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1. Introduction

The Bohr Hamiltonian [1] and its extension, the geometrical collective model [2,3], have provided for several decades a sound
framework for understanding the collective behaviour of atomic nuclei. A puzzle remaining unsolved since the early days of the Bohr
Hamiltonian regards the behaviour of the moments of inertia of atomic nuclei [4]. They are predicted to increase proportionally to β2,
where β is the collective variable corresponding to nuclear deformation, while experimentally a much more moderate increase is observed,
especially for well deformed nuclei. In addition, the use of a constant mass has been recently questioned [5], pointing out that the mass
tensor of the collective Hamiltonian cannot be considered as a constant and should be taken as a function of the collective coordinates.

On the other hand, the algebraic framework of the Interacting Boson Model (IBM) [6] has been very useful in the systematic study of
nuclei corresponding to its three limiting symmetries [vibrational U(5), axially symmetric deformed SU(3), γ -unstable O(6)], as well as to
intermediate cases. In the geometrical limit of the IBM [6], obtained through the use of coherent states [6], it is worth remembering that
in addition to the usual term of the kinetic energy, π2, terms of the form β2π2 appear in the O(6) limiting symmetry and in the U(5)–
O(6) transition region, while more complicated terms appear in the SU(3) limiting symmetry, as well as in the U(5)–SU(3) and SU(3)–O(6)
transition regions [7]. These terms indicate that it might be appropriate to search for a modified form of the Bohr Hamiltonian, in which
the kinetic energy term will be modified by terms containing β2, and even by more involved terms.

The above reasoning leads to the consideration of a Bohr Hamiltonian with a mass depending on the collective variable β . Position-
dependent effective masses have been considered recently in a general framework [8], demonstrating the equivalence of this approach
to the consideration of deformed canonical commutation relations, as well as to the consideration of curved spaces. Furthermore, several
Hamiltonians known to be soluble through techniques of supersymmetric quantum mechanics (SUSYQM) [9,10], have been appropriately
generalized [11] to include position-dependent effective masses, the 3-dimensional harmonic oscillator being among them [11].

In the present work we are going to show that the Bohr Hamiltonian with a harmonic oscillator potential in β (to which a term
proportional to 1/β2 can be added at no cost) can be generalized in order to include a mass depending on β , B = B0/(1 + aβ2)2, where
B0 and a are constants. Exact solutions will be constructed using techniques of SUSYQM. In order to achieve exact separation of variables,
we are going to limit ourselves to potentials independent of the collective variable γ , called γ -unstable potentials. Numerical results for
the Xe–Ba isotopes, well-known examples of γ -unstable behaviour [12], will also be shown.
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2. Formalism of position-dependent effective masses

When the mass m(x) is position dependent [8], it does not commute with the momentum p = −ih̄∇ . As a consequence, there are many
ways to generalize the usual form of the kinetic energy, p2/(2m0), where m0 is a constant mass, in order to obtain a Hermitian operator.
In order to avoid any specific choices, one can use the general two-parameter form proposed by von Roos [13], with a Hamiltonian

H = − h̄2

4

[
mδ′

(x)∇mκ ′
(x)∇mλ′

(x) + mλ′
(x)∇mκ ′

(x)∇mδ′
(x)

] + V (x), (1)

where V is the relevant potential and the parameters δ′ , κ ′ , λ′ are constrained by the condition δ′ + κ ′ + λ′ = −1. Assuming a position
dependent mass of the form

m(x) = m0M(x), M(x) = 1

( f (x))2
, f (x) = 1 + g(x), (2)

where m0 is a constant mass and M(x) is a dimensionless position-dependent mass, the Hamiltonian becomes

H = − h̄2

4m0

[
f δ(x)∇ f κ (x)∇ f λ(x) + f λ(x)∇ f κ (x)∇ f δ(x)

] + V (x), (3)

with δ + κ + λ = 2. It is known [8] that this Hamiltonian can be put into the form

H = − h̄2

2m0

√
f (x)∇ f (x)∇√

f (x) + V eff (x), (4)

with

V eff (x) = V (x) + h̄2

2m0

[
1

2
(1 − δ − λ) f (x)∇2 f (x) +

(
1

2
− δ

)(
1

2
− λ

)(∇ f (x)
)2

]
. (5)

3. Bohr Hamiltonian with deformation-dependent effective mass

The original Bohr Hamiltonian [1] is

H = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 1

4β2

∑
k=1,2,3

Q 2
k

sin2(γ − 2
3πk)

]
+ V (β,γ ), (6)

where β and γ are the usual collective coordinates (β being a deformation coordinate measuring departure from spherical shape, and
γ being an angle measuring departure from axial symmetry), while Q k (k = 1, 2, 3) are the components of angular momentum in the
intrinsic frame, and B is the mass parameter, which is usually considered constant.

