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Abstract

This article surveys the main results on e�ectivity and totality in domain theory and

its applications� A more abstract and informative proof of Normann�s generalized

density theorem for total functionals of �nite type over the reals is presented�

� Introduction

Domain Theory� introduced by D� Scott ������� as a semantics for data types

and functional programming languages� has attracted many researchers in

Mathematics and Computer Science because of its rich structural properties

and its numerous connections with other research disciplines like e�g� recursion

theory� topology� lattice theory� category theory� and type theory� This pa�

per aims to survey classical and recent results in set�theoretic domain theory

focussing on aspects of e�ectivity and totality� No attempt is made to bring

this work into the context of synthetic or axiomatic domain theory�

We will work with a rather special class of domains� namely bounded

complete countably based algebraic dcpos with least element� often called

Scott domains� In presence of a countable basis of compact elements there is a

natural notion of e�ectivity or computability induced by an enumeration of the

compacts� It is interesting to compare this notion of computability imported

by ordinary recursion theory with de�nability in an appropriate functional

programming language� A famous theorem of Plotkin ��	� says that when

enriching the programming language PCF with some parallel features both

notions of computability coincide�

A related theorem� recently proved by Normann �
��� brings totality into

play� a notion which is of inherent interest in Computer Science since it is the

denotational counterpart to termination� Normann showed that pure PCF

�without parallel features su�ces to de�ne all total computable functionals
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of �nite type over the integers� A crucial property of the total objects of a

domain is their �topological density� We will discuss this property and its

counterpart� co�density� in some detail� and state the main results on density

as well as its applications�

Another recent result of Normann�s is concerned with a representation of

the reals by the domain of nestings of closed intervals with rational endpoints�

Normann �
�� proves that the total continuous functionals of �nite types over

the reals are dense in the partial functionals� This solves a problem for which

the abstract machinery developed so far did not work� We will give a more

abstract and informative proof of Normann�s result�

In order to �x notation we give below some de�nitions concerning the basics

of domains� For a thorough introduction into domain theory we recommend

����

We call a partially orderd set �D�v a Scott�domain� domain for short� if

it is


� directed complete� i�e� every directed set A � D has a least upper boundF
A � D �A is directed if A �� � and �x� y � A�z � A�x� y v z�

�� algebraic� i�e� for every x � D the set fx� � D�x� compact and x� v xg is

directed and has x as its least upper bound �x� � D is compact if for every

directed set A � D such that x v
F
A we have x� v y for some y � A�

�� countably based� i�e� the set of compact elements is countable�

�� bounded complete� i�e� every nonempty bounded subset of D has a least

upper bound in D�

�� equipped with a least element� usually denoted ��

�D�v is called a quasi�domain if 
���� are satis�ed� i�e� there need not be a

least element� Hence every domain is a quasi�domain� but not vice versa� For

example every countable set S� partially ordered by the equality relation� is a

quasi�domain� By adding a new� least� element � it becomes a so�called ��at�

domain S� �� S � f�g�

For convenience we will also assume that all quasi�domains are coherent�

which means that a nonempty subset is bounded whenever all its two element

subsets are bounded� Although all results presented in this paper also hold

without this assumptions� many notions have an easier de�nition and some

proofs become less clumsy when coherency is assumed�

The set of compact elements of a quasi�domain D is denoted by D�� The

Scott�topology on a quasi�domain D is generated by the basic open sets fx �

D�x w x�g� where x� � D�� For x� y � D we de�ne binary consistency by

x � y �	 fx� yg is bounded �in D�

It is easy to see that x � y holds i� x and y are topologically inseparable� i�e�

x and y do not have disjoint neighbourhoods�

Products� If D and E are quasi�domains then D 
 E with the pointwise

ordering is a quasi�domain� which is a domain if D and E happen to be

�
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domains� The Scott�topology on D 
 E is the product topology� Clearly
�D 
 E� � D� 
E��

Function space� A function f �D � E between quasi�domains D�E is

continuous w�r�t� the Scott�topology i� it is monotone and preserves suprema
of directed sets� Hence f is uniquely determined by its values on compact
arguments� IfD is a quasi�domain and E is a domain then the set of continuous

functions� denoted D � E� is again a domain under the pointwise order� The

Scott�topology on D� E coincides with the pointwise topology and also with
the compact�open topology� When writing D � E it is always understood

that D is a quasi�domain and E is a domain �exception� in �f �D � E� E may
be a quasi�domain as well�

