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A b s t r a c t - - T h e  ring Zk(+, .) modp k with prime power modulus (prime p > 2) is analysed. Its 
cyclic group Gk of units has order (p - 1)p k - l ,  and all pth power n p residues form a subgroup Fk 
with IFkl = IGkl/p. The subgroup of order p - 1, the care A k of Gk, extends Fermat's Small 
Theorem (FST) to modp k>l, consisting of p - 1 residues with n p = n modp k. The concept of 
carry, e.g., n'  in FST extension n p-1 = n'p+ 1 modp 2, is crucial in expanding residue arithmetic to 
integers, and to allow analysis of divisors of 0 modp k . 

For large enough k > Kp (critical precision Kp < p depends on p), all nonzero pairsums of core 
residues axe shown to be distinct, up to commutation. The known FLT case1 is related to this, and 
the set F k + Fk modp I¢ of pth power pairsums is shown to cover half of Gk. Yielding main result: 
each residue modp k is the sum of at most four pth power residues. Moreover, some results on the 
generative power (mod pk>2) of divisors of p-4-1 are derived. (~) 2000 Elsevier Science Ltd. All rights 
reserved. 

K e y w o r d s - - w a r i n g ,  Powersum residues, Primitive roots, Fermat, FLT modp k. 

1. I N T R O D U C T I O N  

T h e  concep t  of  closure cor responds  to  a m a t h e m a t i c a l  o p e r a t i o n  compos ing  two ob j e c t s  into an  

o b j e c t  of  t he  s ame  kind.  S t r u c t u r e  analys is  is fac i l i t a ted  by  knowing a min ima l  set  of  g e n e r a t o r s ,  

t o  f ind p rese rved  pa r t i t i ons  v/z. congruences ,  t h a t  allow fac tor ing  the  closure. For  ins tance ,  a f inite 

s t a t e  mach ine  decompos i t i on  using preserved  (s ta te )  pa r t i t ions ,  co r respond ing  to  congruences  of 

t h e  sequent ia l  c losure  (semigroup)  of  i ts s t a t e  t r ans fo rma t ions .  

A m i n i m a l  set  of g e n e r a t o r s  is cha rac te r i zed  by  anticlosure.  T h e n  each compos i t i on  of  two 

gene ra to r s  p roduces  a nongenera to r ,  thus  a new e lement  of  t he  closure. These  concep ts  can 

f ru i t fu l ly  be  used  for s t r uc tu r e  analys is  of  finite res idue a r i thmet ic .  

For  ins t ance  pos i t ive  integer  pth powers are  closed under  mul t ip l i ca t ion ,  bu t  no sum a p + b p 

yie lds  a p th power  for p > 2  ( F e r m a t ' s  Las t  Theorem,  FLT) .  A p p a r e n t l y  pth powers  form an  efficient 

set  of  add i t i ve  genera tors .  War ing  (1770) [1] d rew a t t en t i on  to  the  now fami l ia r  r ep re sen t a t i on  

p rob lem:  t he  sum of  how m a n y  pth powers  suffice to  cover all pos i t ive  integers.  Lag range  (1772) 

[1] a n d  Eule r  showed t h a t  four squares  suffice. T h e  genera l  p rob l e m is as ye t  unsolved.  

0898-1221/00/$ - see front matter (~ 2000 Elsevier Science Ltd. All rights reserved. Typeset by ~4A4S-TEX 
PII: S0898-1221 (00)00080-8 



254 N . F .  BENSCHOP 

Our aim is to show that  four pth power residues modp  k (prime p >2, k > 0 large enough) suffice 
to cover all pk residues under addition. As shown in [2,3], the analysis of residues a p + b p m o d p  k 
is useful here, because under modulus pk the pth power residues coprime to p form a proper 

multiplicative subgroup Fk = {np } mod pk of the group of units Gk (.) mod pk, with I Fkl = I Gk liP. 
The value range Fk + Fk modp  k is studied. 

Units group Gk, consisting of all residues coprime to p, is in fact known to be cyclic for all 
k > 0 [4]. There are pk-1 multiples o f p  modp  k, so its order pk _pk-1  = (p_  1)pk-1 is a product 
of two coprime factors, hence we have 

Gk = AkBk is a direct product of subgroups, with IAkl = p - 1 and IBkl = pk-1. (1) 

The extension subgroup Bk consists of all pk-1 residues 1 modp.  And in core subgroup Ak, of 
order IAkl = p -- 1 independent of k, each n satisfies n p = n modp  k, denoted as n p - n. Hence, 
core Ak is the extension of Fermat 's  Small Theorem (FST) m o d p  to modp  k for k >1. For more 
details, see [3]. 