We wish to construct a Bohr equation with a mass depending on the deformation coordinate β , in accordance with the formalism
described above,

B(β) = B0

( f (β))2
, (7)

where B0 is a constant. We then need the usual Pauli–Podolsky prescription [14]

(∇Φ)i = gij ∂Φ

∂x j
, ∇2Φ = 1√

g
∂i

√
g gij∂ jΦ, (8)

in order to construct a Schrödinger equation of the form of Eq. (4) in a 5-dimensional space equipped with the Bohr–Wheeler coordinates
β,γ . Since the deformation function f depends only on the radial coordinate β , only the β part of the resulting equation will be affected,
the final result reading[

−1

2

√
f

β4

∂

∂β
β4 f

∂

∂β

√
f − f 2

2β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ f 2

8β2

∑
k=1,2,3

Q 2
k

sin2(γ − 2
3πk)

+ veff

]
Ψ = εΨ, (9)

where reduced energies ε = B0 E/h̄2 and reduced potentials v = B0 V /h̄2 have been used, with

veff = v(β,γ ) + 1

4
(1 − δ − λ) f ∇2 f + 1

2

(
1

2
− δ

)(
1

2
− λ

)
(∇ f )2. (10)

4. The γ -unstable Davidson potential

The solution of the above Bohr-like equation can be reached for certain classes of potentials using techniques developed in the context
of SUSYQM [9–11]. In order to achieve separation of variables we assume that the potential v(β,γ ) depends only on the variable β , i.e.
v(β,γ ) = u(β) [15]. Potentials of this kind are called γ -unstable potentials, since they are appropriate for the description of nuclei which
can depart from axial symmetry without any energy cost. Furthermore, we are going to use as an example the Davidson potential [16]

u(β) = β2 + β4
0
2
, (11)
β
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where the parameter β0 indicates the position of the minimum of the potential, the special case of β0 = 0 corresponding to the simple
harmonic oscillator. (Note that the term containing β0 offers no additional complication to the solution.)

One then seeks wave functions of the form [15,17]

Ψ (β,γ , θi) = F (β)Φ(γ , θi), (12)

where θi (i = 1, 2, 3) are the Euler angles. Separation of variables gives[
−1

2

√
f

β4

∂

∂β
β4 f

∂

∂β

√
f + f 2

2β2
Λ + 1

4
(1 − δ − λ) f ∇2 f + 1

2

(
1

2
− δ

)(
1

2
− λ

)
(∇ f )2 + u(β)

]
F (β) = ε F (β), (13)

[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ 1

4

∑
k

Q 2
k

sin2(γ − 2
3πk)

]
Φ(γ , θi) = ΛΦ(γ , θi). (14)

Eq. (14) has been solved by Bès [18]. Λ = τ (τ + 3) represents the eigenvalues of the second order Casimir operator of SO(5), while τ is
the seniority quantum number, characterizing the irreducible representations of SO(5). The values of angular momentum L occurring for
each τ are provided by a well-known algorithm and are listed in [6,15]. Within the ground state band (gsb) one has L = 2τ . The L = 2
member of the quasi-γ1 band is degenerate with the L = 4 member of the gsb, the L = 3, 4 members of the quasi-γ1 band are degenerate
to the L = 6 member of the gsb, the L = 5, 6 members of the quasi-γ1 band are degenerate to the L = 8 member of the gsb, and so on.

Eq. (13) can be simplified by performing the derivations

1

2
f 2 F ′′ +

(
f f ′ + 2 f 2

β

)
F ′ +

(
( f ′)2

8
+ f f ′′

4
+ f f ′

β

)
F − f 2

2β2
ΛF + ε F − veff F = 0, (15)

with

veff = u + 1

4
(1 − δ − λ) f

(
4 f ′

β
+ f ′′

)
+ 1

2

(
1

2
− δ

)(
1

2
− λ

)(
f ′)2

. (16)

The difference in the numerical coefficient of f ′ observed in comparison to Eq. (2.27) of Ref. [8] is due to the different dimensionality of
the space used in each case.

