) = P(wb) ∪ {bh+1} and
bwb is rich. �

Lemma 5.9. If |p| ≥ |w| and |q| < |p| then bwa is rich.

Proof. We proceed by contradiction and suppose bwa is not rich. Thus, there is a second occurrence of q in bwa and it must
contain the final letter ofwa, which, since q is a palindrome, necessarily equals b. By setting |wa| = |bw| = h, one has that
|p|, |q| ≤ h. Since |p| ≥ |w|, then |p| = h or |p| = h− 1.
Consider first the case where |p| = h − 1. In this case, p = w, so bwb = bpb. Therefore bpb is a upp of itself, hence

P(bwb) = P(wb) ∪ {bpb} and bwb is rich. Now, we consider the case where |p| = h and divide the case in two subcases
depending on the length of q.
First we prove the case where |q| = 1. In this case, we can write q = b, so b is a upp of bw and, by hypothesis, the letter b
does not appear inw. We observe that a second occurrence of q in bwamust contain the final letter ofwa, i.e. one has a = b.
Since |p| = h then p = wb. Moreover p is a palindrome, so we can write w = bx and one has bwb = b bxb︸︷︷︸

p

, against the

hypothesis that q = b is a upp of bw. Hence q is unioccurrent in bwb and bwb is rich.
Now we prove the case where |q| > 1. We can write q = bzb, where z is a palindrome. So if q is not unioccurrent in bwb,
then it follows that bwb = b zbrbz︸ ︷︷ ︸

w

b, for some r ∈ A∗.
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Since |p| = h, one has bwb = bp. We observe that the prefix of p is zb and the suffix of p is bz. As q is not unioccurrent
in bwb, the suffix of bwb is bzb, so the suffix of bwb of length |z| + 1 is equal both to bz and zb. Then bz = zb, hence z is
a power of b: z = bj, with j ≥ 0. So bwb = bp = b bjbrbbj︸ ︷︷ ︸

p

, where r is a palindrome and the first and the last letter of r

are not b. So q = bj+2 and p = bj+1rbj+1. Since, by contradiction, we supposed that the second occurrence of q is a suffix of
bwb, then the last letter of r is b. Since r is a palindrome, the first letter of r is b and then q = bj+3 and p = bj+2rbj+2. We
repeat again the argument, until, from the property of the palindrome word, we reach that p = q = bh and this contradicts
the fact |q| < |p|. Since |q| < |p| one has that r 6= ε, the first and the last letter of r are not b, hence q occurs only once.
So q = bj+2 and p = bj+1rbj+1, but q does not appear in r , because it is a upp of bw. So P(bwb) = P(wb) ∪ {bj+2} and bwb
is rich. �

6. Main result

This section is devoted to the proof of our main result. In order to prove it, we first prove the following lemma.

Lemma 6.1. If v = bu′b is a prefix of a word w ∈ E, where bu′ and u′b are rich and b does not appear in u′, then the first and
last letters of u′ are equal.

Proof. Suppose, on the contrary, that the first and the last letters of u′ are distinct.
As u′ is rich, we can write u′ = p1p2 · · · pk, where k ≤ |u′| and every pi, for i = 1, . . . , k, is recursively defined as follows:

• p1 is the upp of u′.
• pi is the upp of suffix of u′ that is obtained by deleting p1, . . . , pi−1.

By construction, pi 6= pj for each i 6= j, with i, j = 1, . . . , k.
Since v = bp1 · · · pkb is prefix of w, that is w = vt for some word t , then, by Theorem 4.2, in [w], there exist the

conjugates of the form p1 · · · pk︸ ︷︷ ︸
u′

btb and bt̃b pk · · · p1︸ ︷︷ ︸
ũ′

. Since the first and the last letters of u′ are distinct, we suppose, without

loss of generality, that pk · · · p1bt̃b is lexicographically less than p1 · · · pkbtb, hence the last letter of u′ is less than the first
letter of u′. So the two conjugates ofw appear in the following order in the Burrows–Wheeler matrixM ofw:

F L
pk · · · p1bt̃b
...

