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Abstract

We consider finite buffer single server GI/M/1 queue with exhaustive service discipline and multiple working vacations.
Service times during a service period, service times during a vacation period and vacation times are exponentially distrib-
uted random variables. System size distributions at pre-arrival and arbitrary epoch with some important performance mea-
sures such as, probability of blocking, mean waiting time in the system etc. have been obtained. The model has potential
application in the area of communication network, computer systems etc. where a single channel is allotted for more than
one source.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Usefulness of vacation models in queueing theory have been well established as they are considered to be an
effective instrument in modelling and analysis of communication networks, manufacturing and production
systems in which single server is entitled to serve more than one queue. During the last two decades, queueing
systems with vacations have been studied extensively. For more detail on this topic readers are referred to the
survey paper by Doshi [1]. An extensive amount of literature is available on infinite- and finite-buffer M/G/1
type vacation models and can be found in Takagi [2,3]. However, a limited studies have been done on GI/M/1
type vacation models, e.g., Chatterjee and Mukherjee [4], Tian et al. [5], Tian [6,7] etc., whereas in [4] they have
considered vacation time as generally distributed, in [5,7], vacation time is exponentially distributed. In [6]
vacation time follows phase type distribution.
0307-904X/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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In the study of vacation model generally it is assumed that server stops service during vacation period.
However, there are numerous situations where the server will not completely remain inactive during the vaca-
tion period rather he will render service to the queue with a different rate. When a vacation ends and if there
are customers in the queue, a service period begins and server serves the queue with his original service rate.
Otherwise, on return from a vacation if there are no customers in the queue, the server goes for another vaca-
tion and continues to do so till on return from a vacation he finds at least one customer. Such type of vacation
is called multiple working vacation and was introduced by Servi and Finn [8] whereby they studied M/M/1
queue assuming service times during service period, the service times during working vacation, and vacation
times all are exponentially distributed with different rates. The model is denoted by M/M/1/WV. Later Wu
and Takagi [9] investigated M/G/1/WV model where the service times during service period, the service times
during working vacation, and also vacation durations are generally distributed. Baba [10] considered similar
model but assumed general independent arrival, i.e., GI/M/1/WV queue where he assumed service times dur-
ing service period, service times during the vacation period and vacation times are exponentially distributed. It
may be remarked here that all the aforementioned studies assume availability of infinite buffer space in front of
the server. However, finite buffer queues are more common in several practical applications. In such queues
one of the main concerns of system designer is to provide sufficient buffer space so that the probability of cus-
tomers rejection is small. Moreover, the analysis of finite buffer queue gives very different system behaviour
than infinite buffer queue. In this direction Karaesmen and Gupta [11] studied finite buffer GI/M/1 queue with
multiple vacations where they considered service and vacation times follow exponential distribution. They
have also derived some results on bounds and approximation of blocking probability for some special cases
of the model.

This paper analyzes GI/M/1/N queue with multiple working vacation policy. The model was previously
analyzed by Baba [10] for infinite buffer queue considering multiple working vacation policy. For the sake
of notational convenience the model is denoted by GI/M/1/N/MWV, where MWV stands for ‘multiple work-
ing vacation policy’. One final comment on the model is that by equating working vacation parameter (g)
equal to zero one can get the results for GI/M/1/N queue with multiple vacations.

The paper organizes as follows. In Section 2, we provide the model description and notations. Section 3
presents the analytic analysis of the model. Section 4 illustrates the numerical results where we provide a vari-
ety of tables for different values of the model parameters and also we have numerically verified our results in
some special cases that exists in the literature. Some graphs are presented showing the effect of model param-
eters on some performance measures.

2. Description of the model

Let us consider a GI/M/1/N queue where N is the capacity of the system including the one who is in service.
The server is allowed to take working vacations whenever the system has been emptied. On return from a
working vacation if the server finds the system nonempty he will serve the customers present in the queue,
otherwise the server again goes for a working vacation and continues in this manner. During any working
vacation the server will serve customers at a rate which is different from the rate of service during the service
period.