Setting

F (β) = R(β)

β2
, (17)

Eq. (15) is put into the form

H R = −1

2

(√
f

d

dβ

√
f

)2

R + ueff R = εR, (18)

where

ueff = veff + f 2 + β f f ′

β2
+ f 2

2β2
Λ. (19)

Based on the results for the 3-dimensional harmonic oscillator reported in Ref. [11], in order to find analytical results for Eq. (18) we
are going to consider for the deformation function the special form

f (β) = 1 + aβ2. (20)

This choice is made in order to lead to an exact solution. Its physical implications will be discussed in Section 8.
Using these forms for the potential and the deformation function one obtains

ueff = β2 + a2β2
[

5

2
(1 − δ − λ) + 2

(
1

2
− δ

)(
1

2
− λ

)
+ 3 + Λ

2

]
+ 1

β2

(
1 + 1

2
Λ + β4

0

)
+ a

[
5

2
(1 − δ − λ) + 4 + Λ

]
. (21)

5. Factorization

Following the general method used in supersymmetric quantum mechanics (SUSYQM) [9,10], one should take the following steps:

(i) Factorize the Hamiltonian.
(ii) Write a hierarchy of Hamiltonians starting from the first one.

(iii) Impose the shape invariance conditions, which are integrability conditions guaranteeing exact solvability.

Thus one first tries to put the Hamiltonian in Eq. (18) in the form

H0 = B+
0 B−

0 + ε0. (22)

Then this Hamiltonian can be considered as the first member of a hierarchy of Hamiltonians

Hi = B+
i B−

i +
i∑

ε j, (23)

j=0
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expressed in terms of the generalized ladder operators B+
i , B−

i , which are determined recursively, along with εi [which are in general
different from the energy eigenvalues ε appearing in Eq. (18), the only exception being ε0 = ε0], through the shape invariance (SI)
condition

B−
i B+

i = B+
i+1 B−

i+1 + εi+1. (24)

In the present case one can start with

B±
0 = ∓ 1√

2

(√
f

d

dβ

√
f

)
+ 1√

2

(
c0β + c̄0

1

β

)
, (25)

where the second term resembles the superpotential occurring in the case of the 3-dimensional harmonic oscillator, reported in Ref. [11].
Substituting into Eq. (22) one obtains

H0 = −1

2

(√
f

d

dβ

√
f

)2

+ β2

2

(
c2

0 − ac0
) + (c̄2

0 + c̄0)

2β2
+

(
−1

2
c0 + 1

2
ac̄0 + c0c̄0 + ε0

)
. (26)

Comparing this result to Eq. (18) with the effective potential of Eq. (21) and equating powers of β one gets the following:

c0 = 1

2

(
a ±

√
a2 + 8P1

)
, (27)

c̄0 = 1

2

(−1 ±
√

9 + 4Λ + 8β4
0

)
, and (28)

ε0 = 1

2
c0 − 1

2
ac̄0 − c0c̄0 + 5

2
(1 − δ − λ)a + 4a + aΛ, (29)

where

P1 = 1 + a2
[

5

2
(1 − δ − λ) + 2

(
1

2
− δ

)(
1

2
− λ

)
+ 3 + Λ

2

]
. (30)

Upon substitution of c0 and c̄0 from Eqs. (27) and (28), Eq. (29) leads to

ε0 = 7a

(
29

4
− 5

2
(δ + λ) + Λ

)
± 1

2

√
a2 + 8P1 ∓ a

2

√
9 + 4Λ + 8β4

0 + σ
1

4

√(
a2 + 8P1

)(
9 + 4Λ + 8β4

0

)
, (31)

where ± refers to the sign in Eq. (27), ∓ corresponds to the sign selection in Eq. (28), while σ is +1 for the selections (+,−) and (−,+)

in Eqs. (27) and (28) respectively, while it is −1 for the selections (+,+) and (−,−).
The limiting case of a = 0, in which P1 = 1, can be used for reducing the number of possibilities. Since ε0 should be increasing with Λ

(members of the ground state band should exhibit energies increasing with the angular momentum L), it turns out that one should have
σ = +1, thus only the choices (+,−) and (−,+) are acceptable.

In Section 7 it will be shown that good behaviour of the wavefunctions at β = 0 leaves (+,−) as the only choice.