...
p1 · · · pkbtb

Now we prove, by induction, that each conjugate that begins with pi, for i ≥ 3 odd, is greater than the conjugate
p1 · · · pkbtb. We first prove the statement for i = 3. Since the b’s in the last column of M are consecutive and p2 does
not contain b, inM we have:

F L
pk · · · p1bt̃b
...

...
p1 · · · pkbtb
...

...

p1bt̃bpk · · · p2

Since the letters of w of last column of M are non-increasing, also the other conjugates which end with p2 must be
greater than the conjugate which ends with b. Hence p3 · · · pkbtbp1p2 > p1 · · · pkbtb. The same argument shows that
p3 · · · p1bt̃bpk · · · p4 > p1 · · · pkbtb.
Now suppose the statement is true for all integers up to 2i− 1, i.e. each conjugate that begins with p2i−1 is greater than

the conjugate p1 · · · pkbtb and we prove that the conjugate that begins with p2i+1 is greater than the conjugate p1 · · · pkbtb.
Hence the conjugates inM are ordered so:

F L
p1 · · · p2i−1p2i · · · pkbtb
...

...

p2i−1 · · · p1bt̃bpk · · · p2i
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Since p2i does not contain b, we have that the last letter of p2i is greater than b, so the conjugate p2i+1 · · · pkbtbp1 · · · p2i
is greater than the conjugate p1 · · · pkbtb. Hence inM we have the following order:

F L
p1 · · · p2ip2i+1 · · · pkbtb
...

...
p2i+1 · · · pkbtbp1 · · · p2i

We proved that the last letter of each pi, where i is even, is less than b. Hence if k is odd, the last letter of pk−1 is greater
than b, so inM we have:

F L
pk · · · p1bt̃b
...

...
p1 · · · pkbtb
...

...
pkbtbp1 · · · pk−1

Since the first letter of pk is less and greater than the first letter of p1, it follows that they are equal, a contradiction.
If k is even then by similar arguments we can prove that the last letter of each pi, with i odd, is greater than b. Hence, it

follows that the last letter of each pi, with i even, is less than b and the last letter of each pi, with i odd, is greater than b. So
the situation in the matrixM is the following:

F L
bt̃bpk · · · p1
...

...

pk · · · p1bt̃b
...

...
p1 · · · pkbtb
...

...
btbp1 · · · pk

This is a contradiction, because the b’s in the first column of M are not consecutive. So u′ begins and ends with the same
letter. This concludes the proof of the lemma. �

Theorem 6.2. If the wordw belongs to E thenw is strongly rich.

Proof. By Corollary 4.3 each w ∈ E has the two palindrome property. Hence, by Proposition 5.2 it suffices to prove that all
the conjugates of w ∈ E (including itself) are rich. So we prove, by induction on h (1 ≤ h ≤ n), that each factor of length h
of words in [w], or equivalently each prefix of length h of a conjugate ofw is rich.
The result is clearly true if h ≤ 3, in fact it is easy to verify that all words of length 3 or less are rich.
Now suppose the statement is true for all factors of length less than or equal to h, i.e. each factor u ∈ Fh([w]) is rich and

we prove that each factor v ∈ Fh+1([w]) is rich.
If v ∈ Fh+1([w]) then v is of the form v = bu, with b ∈ A and u ∈ Fh([w]). If a is the last letter of u, we can write

v = bu = bu′a, with a ∈ A and u′ ∈ Fh−1([w]). Set v′ = bu′. Clearly v′ ∈ Fh([w]). The situation is depicted in the figure
below.