Inter-arrival times are i.i.d.r.vs. Let A(x){a(x)}[A*(h)] be the distribution function (DF) {probability density
function (pdf)}[Laplace–Stieltjes transform (LST)] of the inter-arrival time A of customers. The mean
inter-arrival time is E(A) = �A*(1)(0) = 1/k (say), where k is the mean arrival rate and f*(j)(f) is the jth
(j P 1) derivative of f*(h) at h = f. Service times during service period, service times during a working vaca-
tion, and working vacation times all are assumed to be exponentially distributed with rate l, g, and c, respec-
tively and they are independent of the arrival process. The traffic intensity is given by q = k/l. The state of the
system at time t is described by the following r.vs., namely

• n(t) = {1}(0) if the server is {on service period}(on working vacation),
• Ns(t) = number of customers present in the system including the one who is in service,
• ~AðtÞ = remaining inter-arrival time of the customer who is going to enter into the system.
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We define the joint probability densities of system length Ns(t), state of the server n(t) and the remaining
inter-arrival time ~A, respectively, by
pn;1ðx; tÞDx ¼ PfN sðtÞ ¼ n; nðtÞ ¼ 1; x < ~AðtÞ < xþ Dxg; 1 6 n 6 N ; x P 0;

pn;0ðx; tÞDx ¼ PfN sðtÞ ¼ n; nðtÞ ¼ 0; x < ~AðtÞ < xþ Dxg; 0 6 n 6 N ; x P 0:
As we shall discuss the model in steady-state, i.e., when t!1, the above probabilities will be denoted by
pn,1(x) and pn,0(x), respectively.
3. Analysis of the model

In this section we will carry out the analytic analysis of GI/M/1/N queue with multiple working vacation
policy.

3.1. Steady-state distribution at pre-arrival epoch

Consider the system just before an arrival which are taken as embedded points. Let t0, t1, t2,. . . be the time
epochs at which successive arrivals occur and t�n denote the time epochs just before the arrival instant tn. The
inter-arrival times Tn+1 = tn+1 � tn, n = 0,1,2,. . . are i.i.d.r.vs. with common distribution function A(x). The
state of the system at t�i is defined as fN sðt�i Þ; nðt�i Þg, where N sðt�i Þ is the number of customers in the system
and nðt�i Þ indicates whether the service period ðnðt�i Þ ¼ 1Þ is going on, or the server is on working vacation
ðnðt�i Þ ¼ 0Þ. fN sðt�i Þ; nðt�i Þg forms a bivariate Markov chain whose finite state space is equivalent to:
{(0, 0), ((1, 0), (1, 1)), . . . , ((N, 0), (N, 1))}. In limiting case let us assume
p�n;1 ¼ lim
i!1

P ðN sðt�i Þ ¼ n; nðt�i Þ ¼ 1Þ; 1 6 n 6 N ;

p�n;0 ¼ lim
i!1

P ðN sðt�i Þ ¼ n; nðt�i Þ ¼ 0Þ; 0 6 n 6 N ;
where p�n;1ðp�n;0Þ represents the probability that there are n customers in the system just prior to an arrival epoch
of a customer when the server is in the service period (on working vacation).

Let ak and bk(k P 0) are the conditional probability that k customers have been served during an inter-
arrival time when service period is going on, and working vacation continues, respectively. Similarly, ck be
the conditional probability that k customers have been served during an inter-arrival time given that working
vacation terminates and service period is going on. Hence, for all k P 0, we have
ak ¼
Z 1

0

ðltÞk

k!
e�lt dAðtÞ; bk ¼

Z 1

0

e�ct ðgtÞk

k!
e�gt dAðtÞ;
and
ck ¼
Z 1

0

Xk

j¼0

Z t

0

ce�cx ðgxÞj

j!
e�gx � ½lðt � xÞ�k�j

ðk � jÞ! e�lðt�xÞ dx

( )
dAðtÞ:
The p.g.f. of ak, bk and ck are given by
�AðzÞ ¼
X1
i¼0

aizi ¼ A�ðl� lzÞ; �BðzÞ ¼
X1
i¼0

bizi ¼ A�ðcþ g� gzÞ;
and
CðzÞ ¼
X1
i¼0

cizi ¼ cfA�ðl� lzÞ � A�ðcþ g� gzÞg
c� ðl� gÞð1� zÞ :



1704 A.D. Banik et al. / Applied Mathematical Modelling 31 (2007) 1701–1710
Observing the state of the system at two consecutive embedded points, we have the one step transition
probability matrix (TPM) P as follows:
P ¼