6. Shape invariance

In the next step the hierarchy of Hamiltonians of Eq. (23) should be considered, with

B±
i = ∓ 1√

2

(√
f

d

dβ

√
f

)
+ 1√

2

(
ciβ + c̄i

β

)
. (32)

Substituting these expressions in the shape invariance condition of Eq. (24) and equating powers of β leads to the following results:

c2
i + cia = c2

i+1 − ci+1a, (33)

c̄2
i − c̄i = c̄2

i+1 + c̄i+1, (34)

and

2εi+1 = ci + ci+1 − ac̄i − ac̄i+1 + 2ci c̄i − 2ci+1c̄i+1. (35)

Keeping from the first two of these only the solutions ci+1 = ci + a (leading to ci = c0 + ia) and c̄i+1 = c̄i − 1 (leading to c̄i = c̄0 − i), in
accordance with the results obtained for the 3-dimensional harmonic oscillator [11], we get

εi = 2
[
c0 − ac̄0 + a(2i − 1)

]
. (36)

One then easily finds for the energy

εν =
ν∑

i=0

εi = ε0 + 2ν(c0 − ac̄0) + 2aν2. (37)

The ground state band is obtained for ν = 0, while the quasi-β1 band corresponds to ν = 1.
Eq. (37) only provides a formal solution to the bound-state energy spectrum. The range of ν values is actually determined by the

existence of corresponding physically acceptable wavefunctions, to be discussed in the next section.
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7. Wave functions

To be physically acceptable, the bound-state wavefunctions should satisfy two conditions [11]:

(i) As in conventional (constant-mass) quantum mechanics, they should be square integrable on the interval of definition of ueff , i.e.,

∞∫
0

dβ
∣∣Rν(β)

∣∣2
< ∞. (38)

(ii) Furthermore, they should ensure the Hermiticity of H . For such a purpose, it is enough to impose that the operator
√

f (d/dβ)
√

f be
Hermitian, which amounts to the restriction∣∣Rν(β)

∣∣2
f (β) → 0 for β → 0 and β → ∞, (39)

or, equivalently,∣∣Rν(β)
∣∣2 → 0 for β → 0 and

∣∣Rν(β)
∣∣2

β2 → 0 for β → ∞. (40)

As condition (40) is more stringent than condition (38), we should only be concerned with the former.

The ground state wave function can be determined from the differential equation [11]

B−
0 (β; c0, c̄0)R0(β; c0, c̄0) = 0, (41)

where B−
0 is given by Eq. (25). Trying the solution

R0 = C0β
n f n̄, (42)

where C0 is a normalization constant, the powers of β lead to the conditions

n = −c̄0, (43)

and

n̄ = ac̄0 − c0 − a

2a
. (44)

For β → 0, the function |R0(β)|2 behaves as β2n . Condition (40) imposes that n > 0, i.e. c̄0 < 0. From Eq. (28) it is clear that this
is guaranteed if the minus sign is retained in it. From the discussion given at the end of Section 5 it is clear that the only possibility
remaining for the signs in Eqs. (27) and (28) is the (+,−) one. One can easily see that this choice guarantees n̄ < 0.

For β → ∞, |R0(β)|2β2 behaves as β−2c0/a , since in this case f ≈ aβ2. Condition (40) therefore imposes that c0 > 0. This restriction is
already satisfied, since we have been led in the previous paragraph to keep the upper sign choice in (27).

Wave functions of excited states can then be obtained from the recursion relation [11]

Rν+1(β; c0, c̄0) = 1√
εν+1(c0, c̄0) − ε0(c0, c̄0)

B+(β; c0, c̄0)Rν(β; c1, c̄1), (45)

where the different coefficients appearing in the last term should be noticed. From the recursion relation one obtains

R1(β; c0, c̄0) = C1

21/2
√

ε1 − ε0

[
(2c0 + a)β + 2c̄0 − 1

β

]
βn+1 f n̄−1, (46)

R2(β; c0, c̄0) = C2

23/2
√

(ε2 − ε0)(ε1 − ε0)

×
[
(2c0 + 3a)(2c0 + a)β2 + (2c̄0 − 3)(2c̄0 − 1)

1

β2
+ 2(2c0 + 3a)(2c̄0 − 3)

]
βn+2 f n̄−2, (47)

where C1, C2 are normalization constants.
From the above it is clear that wave functions of the states belonging to the ground state band are obtained from Eq. (12), substituting

in it Eqs. (17) and (42), while wave functions of the states belonging to the quasi-β1 band are obtained from Eq. (12), substituting in it
Eqs. (17) and (46).

It is easy to see that the conditions imposed above in order to guarantee the physically acceptable behaviour of the ground state
wavefunctions, also guarantee the physically acceptable behaviour of the wavefunctions for excited states. In particular:

(i) In order to examine the behaviour at β → 0, it suffices to examine in Rν the behaviour of the polynomial term containing the lowest
power of β (β−1 in R1, β−2 in R2). In both cases the function |Rν(β)|2 behaves as β2n , i.e. it exhibits the same behaviour as |R0(β)|2.