v′︷ ︸︸ ︷
v = b u′ a︸ ︷︷ ︸

u

By the induction hypothesis u ∈ Fh([w]) is rich, so u has a unioccurrent palindromic prefix (upp) p. Clearly |p| ≤ h.
By using again the induction hypothesis v′ ∈ Fh([w]) is rich, so v′ has a upp q. Clearly |q| ≤ h.
By Lemma 5.7, we have that |q| ≤ |p| + 2. We have to prove that v is rich. The proof can be divided in several cases

depending on the relative lengths of p and q. We observe that if |q| > 1 and |p| ≤ |q| ≤ |p| + 2, then from Lemma 5.8, v
is rich. Moreover if |q| < |p| and h− 1 ≤ |p| ≤ h, then from Lemma 5.9, v is rich. Therefore it suffices to consider the case
where |q| < |p| < h− 1 and |q| > 1 (case 1) and the case where |q| ≤ |p| and |q| = 1 (case 2).
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Suppose, on the contrary, v is not rich. Then v contains two occurrences of q and, in particular, q appears as suffix of v. So
v = bu′b and u′ is not a palindrome (otherwise v is a palindrome too and the upp of itself). We will show that the condition
that u′ is not a palindrome leads to a contradiction.
Let u′ = γ1 · · · γi0 · · · γh−i0 · · · γh−1. Since u

′ is not a palindrome, there exists the smallest integer i0 such that γi0 6= γh−i0 .
We set

z = γ1 · · · γi0−1 and z̃ = γh−i0+1 · · · γh−1.

So we have that v = bu′b = bzγi0 · · · γh−i0 z̃b, where γi0 6= γh−i0 .
Now, we examine the two cases and prove that in both cases z 6= ε.
Case 1. If 1 < |q| < |p| < h− 1 then we can write q = bz ′b where z ′ is a palindrome. As bz ′b is prefix and suffix of v, it

follows that z ′b is a prefix of u′ and bz ′ is a suffix of u′. In this case, z 6= ε, in fact q = bz ′b, with z ′ palindrome, so one has
v = b z ′b · · · bz ′︸ ︷︷ ︸

u′

b and hence z ′b is a prefix of z.

Case 2. If 1 = |q| ≤ |p| < h− 1, then we can write q = b. In this case, z could be an empty word. From Lemma 6.1 such
a case cannot occur, so z 6= ε.
In both cases one has that z 6= ε. Since u′ is rich, if z occurs only as a prefix and z̃ occurs only as a suffix of u′, according

to Property 4 of Proposition 5.1 (if z is a palindrome) or to Proposition 5.4 (if z is not a palindrome), it follows that between
z and z̃ there is a palindrome factor. Hence u′ is a palindrome, which contradicts the condition γi0 6= γh−i0 .
Thus the factors z and z̃ occur several times in the word v. By Proposition 5.4 and Remark 5.6 we can write u′ =

zp1z̃p2z · · · z̃y2zy1z̃, where every (pi)i≥1 (resp. (yi)i≥1), is the sequence of palindromic factors between z and z̃ constructed
from left to right (resp. from right to left).
We denote by αi the first and last letter of pi and by βi the first and last letter of yi. By hypothesis α1 6= β1. Since q does

not appear in u′, if |q| = 1 then αi, βi 6= b, for any i. If |q| > 1 then bz ′ is a suffix of z̃ and so α2i, β2i 6= b, for any i. We will
prove that αi 6= βi for any i.
As α1 6= β1, we can suppose, without loss of generality, that α1 < β1. Since this inequality is often used in the sequel of

the proof we refer to it as the Property P1.
Since, by Theorem 4.2, [w] and its factors are closed under reverse, then, for any factor v of [w], there exists in [w] also

the factor ṽ.
Recall that v = bzp1z̃ · · · zp2i−1z̃p2izp2i+1 · · · y2i+1z̃y2izy2i−1z̃ · · · zy1z̃b is a prefix of w, that is w = vt , for some word t ,

so there exist the two conjugates

w′ = zp1z̃ · · · zp2i−1z̃p2izp2i+1 · · · y2i+1z̃y2izy2i−1z̃ · · · zy1z̃btb

and

w′′ = zy1z̃ · · · zy2i−1z̃y2izy2i+1 · · · p2i+1z̃p2izp2i−1z̃ · · · zp1z̃bt̃b.