In order to describe the compacts of D � E we consider a �nite set

G � f�xi� yi j i � Ig � D�
E� satisfying the following consistency condition�

�i� j � I �xi � xj � yi � yj �

De�ne �G�D � E by �G�x ��
F
fyi j i � I� xi v xg� It is easy to see that

�D � E� consists precisely of such functions �G�

The interest of computer scientists in domain is mainly due to the following

folklore theorems�

Theorem ��� Every continuous function f �D � D has a least �xed point

depending continuously on f �

Theorem ��� The category of domains and continuous functions is carte�

sian closed� D 
 E and D � E are the categorical product and exponential

respectively�

The cartesian closed subcategory generated by a domainD is usually called

the hierarchy of partial continuous functionals of �nite types over D� The
objects of this category are a family of domains D�� where

D� �� D� D��� �� D� 
D�� D��� �� D� � D��

In this paper we will be mainly interested in the cases D � N� and D � R�
where the latter is intended to model the �partial real numbers�� R is the ideal

completion of the partial order

IQ �� f�a� b� j a � f�g �Q� b � Q � f��g� a � bg�

where Q is the set of rational numbers� The ordering on IQ corresponds to

reverse inclusion of closed intervals� i�e� �a� b� � �a�� b�� i� a � a� and b� � b�
The elements of R are downward closed directed subsets A � IQ �ideals�

The ordering on R is set inclusion� In ideal A � R which is �converging�� i�e�

��A �� inffba j �a� b� � Ag � 	 in a natural way represents the real number
r �� supfa j �a� b� � Ag � inffb j �a� b� � Ag�

By the theorems above the partial continuous functionals over N� form

a model for the functional programming language PCF which however is not
fully abstract as has been shown by Plotkin ��	��

�
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If we consider as morphisms between domains not continuous functions�

but embedding projection pairs� we get another interesting category which

can be used to solve �domain equations� for constructing useful date types�

even paradoxical ones like D � N
���D � D �Scott�s D� yielding a model

of type free lambda�calculus� Here ��� denotes the separated sum operation

forming the disjoint sum of two domains and adding a new least element�

Theorem ��� The category of domains with embedding projection pairs has

an initial object and direct colimits� The cartesian product� separated sum�

and function space constructions de�ne continuous functors in this category�

Hence domain equations built up from these constructions always have a least

solution�

� E�ectivity

An e�ective quasi�domain is a quasi�domain �D�v together with a numbering

���N� D� called e�ectivation� such that


� the sets f�n�m j ��n v ��mg� and f�n�m j ��nt��m existsg are decidable�

�� there is a recursive function f �N
N� N such that ��f�n�m � ��nt��m

whenever the supremum exists�

An element x � D is computable i� the set fn j ��n v xg is recursively

enumerable� We let Dcomp denote the set of computable elements of D�

In view of the representation of compacts in D � E by a �nite set of

pairs of compacts� as shown in the introduction� it is obvious how to construct

e�ectivations of D 
E and D � E from e�ectivations of D and E�

Still� when writing D � E it is understood that E is a domain whereas D

only needs to be a quasi�domain� Nevertheless in the following we will say in

such a situation �let D and E be e�ective domains� for sake of readability�

Given an e�ective quasi�domain �D�v� �� one constructs by standard tech�

niques of elementary recursion theory a numbering ��N � Dcomp� called

principal constructivation such that


� the set f�n�m j ��n v �mg is recursively enumerable�

�� there is a recursive function g�N�N such that ��n � �g�n for all n�

�� For any other numbering ���N � Dcomp satisfying 
� and �� there is a

recursive function h�N� N such that ��n � �h�n for all n�

As an example of an e�ective domain consider the set of partial functions

on the natural numbers ordered by inclusion of graphs� The compact elements

are the �nite functions which can be numbered in an obvious way� The com�

putable elements are precisely the partial recursive functions� As principal

constructivation we may take the usual Kleene brackets f�g� Another inter�

esting example is provided by the computable and converging elements in the

domain R of partial reals� which correspond precisely to the recursive reals�

�
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The partial continuous functionals of �nite type over an e�ective domain