(ii) In order to examine the behaviour at β → ∞, it suffices to examine in Rν the behaviour of the polynomial term containing the
highest power of β (β in R1, β2 in R2). In both cases the function |Rν(β)|2β2 behaves as β−2c0/a , i.e. it exhibits the same behaviour
as |R0(β)|2β2.

Therefore the wavefunctions of the excited states given above are forced to exhibit physically acceptable behaviour by the same condi-
tions which guarantee the physically acceptable behaviour of the ground state wavefunctions.
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Fig. 1. The function β2/ f 2(β) = β2/(1 + aβ2)2, to which moments of inertia are proportional as seen from Eq. (9), plotted as a function of the nuclear deformation β for
different values of the parameter a. See Section 8 for further discussion.

Table 1
Comparison of theoretical predictions of the γ -unstable Bohr Hamiltonian with β-dependent mass (with δ = λ = 0) to experimental data [19] of Xe and Ba isotopes. The
R4/2 = E(4+

1 )/E(2+
1 ) ratios, as well as the quasi-β1 and quasi-γ1 bandheads, normalized to the 2+

1 state and labelled by R0/2 = E(0+
β )/E(2+

1 ) and R2/2 = E(2+
γ )/E(2+

1 )

respectively, are shown. The angular momenta of the highest levels of the ground state, quasi-β1 and quasi-γ1 bands included in the rms fit are labelled by Lg , Lβ , and
Lγ respectively, while n indicates the total number of levels involved in the fit and σ is the quality measure of Eq. (48). The theoretical predictions are obtained from the
formulae mentioned below Eq. (48). See Section 8 for further discussion.

Nucleus R4/2 exp R4/2 th R0/2 exp R0/2 th R2/2 exp R2/2 th β0 a Lg Lβ Lγ n σ

118Xe 2.40 2.32 2.5 2.6 2.8 2.3 1.27 0.103 16 4 10 19 0.319
120Xe 2.47 2.36 2.8 3.4 2.7 2.4 1.51 0.063 26 4 9 23 0.524
122Xe 2.50 2.40 3.5 3.3 2.5 2.4 1.57 0.096 16 0 9 16 0.638
124Xe 2.48 2.36 3.6 3.5 2.4 2.4 1.55 0.051 20 2 11 21 0.554
126Xe 2.42 2.33 3.4 3.1 2.3 2.3 1.42 0.064 12 4 9 16 0.584
128Xe 2.33 2.27 3.6 3.5 2.2 2.3 1.42 0.000 10 2 7 12 0.431
130Xe 2.25 2.21 3.3 3.1 2.1 2.2 1.27 0.000 14 0 5 11 0.347
132Xe 2.16 2.00 2.8 2.0 1.9 2.0 0.00 0.000 6 0 5 7 0.467
134Xe 2.04 2.00 1.9 2.0 1.9 2.0 0.00 0.000 6 0 5 7 0.685

130Ba 2.52 2.42 3.3 3.2 2.5 2.4 1.60 0.118 12 0 6 11 0.352
132Ba 2.43 2.29 3.2 2.8 2.2 2.3 1.29 0.059 14 0 8 14 0.619
134Ba 2.32 2.16 2.9 2.7 1.9 2.2 1.12 0.000 8 0 4 7 0.332
136Ba 2.28 2.00 1.9 2.0 1.9 2.0 0.00 0.000 6 0 2 4 0.250

8. Numerical results

From Eq. (9) it is clear that in the present case the moments of inertia are not proportional to β2 sin2(γ − 2πk/3) but to
(β2/ f 2(β)) sin2(γ − 2πk/3). The function β2/ f 2(β) is shown in Fig. 1 for different values of the parameter a. It is clear that the in-
crease of the moment of inertia is slowed down by the function f (β), as it is expected as nuclear deformation sets in [4].

As a first testground of the present method we have used the Xe isotopes shown in Table 1. They have been chosen because:

(i) They are known to lie in a γ -unstable region [12].
(ii) At least the bandheads of the quasi-β1 and quasi-γ1 bands are known experimentally.

(iii) They extend from the borders of the neutron shell (134Xe80 is just below the N = 82 shell closure) to the midshell (120Xe66) and even
beyond, exhibiting increasing collectivity (increasing R4/2 = E(4+

1 )/E(2+
1 ) ratios) from the border to the mishell.