B0;0 A0;1 0 0 0 � � � 0

B1;0 A1 A0 0 0 � � � 0

B2;0 A2 B1 A0 0 � � � 0

B3;0 A3 A2 A1 A0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

BN�1;0 AN�1 AN�2 AN�3 AN�4 � � � A0

BN�1;0 AN�1 AN�2 AN�3 AN�4 � � � A0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
ð2Nþ1Þ�ð2Nþ1Þ

;

where
B0;0 ¼ 1� b0 � c0; A0;1 ¼ ðb0; c0Þ;

Ak ¼
bk ck

0 ak

� �
; 0 6 k 6 N � 1;

Bk;0 ¼
1�

Pk
i¼0

ðbi þ ciÞ

1�
Pk
i¼0

ai

0
BBB@

1
CCCA; 1 6 k 6 N � 1:
The pre-arrival epoch probabilities p�n;0ð0 6 n 6 NÞ and p�n;1ð1 6 n 6 NÞ can be obtained by solving the system
of equations: p� ¼ p�P, where p� ¼ ðp�0;0; p�1;0; p�1;1; p�2;0; p�2;1; . . . ; p�N ;0; p

�
N ;1Þ. We have used GTH (Grassmann,

Taksar and Heyman) algorithm given in Latouche and Ramaswami [12, p. 123] for solving the system of equa-
tions as it works very well even for large number of states.

3.2. Steady-state distribution at arbitrary epoch

To obtain the system length distribution at arbitrary epoch we develop relations between distributions of
number of customers in the system at pre-arrival and arbitrary epochs. For this we use supplementary variable
method and relate the state of the system at two consecutive time epochs t and t + Dt. Using probabilistic argu-
ments, we get a set of partial differential equations. Taking limit as t!1, those equations can be written as
� d

dx
p1;1ðxÞ ¼ �lp1;1ðxÞ þ lp2;1ðxÞ þ cp1;0ðxÞ; ð1Þ

� d

dx
pn;1ðxÞ ¼ �lpn;1ðxÞ þ lpnþ1;1ðxÞ þ pn�1;1ð0ÞaðxÞ þ cpn;0ðxÞ; 2 6 n 6 N � 1; ð2Þ

� d

dx
pN ;1ðxÞ ¼ �lpN ;1ðxÞ þ ðpN�1;1ð0Þ þ pN ;1ð0ÞÞaðxÞ þ cpN ;0ðxÞ; ð3Þ

� d

dx
p0;0ðxÞ ¼ lp1;1ðxÞ þ gp1;0ðxÞ; ð4Þ

� d

dx
pn;0ðxÞ ¼ �ðcþ gÞpn;0ðxÞ þ pn�1;0ð0ÞaðxÞ þ gpnþ1;0ðxÞ; 1 6 n 6 N � 1; ð5Þ

� d

dx
pN ;0ðxÞ ¼ �ðcþ gÞpN ;0ðxÞ þ ðpN�1;0ð0Þ þ pN ;0ð0ÞÞaðxÞ; ð6Þ
where pn,1(0) and pn,0(0) are the respective probabilities with remaining inter-arrival time is zero, i.e., an arrival
is about to occur. Let us define the Laplace transform of pn,1(x) and pn,0(x) as
p�n;1ðhÞ ¼
Z 1

0

e�hxpn;1ðxÞdx; p�n;0ðhÞ ¼
Z 1

0

e�hxpn;0ðxÞdx; Reh P 0:
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So that Z Z