D form a hierarchy of e�ective domains� In the case D � N� this gives

rise to several rival notions of recursiveness for these functionals� 
� Domain

theoretic computability� �� PCF�de�nability� �� Computability in the sense of

Kleene�s Schemata �S
�S� �
	�� The following theorem is due to Platek �
��

��rst part and Plotkin ��	� �second part�

Theorem ��� On the partial continuous functionals PCF�de�nability and
�S��S�� computability coincide� but are weaker than domain theoretic com�
putability�

For example the parallel or� POR� is compact and hence domain com�

putable� but not PCF de�nable� To remedy this one can either try to re�

strict the continuous functionals to some �sequential� fragment� or extend PCF�

Plotkin ��	� showed how to do the latter�

Theorem ��� In PCF	POR every compact functional is de�nable and hence

the partial continuous functionals form a fully abstract model for PCF	POR�
Adding further the parallel existential quanti�er E yields full domain theoretic

computability�

Problem� Does PCF �or PCF�POR� or PCF�POR�E get weaker if the

�xed point operators are replaced by minimization�

Remark� Kleene �
	� has shown that on the full set�theoretic hierarchy of

functionals of �nite types �S
�S� computability gets weaker if S� is replaced

by minimization� However it seems that his proof does not carry over to our

situation� since it essentially uses discontinuous functionals�

Next we consider two theorems from elementary recursion theory� general�

ized to domain theory by Ershov ���� They establish a surprising connection

between recursion theory and topology�

Theorem ��� �Generalized Rice�Shapiro Theorem� Let U � Dcomp be

such that the set fn j �n � Ug is recursively enumerable� Then U is an open
subset of Dcomp �w�r�t� the relativized Scott�topology��

This theorem can be proved by either employing a recursively enumerable

nonrecursive set� or by using the recursion theorem� If one is interested in con�

structive meta theory it is important to note that the proof requires Markov�s

principle�

In order to state an important corollary� we need the notion of an e�ective
operation between e�ective domain D and E� By this we mean a function

f �Dcomp � Ecomp which is �traced� by some recursive function �f �N � N�

i�e� f � � � � � �f � where � and � are the principal constructivations of D and

E respectively�

Theorem ��� �Generalized Myhill�Shepherdson Theorem� Every ef�

fective operation between e�ective domains is continuous �w�r�t� the relativized

�
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Scott�topologies��

Starting with a principal constructivation of N� one may construct in a

purely recursion theoretic way a hierarchy of partial e�ective operations of
�nite type ���� The function space simply consists of e�ective operations�
which are partially numbered by Kleene�indices of partial recursive functions

tracing them� The Generalized Myhill�Shepherdson Theorem entails�

Theorem ��� The computable partial continuous functionals and the partial
e�ective operations are e�ectively isomorphic�

Since e�ective operations presumably embody the weakest notion of com�
putation on an abstract structure� this theorem says that continuity does not

restrict computability� This theorem together with theorem ��� entails that
PCF�POR�E is complete in the sense that no further constructs can enlarge

its computational power�

� Totality

Most domains D of interest contain a distinguished subset D � D consisting

of those elements naturally to be considered as �total�� For example the total

elements in a �at domain S� are the elements of S� i�e� S� �� S� the total
elements in the domain of partial number�theoretic functions are the total

functions� and the total elements of the domain R are the converging ideals�
i�e� R �� fA � R j ��A � 	g�

In all these examples the subset D is upwards closed� i�e� if x � D and
x v y then y � D� Furthermore binary consistency� x � y� is an equivalence
relation on D �i�e� transitive� Following Normann �
�� we call a domain D

with a subset D having these properties a domain with totality� and call D a
totality on D� We simply call x total if x � D� provided D is clear from the

context� Of course this notions also apply to quasi�domains�

The second requirement on a domain with totality is motivated by the fact
that x � y holds i� x and y are topologically inseparable� Regarding open sets
as the only observable properties this means that x and y are indistinguishable�

Hence one would like to identify x and y� which of course requires � to be an
equivalence relation on D�

For every total x we let x �� fy � D j x � yg� the equivalence class of x�
Furthermore we let D �� D� �� fx j x � Dg denote the quotient structure
endowed with the quotient topology�

For example the space R is homeomorphic to the reals� Rational numbers
correspond to equivalence classes with � elements� since there are � ways of
approximating a rational number by an ideal of closed rational intervals� Irra�

tional numbers can be approximated in one way only� hence their equivalent

classes are singletons�

In ��� and ��� there are numerous examples of interesting topological spaces

�
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represented in the form D�

If the underlying domain D e�ective this also implements a natural no�

tion of computability on D� We call x � D computable �PCF�de�nable if x

contains a computable �PCF�de�nable element�

If D and E are domains with totality �D need only be a quasi�domain

then it is natural to de�ne the total elements of D � E as

D � E �� D � E �� ff � D � E� f �D� � Eg�

The elements of D � E are called total functions� However in general D � E

will not be a totality on D � E� since � need not be transitive on D � E�

Moreover it is natural to consider f� g � D � E as equivalent if f�x � g�x

for all x � D� but this notion of equivalence will in general not coincide with

� in D � E� Just consider the example D � E �N�
with 	 as the only total

element in D�

Obviously a further property of total elements is required� This property

is density� Note that D � D is dense i�

�x� � D� �x � D x� v x�

One immediately checks that if D�E are domains with totality such that

D is dense �in D� then D � E is a totality on D � E� Moreover for

f� g � D � E we have f � g i� f�x � g�x for all x � D� The latter amounts

to a principle of extensionality� Two total functions are identi�ed if they are

extensionally equal on total arguments� that is� for f� g � D � E we have

f � g i� f�x � g�x for all x � D� where� of course� f�x is the equivalence

class of f�x�

We are still not satis�ed� since� even if D and E are both dense� D � E

need not be dense� Consider for exampleD ��N�
with D �� D� and E �� N�

with E �� N� Both are dense totalities� but D � E contains only constant

functions and hence is not dense� What is wrong here is the fact that we

declared � � D to be total� To exclude this we consider a property of D

forcing the elements of D to be in some sense �large��

A set D � D is co�dense if for every pair of inconsistent compacts x�� y��

i�e� x� �� y�� there is a total continuous function t�D � B�� where B �� ftt� ffg�

i�e� t � D � B� such that t�x� � tt and t�y� � ff�

The following abstract density theorem is proved in ������

Theorem ��� Let D and E be domains with totality

�� If D is co�dense and E is dense� then D � E is dense�


� If D is dense and E is co�dense� then D � E is co�dense�

This theorem is a domain�theoretic abstraction of the density theorem of

Ershov ��� which in turn has forerunners due to Kleene ��� and Kreisel �

��

Given a domain D with totality D we de�ne for every �nite type � the set

D� � D� of total continuous functionals over D of type �

D� �� D� D��� �� D� � D�� D��� �� D� 
D��

�



Berger

As an immediate corollary to theorem ��
 we get�

Theorem ��� Let D be a domain with dense and co�dense totality� Then D�

is a well�de�ned dense and co�dense totality on D� for every �nite type ��

In particular this holds for D �� N� with N� �� N� and in that case

the quotients D� are isomorphic with the so�called Kleene�Kreisel functionals

�������

The second part of the theorem �which is not so immediate has been

shown by Ershov ����

The following characterization of co�density shows that it is the weakest
possible property ensuring density for the function space ���� A totality D is
co�dense i� D � E is dense for all dense totalities E� We also have� D is

dense i� D� E is dense for all co�dense E�

By the characterization theorem above co�density seems to be an indis�

pensable property of a totality� But unfortunately the totality R � R is not

co�dense� In fact� for example� the set R� B � R � B
� contains only con�

stant functions and hence is not dense �any non�constant t � R � B would

divide the reals into two nonempty disjoint open sets� Nevertheless R � R

is dense in R� R� as can be seen fairly easily� The question� whether density

holds for all �nite types� was was recently answered by Normann �
���

Theorem ��� The total functionals over the reals� R�� are dense in R� for

all �nite types ��

In the following we prove a slightly more abstract form of this theorem
which gives explicit information about the way a dense and total sequence in
the domain under consideration can be constructed�

Theorem ��� Let D be a domain with nonempty totality such that �N �

D� D is dense in �N� D� D� Then the total functionals of �nite type

over D are dense� i�e� D� is dense in D� for all �nite types ��

Moreover for every type � a dense sequence of elements in D� is explicitely

de�nable �i�e� using simply typed lambda terms only� from an element in D�

a dense sequence in �N � D � D� any surjective function ��N � N
��

division by two with remainder� and zero test�

Theorem ��� follows from theorem ���� since� as shown in �
��� R
n

� R is
dense for all n� and this in turn implies thatD is nonempty and �N� D� D

is dense�

Furthermore theorem ��� reduces the proof of theorem ��� to the task of

proving density of �N� D� D from density and co�density of D� which is
a special case of theorem ��
�

We prove theorem ��� in several steps�

Let D�E be quasi�domains and f a continuous function from D to E� f

is called dense if its range� f �D�� is dense in E� f is called separating if it

preserves inconsistencies� i�e� �x� y � D �x �� y � f�x �� f�y�

�
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Note that for a domain D with totality 
� D is dense i� there is a dense

f � N� D� �� D is co�dense i� there is a separating f � D � �N� B�

We de�ne the Yoneda function YD� �E � F  � ��F � D � �E � D

by YD�f�g �� g � f �

Lemma � Let f � E � F �

�a If f is separating� then YD�f is dense�

�b If f is dense� then YD�f is separating�

Proof� �a Let f be separating� In order to show that YD�f is dense we take

a compact h� � E � D and try to �nd g � F � D such that YD�f�g w h��

Since h� is compact it is of the form �H for some �nite set H � f�yi� xi j

i � Ig � E� 
 D�� i�e� h��y �
F
fxi j i � I� yi v yg for all y � E� By

algebraicity of F it is easy to �nd compacts zi v f�yi for �i � I� such that

zi �� zj whenever f�yi �� f�yj� Now set G �� �f�zi�xi�ji�Ig � F� 
 D� and

g �� �G� g is well�de�ned� since if zi � zj then f�yi � f�yj and hence yi � yj�

since f is separating� Hence� by the consistence property of H� it follows that

xi � xj� For verifying YD�f�g w h� we have to show YD�f�g�xi w yi for

all i � I� But YD�f�g�xi � g�f�xi w g�zi w yi�

�b Let f be dense� In order to show that YD�f is separating we take

inconsistent g� g� � F � D and show that YD�f�g� YD�f�g
� are inconsis�

tent� For this it su�ces to �nd y � E such that YD�f�g�y� YD�f�g
��y are

inconsistent� Since g �� g�� by algebraicity of F and continuity of g� g�� there is

some compact z� � Z� such that g�z� �� g
��z�� Since f �E� is dense in F there

is y � E such that z� v f�y� One readily veri�es that y has the required

property� �

Note that any isomorphism between domains is dense and separating�

Furthermore the property of being dense and the property of being sepa�

rating are both preserved by composition g � f and pairing f 
 g� where

�f 
 g�x� y �� �f�x� g�y�

Lemma � LetD�E be domains and F a quasi�domain� let 	 � F � �E � D

and ��F � F � both be dense continuous functions� let 
 � �F � D � E

and � � E� � E both be separating� and let �nally y� � E be a �xed element�

Then for every �nite type � there are a dense f� � F � D� and a separating

g� � D� � E� both explicitely de�nable from 	� �� 
� �� and y��

Proof� Any D� is explicitely isomorphic to some D�� where � is generated by

the restricted rules� 	� �� 	� ��
 ��� Hence it su�ces to de�ne f� and g� for

types of this special form� We set

f� �� �z�f�z�y�� g� �� �x�g��z�x

which are clearly dense respectively separating� The remaining cases are taken

care of by lemma 
 and the remarks above�

f��� �� YD�g� � 	� g��� �� 
 � YD�f��

�
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f�����
�� �f�� 
 f�� � �� g�����

�� � � �g�� 
 g���

�

Proof of theorem ��� By the assumptions of theorem ��� we are given an

element x� � D and a dense 	 � N � ��N � D � D� Furthermore we

are allowed to use some surjective function ��N � N�
as well as division

by two with remainder and zero test� In order to apply lemma � we set

F �� N and E �� N � D� Since 	 and � are given it remains to de�ne

separating 
 � �N � D � �N � D and � � �N � D
�
� �N � D�

and �nally some y� � N � D� For 
 we take the identity� We de�ne �

by ��h�� h���k � i �� hi�k �i � 	� 
 which is clearly separating� Finally

y� �� �k�x�� Now� by lemma � we get for every type � a dense sequence

f��N� D� which is explicitely de�ned from 	� �� 
� �� and y�� Since 	� �� 
� ��

and y� are total� and totality is preserved by explicit de�nitions� it follows that