For evaluating the rms fits performed, the quality measure

σ =
√∑n

i=1(Ei(exp) − Ei(th))2

(n − 1)E(2+
1 )2

(48)

has been used. The theoretical predictions for the levels of the ground state band are obtained from Eq. (31) (in which all terms with
double signs are taken with positive signs, as explained at the end of Section 5), while the levels of the quasi-β1 band are obtained
from Eq. (37) for ν = 1. The levels of the quasi-γ1 band are obtained through their degeneracies to members of the ground state band,
mentioned below Eq. (14).

Moving from the border of the neutron shell to the midshell, the following remarks apply

(i) 134Xe and 132Xe are almost pure vibrators. Therefore no need for deformation dependence of the mass exists, the least square fitting
leading to a = 0. Furthermore, no β0 term is needed in the potential, the fitting therefore leading to β0 = 0, i.e., to pure harmonic
behaviour.
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Fig. 2. Energy levels E(L) [normalized to the energy of the first excited state, E(2)] and B(E2; L → L − 2) transition rates [normalized to the transition from the first excited
state to the ground state, B(E2;2 → 0)] are shown for the ground state band as functions of the angular momentum L for β0 = 1 and varying values of a (0.0, 0.1, 0.5). See
Section 8 for further discussion.

Table 2
Experimental B(E2; L → L − 2) transition rates [normalized to the transition from
the first excited state to the ground state, B(E2;2 → 0)] within the ground state
band of 128Xe [19], compared to theoretical predictions using the parameters of
Table 1. See Section 8 for further discussion.

L exp th

4 1.468 ± 0.201 1.632
6 1.940 ± 0.275 2.196
8 2.388 ± 0.398 2.751

10 2.736 ± 1.138 3.310

(ii) In the next two isotopes (130Xe and 128Xe) the need to depart from the pure harmonic oscillator becomes clear, the fitting leading
therefore to nonzero β0 values. However, there is still no need of dependence of the mass on the deformation, the fitting still leading
to a = 0.

(iii) Beyond 126Xe both the β0 term in the potential and the deformation dependence of the mass become necessary, leading to nonzero
values of both β0 and a.

Exactly the same behaviour is seen in the Ba isotopes, also known to lie in a γ -unstable region [12] and shown in Table 1.
The results shown in Table 1 have been obtained for δ = λ = 0. One can easily verify that different choices for δ and λ lead to a

renormalization of the parameter values a and β0, the predicted energy levels remaining practically the same.
In addition to energy spectra, B(E2) transition rates should be calculated and compared to experiment. The details of this task are

deferred to a longer publication. However, basic qualitative features can be seen in Fig. 2, where the systematic behaviour of energy ratios
and B(E2) ratios within the ground state band are shown. We remark that an increase of the a parameter leads to a more rapid increase
of energies (normalized to the energy of the first excited state) within the ground state band as a function of the angular momentum L,
while in parallel it slows down the increase of B(E2)s (normalized to the transition from the first excited state to the ground state) as a
function of L.

Among the nuclei of Table 1, the only one exhibiting experimentally known increasing B(E2)s within the ground state band is 128Xe.
The theoretical predictions (using the parameters of Table 1, obtained by fitting the energy levels alone) fall withing the experimental
error bars, as seen in Table 2.

The present results suggest that dependence of the mass on deformation becomes necessary as deformation increases. It is therefore
desirable to provide a similar solution of the Bohr Hamiltonian applicable to axially symmetric well deformed nuclei. Work in this direction
is in progress.

9. Conclusion

Motivated by the existence in the geometrical limit of the O(6) limiting symmetry and of the U(5)–O(6) transition region of the In-
teracting Boson Model of extra terms of the form β2π2 (where β is the nuclear deformation) in addition to the kinetic energy term π2,
as well as by the existence of more complicated additional terms in the SU(3) limiting symmetry and in the U(5)–SU(3) and SU(3)–O(6)
transition regions, we have modified the Bohr Hamiltonian describing the collective motion of atomic nuclei by allowing the mass to de-
pend on the nuclear deformation. Using techniques of supersymmetric quantum mechanics we have obtained exact analytical expressions
for spectra and wave functions for the case of the γ -unstable Davidson potential. A first numerical application in the Xe–Ba region gives
encouraging results. Detailed comparisons to experiment, including B(E2) transition rates, as well as extension of the method to deformed
axial nuclei (with γ ≈ 0) are deferred to a longer publication.
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