By a coset argument, the nonzero corepairsums in Ak + Ak, for large enough k, are shown 
to be all distinct in Gk, apart  from commutation (Theorem 2.1). This leads to set Fk + Fk of 
pth power pairsums covering almost half of Gk, the maximum possible in a commutative closure, 
and clearly related to Fermat 's Last Theorem (FLT) about the anticlosure of the sum of two pth 
powers. 

Additive analysis of the roots of 0 mod p2, as sums of three pth power residues, via the generative 
power of divisors of p -4- 1 (Theorem 3.1), yields our main result (Theorem 3.2): the sum of at 
most four pth power residues modp  k covers all residues, a Waring-for-residues result. Finite 
semigroup and ring analysis beyond groups and fields is essential, due the crucial role of divisors 
of zero. 

2. CORE I N C R E M E N T S  AS COSET G E N E R A T O R S  

The two component groups of Gk =- Ak.Bk are residues modp  k of two monomials: the core 
function Ak(n) = n qk (qk = [Bk[ = pk-1) and extension function Bk(n) = n IAkl = n p-1. Core 
function A(n) has odd degree with a q-fold zero at n=0,  and is monotone increasing for all n. Its 
first difference dk(n) = Ak(n + 1) - An(n) of even degree has a global minimum integer value of 1 
at n = 0 and n = - 1 ,  and symmetry centered at n = - 1 / 2 .  Thus, integer equality dk(m) = dk(n) 
for m ~ n holds only if m + n = - 1 ,  called one-complements. 

Hence, the next definition of a critical precision k = Kp for residues with the same symmetric 
property is relevant for every odd p, not necessarily prime. Core difference dk(n) is 1 modp,  so it 
is referred to as core increment dk(n). To simplify notation, the precision index k is sometimes 
omitted, with -- denoting equivalence modp  k, especially since core Ak has order p - 1  independent 
of k. 

Define critical precision Kp as the smallest k for which the only equivalences among the core- 
increments dk (n) mod pk are the above described one-complement symmetry for n mod p, so these 
increments are all distinct for n = 1 . . .  (p - 1)/2. 

Notice that  Kp depends on p, for instance Kp=2 for p _< 7, K l l  = 3, K13 = 2, and the next 
Kp = 4 for p = 73. Upperbound Kp < p will be derived in the next section (Lemma 3.1c), so no 
'Hensel lift' [5] occurs. Notice that  IFkl/IAkI = pk-2, SO that  A2 = F2 = {n p} modp  2. 

LEMMA 2.1. Integer core-function Ak(n) = n pk-1 and its increment dk(n) = Ak(n + 1) - Ak(n) 
both have period p for residues modp  k with: 

(a) odd symmetry Ak(m) -- --Ak(n) at complements m + n = 0 modp,  
(b) even symmetry dk(m) =- d~(n) at one-complements m + n = - 1  modp,  
(c) let D2 be the set of distinct increments d2(n) modp 2 of  F2 = As for 0 < n < ( p -  

1)/2, then there are IRk Jr Fk\O I = IFkl IO21 -- IGkl ID2I/p n o n z e r o  pth power pairsuras 
m o d p  I¢ (any k >1). 
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PROOF. 

(a) Core function A k ( n )  = n qk m o d p  k (qk = pk-1, n ¢ 0 , - 1  modp)  has p - 1 distinct 

residues for each k > 0, satisfying (nq) p = n q m o d p  k, with A k ( n )  = n m o d p  due to FST. 
Apparently, including Ak(0) = 0, we have: A k ( n  +p)  = A k ( n )  m o d p  k for each k >1, with 

period p in n. And Ak(n )  of odd degree q = qk has odd symmet ry  because 

A k ( - n )  = ( - n )  q = - n  q = - A k ( n )  m o d p  k. 

(b) Increment  dk(n)  = A k ( n  + 1) - Ak(n )  m o d p  k also has period p because 

dk(n  -t- p) = (n + p + 1) qk - (n + p)qk = (n + 1) q~ - n qk = dk(n)  m o d p  k. 

This yields residues 1 m o d p  in extension group Bk. I t  is an even degree polynomial, with 

leading te rm qa.n qk-1, and even symmetry  

d k ( n - -  1) = n qk -- ( n - -  1) qk = --(--n) qk + (--n + 1) qk = dk(--n) ,  

so d k ( m )  = dk(n)  m o d p  k for one-complements: m + n = - 1  modp.  
(c) Write F for Fk (any k > 1), the subgroup o f p  th power residues m o d p  k in units group Gk. 

Then subgroup closure F F = F implies F + F = F ( F + F ) = F ( F -  F ) , since F + F = F -  F 

due to - 1  in F for odd prime p > 2. So nonzero pairsum set F + F  \ 0 is the disjoint union 
of cosets of F in G, as generated by differences F - F.  Due to (1): Gk = A k B k  = FkBk ,  

where Ak C_ Fk, it suffices to consider only differences 1 modp,  hence in extension group 
B = Bk, tha t  is, in ( F  - F)  N B. 

