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We revisit the study of a 2D quantum field theory in the hydrodynamic regime and develop a formalism 
based on Euclidean one-loop partition functions that is suitable to analyze transport properties due to 
gauge and gravitational anomalies. To do so, we generalize the method of a modified Dirac operator 
developed for zero-temperature anomalies to finite temperature, chemical potentials and rotations.
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1. Introduction

Quantum anomalies play an important role in the hydrody-
namic regime, leading to new transport properties [1,2]. This may 
have consequences in various physical systems such as heavy-ion 
collisions, cosmology, and condensed matter systems [3]. Therefore 
a detailed theoretical understanding of anomalies in relativistic flu-
ids is necessary and has led to numerous recent developments in 
the field. Much of the work has been based on the consistency of 
hydrodynamic expansions, including second law of thermodynam-
ics, or semiclassical kinetic theory analysis [4–10]. In addition, the 
necessity to include anomalies in fluid dynamics is supported by 
AdS/CFT arguments [11–14].

A natural framework to study anomalies at zero temperature 
utilizes heat kernels or zeta-function regularizations [15,16]. The 
advantage of these techniques comes from the fact that they can 
be used to describe different types of anomalies, including contin-
uous and discrete anomalies. However, previous attempts [17,18]
to capture anomalous contribution at finite temperature (but with-
out rotations) did not give any non-zero result. Using hydrody-
namic reasoning and state/operator counting in free massless the-
ories, however, we now know that in order to get a non-zero 
contribution we need to consider rotating fluids [4,5].

The aim of this paper is to show that in the Euclidean path-
integral method the spectrum of an appropriate “chiral” operator 
[19] at finite temperature and density for rotating fluids indeed 
gives the required chiral-half of the results. This paper concen-
trates on a (1 + 1)-dimensional rotating fluid (by which we mean 
a Lorentz-boosted fluid), though we expect and hope to apply the 
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method to higher-dimensional fluids in the presence of magnetic 
fields.

Let us consider a Dirac-type operator D on a Euclidean 
torus T 2, upon which the Euclidean path-integral is used to com-
pute the canonical partition function at finite temperature β , 
chemical potential μ and rotation �. The one-loop approximation 
to the partition function is:

Z [β,μ,�] ≈ e−Scl det[D] , (1)

where the classical contribution is denoted as e−Scl . Our aim is to 
calculate the one-loop effective action:

W [β,μ,�] ≡ ln Z [β,μ,�] + Scl ≈ ln det[D]. (2)

It describes quantum effects in the presence of background fields 
in the one-loop approximation of quantum field theories.

In this Letter, we show how to isolate the chiral-contribution 
to the thermodynamics of a (1 + 1)-dimensional field theory with 
global anomalies living on the manifold T 2

(β,�) with coordinates 
(t, x). The thermal circle’s periodicity is (t, x) ∼ (t + β, x + β�)

while the compact spatial circle’s periodicity is given by (t, x) ∼
(t, x + 1). The complex parameter of the torus is then τ ≡ τ1 +
iτ2 ≡ �β + iβ/(2π R), where R is the radius of spatial circle. We 
are interested in studying the one-loop effective action W [β, μ, �]
in the high temperature limit where �β � 1 and β/R � 1 or, 
equivalently, τ → 0. A method developed to account for the con-
tribution due to chiral and Lorenz anomalies at finite temperature 
and the interpretation in terms of anomalous hydrodynamics is the 
central result of this Letter.

2. 2D free Dirac fermion

To warm up and provide a starting point for the subsequent 
inclusion of anomalies, let us first review the computation of the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://core.ac.uk/display/82317207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2015.05.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:surowka@physics.harvard.edu
http://dx.doi.org/10.1016/j.physletb.2015.05.011
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.05.011&domain=pdf


282 G.S. Ng, P. Surówka / Physics Letters B 746 (2015) 281–284
partition function of a non-anomalous, massless, free Dirac opera-
tor D = (β/(2π))(i/D). It can be obtained through

det[D] =
√

det[D2] . (3)

One trick to evaluate det[D2] is to find Weyl spinors ψ±
�n (i.e. 