f� is total� �

In his paper �
�� Normann proves a more general theorem than theorem

��� connecting the discrete �N and the continuous �R case by admitting

certain partial equivalence relations di�erent from the consistency relation ��

In the same spirit a group around D� Scott �
� has recently developed a

rather general theory of topological spaces endowed with a partial equivalence

relation �equilogical spaces which might yield a good framework for putting

the work presented here into a more general �categorical context�

Closing this section we state a simple but important application of density

�

��
����

Theorem ��� �E	ective choice principle� Let �D�� be the hierarchy of

partial continuous functional over the integers� For all types � and � there

is a PCF	POR de�nable total functional of type �� 
 � � 	 � �� � �

computing for every total functional f of type �
 � � 	 such that

�x � D��y � D� f�x� y � 	

a total functional g of type �� � such that

�x � D� f�x� g�x � 	�

� E�ectivity and totality

The results discussed in this section may in some sense be viewed as the total

versions of the theorems ���� ���� and ����

In ��� it had been shown that the fan�functional computing a modulus

of uniform continuity of a type�� functional restricted to a compact fan is

PCF�de�nable �in contrast to previous results proving the contrary on the

Kleene�Kreisel functionals� It was then conjectured that every computable

total continuous functional over the integers is PCF�de�nable� in the sense that

its equivalence class of total continuous functionals contains a PCF�de�nable

element� Again it was Normann �
�� who proved in 
��� this conjecture�
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Theorem ��� Every computable total continuous functional over the integers

is PCF�de�nable�

Moreover for every type � there is a PCF�computable functional of type

�	 � 	 � � computing from every enumeration of the compact approxi�

mations of total functional f of type � �where this enumeration is coded as

sequence of integers� a total functional �f v f

The proof uses the density theorem in an essential way�

In the proof of theorem ��
 the �xed point operator of PCF is used in such
a way that it seems not to be substitutable by minimization�

Problem� Does theorem ��
 still hold if in PCF the �xed point operators
are replaced by minimization�

The generalized Myhill�Shepherdson Theorem stating that every e�ective
operation between e�ective domains is continuous has various total analogues
��� which may be viewed as a generalization of the Kreisel�Lacombe�Shoen�eld

Theorem �
��� Here� we only present one of them�

A subset D of a domain D is e�ectively dense i� there is a computable
dense sequence g�N� D�

An element y of a domain E is called almost maximal if it cannot be
extended in two inconsistent ways� i�e� �y�

� y
���y v y

�
� y

��
� y

�
� y

��� Using
the axiom of choice this can be shown to be equivalent with the property that
y has precisely one maximal extension �but we will not use this fact� For
instance� the elements of a co�dense set are almost maximal� Also all elements
of R are maximal �although R is not a co�dense set�

Theorem ��� Let D�E be e�ective domains with totality� Assume that D

is e�ectively dense and all elements of E are almost maximal� Then every

e�ective operation f �D � E can be extended to an e�ective �and by the

generalized Myhill�Shepherdson Theorem continuous� operation f
��D � E� in

the sense that f�x v f
��x for all x � D�

This theorem immediately entails the well�known theorem of Ceitin and
Moschovakis saying that every e�ective operator on the reals is continuous�

Another generalization of the Kreisel�Lacombe�Shoen�eld Theorem proved
in ��� can be used to prove a total analogue of theorem ����

Theorem ��� The hereditarily e�ective operations of �nite type �
� are ef�

fectively isomorphic with the hereditarily computable total functionals over the

integers�

� Dependent domains and universes

So far we considered only the type constructors � �function space and 

�cartesian product� However most of the work described in the previous sec�
tions has been extended to dependent products and dependent sums� and also
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to universe operators in the sense of Martin�L�of type theory �
��
��
��������

Palmgren and Stoltenberg�Hansen �
�� developed the notion of a dependent

domain and gave a domain interpretation a partial type theory� Kristiansen

and Normann �
��
�� used a universe of dependent domains with dense totality

to represent computations relative to certain noncontinuous functionals like
�
E� Waagb� modi�ed Palmgren�s and Stoltenberg�Hansen�s work for inter�

preting �the usual total type theory using dependent domains with totality�

In ��� abstract density theorems for dependent types and universe operators

are proved� Time and space does not permit us to go into any further details�
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