We now show the following properties (P2 and P3) concerning the pairs of letters (αi, βi):
P2: For all i, if α2i−1 ≤ α1 < β1 ≤ β2i−1 then α2i > b > β2i.
As the last column in the Burrows–WheelermatrixM ofw is anti-lexicographically ordered, if follows that the conjugates

of w that end with b are consecutive rows in M . Moreover, as the conjugate that begins with zα2i−1 (resp. zβ2i−1) is less
(greater) than or equal to the conjugatew′ (resp.w′′), inM the conjugates appear in the following order:

F L
zp2i−1z̃ · · · zp1z̃bt̃bzy1z̃ · · · zy2i−1z̃y2i · · · · · · p2i
...

...
zp1z̃ · · · zp2i−1z̃p2i · · · · · · y2izy2i−1z̃ · · · zy1z̃btb
...

...

zy1z̃ · · · zy2i−1z̃y2i · · · · · · p2izp2i−1z̃ · · · zp1z̃bt̃b
...

...
zy2i−1z̃ · · · zy1z̃btbzp1z̃ · · · zp2i−1z̃p2i · · · · · · y2i

Hence α2i > b > β2i.
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P3: For all i, if α2i > b > β2i then α2i+1 ≤ α1 < β1 ≤ β2i+1.
Since α2i (resp. β2i) is greater (resp. less) than b then the other conjugates that end with α2i (resp. β2i) are less than w′

(resp. greater than w′′), hence the conjugate that begins with zp2i+1 (resp. zy2i+1) and ends with p2i (resp. y2i) is less (resp.
greater) than the conjugatew′ (resp.w′′). So inM the conjugates appear in the following order:

F L
zp2i+1 · · · · · · y2i+1z̃y2iz · · · zy1z̃btbzp1z̃ · · · z̃p2i
...

...
zp1z̃ · · · z̃p2izp2i+1 · · · · · · y2i+1z̃y2iz · · · zy1z̃btb
...

...

zy1z̃ · · · z̃y2izy2i+1 · · · · · · p2i+1z̃p2iz · · · zp1z̃bt̃b
...

...

zy2i+1 · · · · · · p2i+1z̃p2iz · · · zp1z̃bt̃bzy1z̃ · · · z̃y2i
...

...

Hence α2i+1 ≤ α1 < β1 ≤ β2i+1.
Now we prove, by induction, that for all integers j one has:

α2j−1 ≤ α1 < β1 ≤ β2j−1 and α2j > b > β2j.

From the Property P1, the result is clearly true for j = 1. From the Property P2, since α1 < β1, it follows that α2 > b > β2.
Now suppose the statement is true for all integers up to 2j − 1. From the Property P2, it follows that α2j > b > β2j and

from the Property P3, it follows that if α2j > b > β2j then α2j+1 ≤ α1 < β1 ≤ β2j+1.
We can then conclude that, for all integers j, αj 6= βj. Denote by k the number of occurrences of z in u′ (which coincides

with the number of occurrences of z̃). By the definition of the sequences of words pi and yi, one has pk = yk. It follows that
αk = βk, a contradiction.
So, assuming that u′ is not a palindrome, we have obtained a contradiction. We conclude that u′ is a palindrome and then

v = bu′b is rich.
This concludes the proof of the theorem. �

Example 6.3. The wordw = cacbcac is in E, in fact bwt(w) = ccccbaa, and one can easily verify thatw is strongly rich.

The following example shows that the converse of Theorem 6.2 is false.

Example 6.4. The wordw = ccaaccb is strongly rich, but bwt(w) = cacccba, hencew /∈ E.
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