�5ψ
±
�n = ±ψ±

�n ) which furthermore satisfy

Dψ±
�n = λ±

�n ψ∓
�n , (4)

such that ψ±
�n diagonalizes D2:

D2ψ±
�n = λ2

�nψ±
�n , λ2

�n ≡ λ+
�n λ−

�n . (5)

As a result we obtain

det[D2] =
∏
�n

λ+
�n λ−

�n , (6)

and thus

det[D] =
√∏

�n
(λ+

�n λ−
�n ) . (7)

In this work, we will always impose the (A, A)-boundary con-
dition (where A means anti-periodic while the first (second) slot 
indicates the thermal (spatial) circle):

ψ±
�n (t, x) = −ψ±

�n (t, x + 1) = −ψ±
�n (t + β, x + β�) . (8)

A basis for such Weyl spinors satisfying Eq. (4) and Eq. (8) is pro-
vided by

ψ±
�n (t, x)

∝ exp [+2π i(n1 + 1/2)t/β + 2π i(n2 + 1/2)(x − t�)]u± ,

(9)

where �5u± = ±u± and �n ∈ Z
2. In our conventions,

i/D =
(

0 −∂t + i(2π R)−1∂x

∂t + i(2π R)−1∂x 0

)
. (10)

Applying (β/(2π))i/D to ψ±
�n , we obtain

λ+
�n = i

[(
n1 + 1

2

)
−

(
n2 + 1

2

)
τ̄

]
, λ−

�n = (λ+
�n )∗ , (11)

λ+
�n λ−

�n =
∣∣∣∣
(

n1 + 1

2

)
−

(
n2 + 1

2

)
τ

∣∣∣∣
2

. (12)

In evaluating the infinite product of the eigenvalues, we use the 
identity

∞∏
n1=−∞

(
n1 + 1

2
+ a

)
= −2i cos (πa) (13)

and the Hurwitz zeta function regularization of[ ∞∏
n=0

q
− 1

2

(
n+ 1

2 ±a
)]

= q− 1
2 ζ(−1,1/2±a) = q−1/48+a2/4. (14)

The result for the one-loop effective action is

W [τ , τ̄ ] = 1

2
log

∣∣∣∣∣q−1/24
∞∏

n=1

(
1 + qn− 1

2

)2
∣∣∣∣∣
2

= 1
log

∣∣∣∣ θ(τ )
∣∣∣∣
2

, q ≡ e2π iτ , (15)

2 η(τ )
where the η and θ functions are defined as

η(τ ) ≡ q1/24
∞∏

n=1

(
1 − qn) ,

θ(τ ) ≡ q−1/24η(τ )

∞∏
n=1

(
1 + qn−1/2

)2
. (16)

Using the modular properties of these functions

θ(τ )

η(τ )
= θ(−1/τ )

η(−1/τ )
, (17)

and their asymptotic expansions, we obtain as τ → 0

lim
τ→0

θ(τ )

η(τ )
= exp

[
+2π i

1

24τ

]
(18)

implying the well-known Cardy’s formula for a 2D massless Dirac 
fermion

lim
τ→0

W [τ , τ̄ ] = +2π i
(1/2)

24τ
− 2π i

(1/2)

24τ̄
(19)

consistent with the fact that a 2D massless Dirac fermion is equiv-
alent to one left moving Weyl fermion and one right moving Weyl 
fermion with central charges cL = cR = 1/2. We note that although 
in some sense a Dirac fermion is equivalent to two Weyl fermions, 
the chiral contribution (i.e. contributions proportional to cL − cR ) 
cannot be captured by taking an appropriate half of Dirac’s an-
swer [5]. This is related to the fact that the anomalous contribution 
to the effective action is purely imaginary [19], while the above 
answer is purely real. A way to overcome this issue and to isolate 
the Weyl fermion’s contribution in the Euclidean path integral has 
been proposed by [19] and will be the focus of the next sections.

3. Chiral chemical potential

In this section, we will show how to appropriately calculate 
a determinant which captures the contribution of a single Weyl 
fermion. Let us first introduce a non-trivial chemical potential. It 
can be done either by modifying the Dirac operator in a chiral 
way or equivalently by imposing boundary conditions for the basis 
spinors differently depending on their chirality:

ψ±
�n (t, x) = −ψ±

�n (t, x + 1) = −eiβμ∓ψ±
�n (t + β, x + β�). (20)

Then, it is easy to see that Eq. (12) will be modified in the follow-
ing way:

λ+
�n λ−

�n =
[(

n1 + 1

2
+ ν−

)
−

(
n2 + 1

2

)
τ̄

]