pn;1 � p�n;1ð0Þ ¼

1

0

pn;1ðxÞdx; pn;0 � p�n;0ð0Þ ¼
1

0

pn;0ðxÞdx; ð7Þ
where pn,1 is the joint probability that there are n customers in the system while service period is going on.
Similarly, pn,0 is the joint probability that there are n customers in the system and the server is on working
vacation. Multiplying Eqs. (1)–(6) by e�hx and integrating w.r.t. x over 0–1, we obtain
ðl� hÞp�1;1ðhÞ ¼ lp�2;1ðhÞ þ cp�1;0ðhÞ � p1;1ð0Þ; ð8Þ
ðl� hÞp�n;1ðhÞ ¼ lp�nþ1;1ðhÞ þ pn�1;1ð0ÞA�ðhÞ þ cp�n;0ðhÞ � pn;1ð0Þ; 2 6 n 6 N � 1; ð9Þ
ðl� hÞp�N ;1ðhÞ ¼ ðpN�1;1ð0Þ þ pN ;1ð0ÞÞA�ðhÞ þ cp�N ;0ðhÞ � pN ;1ð0Þ; ð10Þ
� hp�0;0ðhÞ ¼ lp�1;1ðhÞ þ gp�1;0ðhÞ � p0;0ð0Þ; ð11Þ
ðcþ g� hÞp�n;0ðhÞ ¼ gp�nþ1;0ðhÞ þ pn�1;0ð0ÞA�ðhÞ � pn;0ð0Þ; 1 6 n 6 N � 1; ð12Þ
ðcþ g� hÞp�N ;0ðhÞ ¼ ðpN�1;0ð0Þ þ pN ;0ð0ÞÞA�ðhÞ � pN ;0ð0Þ; ð13Þ
One important result listed below in the form of a lemma using Eqs. (8)–(13).

Lemma 1
XN

n¼1

pn;1ð0Þ þ
XN

n¼0

pn;0ð0Þ ¼ k: ð14Þ
The left hand side denote mean number of entrances into the system per unit time and is obviously equal to the

mean arrival rate k.

Proof. Adding (8)–(13),
XN

n¼1

p�n;1ðhÞ þ
XN

n¼0

p�n;0ðhÞ ¼
1� A�ðhÞ

h

XN

n¼1

pn;1ð0Þ þ
XN

n¼0

pn;0ð0Þ
 !

: ð15Þ
Taking limit h! 0 we obtain the desired result. h
3.2.1. Relation between steady-state distribution at arbitrary and pre-arrival epochs
The relation between pre-arrival epoch probabilities p�n;1ðp�n;0Þ and pn,1(0)(pn,0(0)) are given by
p�n;1 ¼
1

k
pn;1ð0Þ; 1 6 n 6 N ; ð16Þ
and
p�n;0 ¼
1

k
pn;0ð0Þ; 0 6 n 6 N ; ð17Þ
where k is given in Lemma 1. Now we are in a position to express arbitrary epoch probabilities in terms of pre-
arrival epoch probabilities. Setting h = 0 in the Eqs. (8)–(13) and using (16) and (17), we obtain after
simplification
pN ;0 ¼
k

cþ g
p�N�1;0; ð18Þ

pn;0 ¼
k

cþ g
ðp�n�1;0 � p�n;0Þ þ

g
cþ g

pnþ1;0; n ¼ N � 1;N � 2; . . . ; 1; ð19Þ

pN ;1 ¼
k
l

p�N�1;1 þ
c
l

pN ;0; ð20Þ

pn;1 ¼ pnþ1;1 þ
k
l
ðp�n�1;1 � p�n;1Þ þ

c
l

pn;0; n ¼ N � 1;N � 2; . . . ; 2; ð21Þ

p1;1 ¼ p2;1 �
k
l

p�1;1 þ
c
l

p1;0; ð22Þ
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It may be noted here that we do not have explicit expressions for p0,0. However, it can be computed by using
the normalization condition, that is, p0;0 ¼ 1�

PN
n¼1ðpn;0 þ pn;1Þ.
3.3. Performance measures

As the steady-state probabilities at various epochs are known, performance measures of the queue can eas-
ily be obtained and are given as: the average number of customers in the system ðLÞ ¼

PN
i¼1iðpi;1 þ pi;0Þ, the

average number of customers in the system when the server is in the service period ðL1Þ ¼
PN

i¼1ipi;1, the aver-

age number of customers in the system when the server is on working vacation ðL2Þ ¼
PN

i¼0ipi;0. The proba-
bility of loss or blocking ðP lossÞ ¼ p�N ;0 þ p�N ;1. Finally, mean waiting time in the system (w) = L/k 0, where
k 0 = k(1 � Ploss) is the effective arrival rate.
3.3.1. Waiting time analysis

In this section we obtain the LST of waiting time distribution of a customer who is accepted in the system.
If W(x) be the actual waiting time distribution (in the system) of a customer who is accepted in the system and
let W*(h) be its LST then considering various possible cases, we have
W �ðhÞ ¼ 1