×
[(

n1 + 1

2
+ ν+

)
−

(
n2 + 1

2

)
τ

]
, (21)

where iβμ± ≡ 2π iν± and ν± ’s are real. Similar computations as 
before now yield

W [τ ,ν+; τ̄ , ν−] = 1

2
log

[
θ(ν+, τ )

η(τ )

θ(ν−, τ )

η(τ )

]
, (22)

where z± = e2π iν± and

θ(ν±, τ ) ≡
∞∏

n=1

(1 − qn)(1 + z±qn−1/2)(1 + z−1± qn−1/2) . (23)

Note that θ(τ ) = θ(0, τ ). The θ(ν, τ ) function has the following 
modular transformation:



G.S. Ng, P. Surówka / Physics Letters B 746 (2015) 281–284 283
θ(ν, τ )

η(τ )
= e−π iν2/τ θ(ν/τ ,−1/τ )

η(−1/τ )
, (24)

which has the small τ behavior of the form

lim
τ→0

θ(ν, τ )

η(τ )
= exp

[
2π i

(
1

24τ
− ν2

2τ

)]
. (25)

This gives

lim
τ→0

W [τ ,ν+; τ̄ , ν−]

= 2π i

[
(1/2)

24τ
− (1/4)ν2+

τ

]
− 2π i

[
(1/2)

24τ̄
− (1/4)ν2−

τ̄

]
,

(26)

which reproduces Cardy’s formula (with chemical potentials) with 
central charges cL = cR = 1/2 and Kac–Moody levels kL = kR =
1/4.

Tuning ν− = 0 and ν+ = 0 (or vice versa), we could isolate 
the chiral-half of the answer, which probes the kL or kR part in-
dependently. The above result is not accidental but follows from 
the identification of chiral determinants with a determinant of a 
modified Dirac-type operator which acts on Dirac spinors [19]. The 
equivalence between the “chiral boundary conditions” introduced 
above and the modified Dirac-type operator method of [19] will 
be explained below.

In the construction of [19], one naively starts by trying to study 
the eigenvalue problem of the operator

i/D+ = i�μ
(
∂μ + Aμ

)
P+, P± ≡ 1

2
(1 ± �5) , (27)

and identifies the path-integral over a single Weyl mode as the de-
terminant of such an operator. However, since this operator maps 
the P+ = 1 subspace to the P+ = 0 subspace, the eigenvalue prob-
lem for i/D+ is not well-defined. Instead, one studies the modified 
operator

D̂ ≡ i�μ
(
∂μ + Aμ P+

) = i

(
0 /∂−

/D+ 0

)
, (28)

where the background field Aμ is coupled only to the chiral half 
of the operator. Since D̂ acts on Dirac fermions, it has twice the 
number of degrees of freedom as the operator of Weyl fermions. 
But this doubling would affect only the overall normalization and 
not the effective action (as a functional of the background field).

Furthermore, following [19], the det[D̂] can be computed by 
realizing that

det[D̂] = det[(i/∂−)(i/D+)] . (29)

If we found Dirac spinors ψ+
�n such that

(i/∂−)(i/D+)ψ+
�n = λ2

�nψ+
�n , (30)

then

det(D̂) =
∏
�n

λ2
�n . (31)

A particular convenient choice will be to find Weyl spinors ψ±
�n

with the properties that

i/D+ψ+
�n = λ+

�n ψ−
�n , i/∂−ψ−

�n = λ−
�n ψ+

�n , (32)

such that λ2
�n = λ+

�n λ−
�n . The determinant now reads1

1 We note that a different choice of basis may change the λ−
n and λ+

n (as defined 
in Eq. (32)) but the products λ−

n λ+
n remain unchanged [20], i.e.
det(D̂) =
∏
�n

(λ+
�n λ−

�n ) . (34)

Let us now compute the determinant of D̂ . Restricting to 
Aadxa = A0dt , we have

D̂ =
(

0 −(∂t + A0) + i(2π R)−1∂x

∂t + i(2π R)−1∂x 0

)
. (35)

Thus, the effect of introducing the chiral coupling to the gauge 
field is equivalent to shifting the “upper-right” part of the operator 
by ∂t → ∂t + A0. This implies that the λ−

�n will get shifted appro-
priately while λ+

�n remains unchanged:

λ+
�n = i

[(
n1 + 1

2

)
−

(
n2 + 1

2

)
τ̄

]
, (36)

λ−
�n = −i

[(
n1 + 1

2
+ ν+

)
−

(
n2 + 1

2

)
τ

]
, (37)

once we have identified

A0 = iμ+ = i
ν+
Rτ2

. (38)

Note that since Aadxa = A0dt is defined such that t is the Eu-
clidean time, the A0 is purely imaginary for real μ+ .

The above computation shows that the chiral coupling is im-
plemented by sending n1 → n1 + ν+ in λ−

�n . This is equivalent to 
not modifying the operator D but instead changing the boundary 
conditions for the ψ+

�n modes according to Eq. (20) with μ− = 0
but μ+ = ν+/(Rτ2). This argument demonstrates that one can in-
terchangeably implement chiral couplings either by: i) imposing 
chiral boundary conditions while using D or ii) using the chiral 
operator D̂ instead of D together with non-chiral boundary condi-
tions. We will use this property to calculate the chiral contribution 
of rotation to our system.

4. Chiral coupling to rotation

Motivated by the equivalence presented in the previous sec-
tion, we shall now investigate what happens in the case of zero 
chemical potentials, but instead we impose the “chiral boundary 
condition” for the rotation. More precisely, we require

ψ±
�n (t, x) = −ψ±

�n (t, x + 1)

ψ−
�n (t, x) = −ψ−

�n (t + β, x + β�)

ψ+
�n (t, x) = −ψ+

�n (t + β, x) , (39)

i.e. the “twist” induced by the rotation is imposed only on one 
of the Weyl spinors. Similar to the computations in the chemi-
cal potential case in the previous section, it is straightforward to 
show that the above “chiral boundary condition” for the rotation 
is equivalent to the modification of the operator to “chiral-couple” 
rotation to the vielbeins. At zero temperature, such modifications 
of the operator or boundary conditions exactly reproduce what one 
expects from Lorentz anomalies. This was proven in [16]. At finite 
temperature and rotations, we will now show that rotations can be 
incorporated in a similar manner and the outcome agrees with the 
standard Cardy’s formula.

In analogy with the previous sections we calculate appropriate 
eigenvalues

λ2
�n = λ+

�n λ−
�n (33)

is independent of the choice of basis for the ψ±
� .
n
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λ+
�n = i

[(
n1 + 1

2

)
−

(
n2 + 1

2

)
κ̄

]
, (40)

λ−
�n = −i

[(
n1 + 1

2

)
−

(
n2 + 1

2

)
τ

]
, (41)

where κ ≡ iβ/(2π R), κ2 = β/(2π R) and τ ≡ �β + iβ/(2π R). The 
rest of the computation proceeds as before:

det[D̂] = θ(τ )

η(τ )

θ(κ)

η(κ)
⇒ W [τ , τ̄ ] = 1

2
log

[
θ(τ )

η(τ )

θ(κ)

η(κ)

]
, (42)

where q ≡ e2π iτ and p ≡ e2π iκ . Using the standard modular trans-
formations and the asymptotic expansions of the theta and eta 
functions, we obtain

lim
β→0

W [τ ,κ] = 1

2

[
2π i

(
1

24τ

)
− 2π i

(
1

24κ

)]
. (43)

To isolate the chiral or anomalous contributions, we should now 
take the imaginary part of the W [19]. Thus, we define

Wanom[β,�] ≡ Im [W [β,�]] (44)

leading to

lim
β→0

Wanom[T ,�] = 1

T

[
(2π R)(2π R�)

(1 − (2π R�)2)

]
2π

[
(1/2)

24
T 2

]
,

(45)

which is just the imaginary part of the Cardy’s formula with 
cR = 1/2 and cL = 0. We see that the imaginary part of det[D̂]
automatically computes the anomalous contribution to the effec-
tive action (and hence all the thermodynamical quantities) in the 
high-temperature limit.

5. Conclusions

In this Letter, we developed a method to deal with finite-
temperature anomalies using one-loop determinants of an appro-
priate operator in two dimensions. This method can be generalized 
to higher dimensions and has many potential applications. It would 
be interesting to investigate its analogue in odd dimensional field 
theories in the study of discrete anomalies at finite temperature. 
Another interesting direction would be to isolate the contribu-
tions of anomalies to entanglement entropy with this technique. 
Finally we believe that the generalization to all even dimensions 
can provide yet another perspective on the anomaly polynomial 
“replacement rule”, which captures anomalous contributions to the 
partition function at finite T and μ [4–6,8,7].
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