1� P loss

p�0;0
cl

ðhþ lÞðhþ cþ gÞ þ
g

hþ cþ g
þ
XN�1

n¼1

p�n;1
l

hþ l

� �nþ1
 !(

þ
XN�1

n¼1

p�n;0
Xn

k¼0

g
hþ cþ g

� �k c
hþ cþ g

� �
l

hþ l

� �nþ1�k

þ
XN�1

n¼1

p�n;0
g

hþ cþ g

� �nþ1
)
:

From this expression one can easily obtain mean waiting time in the system which is given by
w ¼ �W �ð1Þð0Þ ¼ 1

1� P loss

p�0;0
cþ l

lðcþ gÞ

� �
þ
XN�1

n¼1

p�n;1
nþ 1

l

� �(

þ
XN�1

n¼1

p�n;0
Xn

k¼0

kgkc

ðcþ gÞkþ2
þ gkc

ðcþ gÞkþ2
þ gkcðnþ 1� kÞ
ðcþ gÞkþ1l

 !
þ
XN�1

n¼1

p�n;0
ðnþ 1Þgnþ1

ðcþ gÞnþ2

)
:

4. Numerical result and discussion

To demonstrate the applicability of the results obtained in previous sections, a variety of numerical
results have been presented in self explanatory tables (Tables 1–3) and graphs. In the bottom of the tables
various performance measures are given. To compare our results with those of Baba [10], we have used the
formulae given in [10] to evaluate pre-arrival and arbitrary epoch probabilities of E2/M/1 queue. Using our
method we obtained the results for E2/M/1/25 queue with mean inter-arrival time equal to 1.6667, and the
service time during service period, vacation time and service time during vacation period follow exponential
distribution with respective rates equal to 1.5, 0.5 and 0.8. Since offered load (q = 0.4) < 1 and buffer space
(=25) is high, our model behaves as an infinite buffer queue. It is found that the pre-arrival and arbitrary
epoch probabilities of E2/M/1/25 queue match exactly with those of E2/M/1 queue. Moreover, in our
numerical computation, mean waiting time obtained through transform exactly matches with the one
obtained from Little’s rule. Further, we have also compared our result with Karaesmen and Gupta [11]
for non-working vacation models (g = 0) and found that our Ploss matches (see Table 3) exactly with the
one obtained by them.

In Table 3 we provide the results for HE2/M/1/10 queue with multiple vacations by setting the working
vacation parameter (g = 0.0) equal to zero. Other parameters are same as those given in Table 2.



Table 1
Distribution of number of customers in the system at various epochs for E2/M/1/10/MWV queue with parameters: k = 1.0, l = 1.2,
c = 0.6 and g = 1.4

n p�n;0 p�n;1 pn,0 pn,1

0 0.318654 – 0.171164 –
1 0.075534 0.126057 0.145743 0.095512
2 0.017905 0.122310 0.034547 0.127687
3 0.004244 0.096766 0.008189 0.107292
4 0.001006 0.072632 0.001941 0.081910
5 0.000238 0.053653 0.000460 0.060828
6 0.000057 0.039427 0.000109 0.044783
7 0.000013 0.028878 0.000026 0.032872
8 0.000003 0.020918 0.000006 0.024069
9 0.000001 0.014300 0.000001 0.017432
10 0.000000 0.007403 0.000000 0.011917

Sum 0.417656 0.582344 0.395697 0.604303

L1 = 2.271963, L2 = 0.250372, L = 2.522335, Ploss = 0.007403.
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It is to be noted here that the blocking probability in this case exactly match with the respective blocking
probability obtained in [11, p. 822, Table 1].

In Fig. 1, we have plotted loss probability against system capacity. Three types of inter-arrival time distri-
butions are assumed viz. (i) deterministic, (ii) E2, and (iii) HE2. They all have equal mean (=1/k) where
k = 1.25. Other parameters are taken as l = 2.0, c = 1.0, g = 0.6. For case (ii), we have considered two coef-
ficient of variation (CV = 0.71, 0.95). Similarly, for case (iii) we have considered three CVs (=1.29, 1.71, 3.09).

From Fig. 1 it can be seen that for any inter-arrival time as system capacity increases, Ploss asymptotically
approaches to zero except for case (iii) with a very high CV(=3.09). This study reveals that not only the service
process and duration of vacation time play major role in the performance of queueing system but also the
arrival process plays very important role. Implying that the proper determination of the arrival process is very
much necessary for the allocation of buffer space. Similarly, in Fig. 1(a), we have conducted the same exper-
iment as we did in Fig. 1 except that here we have considered a very high arrival rate (k = 2.17391) so that
traffic intensity will be very high (q = k/l = 1.08696 > 1). All other parameters remain the same as we have
taken for Fig. 1. From this figure it can be seen that as buffer size increases loss probability reduces very little
and asymptotically converges to its minimum value. After certain level though system size (N = 10) increases
but the rejection rate remains almost unchanged.
Table 2
Distribution of number of customers in the system at various epochs for HE2/M/1/10/MWV queue with parameters: r1 = 0.149883,
r2 = 0.850117, k1 = 0.419671, k2 = 2.38033, k = 1.4 (CV = 1.71), l = 1.0, c = 0.25 and g = 0.5

n p�n;0 p�n;1 pn,0 pn,1

0 0.016294 – 0.042370 –
1 0.013496 0.008643 0.011667 0.016979
2 0.011180 0.017356 0.009666 0.026163
3 0.009262 0.026455 0.008012 0.035944
4 0.007678 0.036355 0.006649 0.046681
5 0.006375 0.047722 0.005538 0.058877
6 0.005319 0.061886 0.004658 0.073407
7 0.004517 0.081888 0.004031 0.092072
8 0.004121 0.115224 0.003800 0.119066
9 0.004984 0.181008 0.004591 0.164788
10 0.011642 0.328593 0.009304 0.255738

Sum 0.094869 0.905131 0.110286 0.889714

L1 = 6.736186, L2 = 0.330244, L = 7.066430, Ploss = 0.340234.



Table 3
Distribution of number of customers in the system at various epochs for HE2/M/1/10 queue with multiple vacations

n p�n;0 p�n;1 pn,0 pn,1

0 0.011626 – 0.034355 –
1 0.010036 0.008040 0.008903 0.016276
2 0.008664 0.016428 0.007686 0.025306
3 0.007479 0.025428 0.006635 0.035128
4 0.006456 0.035416 0.005727 0.046070
5 0.005573 0.047041 0.004944 0.058621
6 0.004811 0.061637 0.004268 0.073659
7 0.004153 0.082312 0.003684 0.093028
8 0.003585 0.116766 0.003181 0.121052
9 0.003095 0.184697 0.002746 0.168491
10 0.019536 0.337221 0.017331 0.262908

Sum 0.085014 0.914986 0.099460 0.900540

L1 = 6.856726, L2 = 0.366677, L = 7.223403, Ploss = 0.356757.
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In Fig. 2 and 2(a), we examine the behaviour of working vacation model compared to non-working vaca-
tion model in an E2/M/1/N queue with buffer space (N) varying from 2 to 20. For this we have chosen the
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following parameters: k = 1.00, l = 1.2, c = 0.6 and g = 1.4 (g = 0.0 for non-working vacation model). Fig. 2
shows the effect of buffer space on mean system length and it is observed that mean system lengths are higher
for working vacation models. Moreover, there is very little influence of buffer size on mean system lengths
when server is on vacation. Also for vacation and working vacation models they are almost same. After cer-
tain level (say, N = 14) the mean system lengths are parallel to x-axis, i.e., they asymptotically approach to
their maximum value. Fig. 2(a) plots the effect of buffer space on mean waiting time in the system. Quite nat-
urally we observe opposite behaviour than Fig. 2, i.e., here mean waiting time is less for working vacation
model in comparison of non-working vacation.

In Fig. 3 and 3(a), we have plotted mean system lengths and probability of blocking against the service rate
during working vacation, respectively. For this we have taken E2/M/1/7 queue with parameters: k = 1.00,
l = 1.2, c = 0.6 and g varies from 0 to 4.0. Fig. 3 shows that as g increases, mean system lengths asymptot-
ically approaches to their minimum value. Moreover, g has very little influence on L2, mean system length
when server is on vacation. It can be seen from Fig. 3(a) that initially Ploss linearly decreases as g increases
up to 1.3, afterwards it asymptotically approaches to its minimum value. So the blocking of customers is very
much affected by the rate of service during a working vacation.
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