This amounts  to [D21 <_ h = (p - 1)/2 distinct increments d2(n),  for n = 1 . . .  h due to even 
symmet ry  (b), and excluding n = 0 involving noncore A2(0) = 0. These ID2[ cosets of Fk in Gk 

yield: IFk + Fk \ 0 [ = [Fk[ [D2], where [Fk[ = [Gk[/p = (p -- 1)p k-2 and IO2[ _< (p - 1)/2. | 

For many  primes Kp = 2, so [D2[ = (p - 1)/2, and Fermat ' s  pth power residue pairsums 
cover almost half the units group Gk, for any precision k > 1. But even if Kp > 2, with 
[D2[ < ( p -  1)/2, this suffices to express each residue m o d p  k as the sum of at most four pth power 

residues (Theorem 3.2), as shown in the next section. 

THEOREM 2.1. For a,b in core A m o d p  k, and k >_ Kp 

ali nonzero pairsums a + b mod pk are distinct, apart from commutat ion ,  so 

I(A + A)\01 = l iAI2  = (p - 1)2 
2 Z 

PROOF. Core Ak m o d p  k (any  k > 1), here denoted by A as subgroup of units group G, satisfies 
A A  = A so the set of all core pairsums can be factored as A + A = A ( A  + A).  Hence, the nonzero 
pairsums are a (disjoint) union of the cosets of A generated by A + A. Since G = A B  with 

B = {n = 1 modp},  there are IBI = pk-1 cosets of A in G. Then intersection D = (A + A) N B 
of all residues 1 m o d p  in A + A generates tDI distinct cosets of A in G. 

Due t o - 1  in core A, we have A = - A  so tha t  A + A  = A - A .  View set A as function 
values A ( n )  = n Isl m o d p  k, with A ( n )  = n m o d p  (0 < n < p). Then successive core increments 
d(n)  = A ( n  + 1) - A ( n )  form precisely intersection D, yielding all residues 1 m o d p  in A + A = 
A - A. Distinct residues d(n)  generate distinct cosets, so by definition of Kp there are for 

k > Kp : IDI = (p - 1)/2 cosets of core A generated by d(n)  m o d p  k. 
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3. C O R E  E X T E N S I O N S  F R O M  A k T O  

F k ,  A N D  T H E I R  P A I R S U M S  m o d p  k 

Extension group B modp k, with [B[ = pk-1 has only subgroups of order pC (e = 0 . . .  k - 1). 
So G =- A B  (1) has k subgroups X (e) that  contain core A, called core extensions, of order 
IX(e)[ = (p - 1 ) f ,  with core A = X (°), F = X (k-2), and G = X (k-l). 

Now p + 1 generates B of order pk-1 in Gk [3, Lemma 2], and similarly 

pi + 1 of period pk- i ( i  = 1 . . .  k - 1) in G generate the k - 1 subgroups of B. (2) 

Let y(e) c_ B ,  of order f ,  then all core extensions are cyclic with product structure 

X (e) =- A Y  (e) in G(.), where [A[ and IY(e)[ are relative prime. 

Using (2) with k - i = e yields 

y(e) - (pk-e + 1)* - {rap k-e + 1} modp k (all m) .  i2') 

As before, using residues modp k for any k > 1 : D = (A - A) n B contains the set of core 
increments. Then Theorem 2.1 on core pairsums A + A is generalized as follows (Lemma 3.1a) 
to the set X + X of core extension pairsums modp  / (j > 1), with F + F (Ferma t  sums)  for 
j = k - 2 .  

Extend Fermat's Small Theorem FST: n p-1 = 1 modp to n p-1 = n'p + 1 modp: ,  which 
defines the FST-carry n I of n < p. This yields an efficient core generation method i b) to 
compute n pl modp i+l, as well as a proof (c) of critical precision upperbound Kp < p. 

LEMMA 3.1. For core increments Dk = (Ak -- Ak)  n Bk in Gk = AkBk  modp k>l (prime p > 2), 
pth power residues set Fk ---- {n p} modp k, and Xk  any core extension Ak C X k  C Fk, 

(a) X k  + X k  =-- X k D k ,  so core-increments Dk generate the Xk-cosets in X k  + Xk ,  

(b) [np-1] p'-I = n'p ~ + 1 modp i+1, where FST-carry n' of  n does not depend on i, and 

np' = [n'p ~ + 1]n p'- '  modpi+l ,  
(c) [or k -- p: [Dp[ = ( p -  1)/2 modp p, so critical precision g p  < p. 

y(e) then as in Theorem 2.1: X + X  = X - X  = ( X - X ) X .  For residues PROOF a. Write X for "'k , 
modp k, we seek intersection i X - X) n B of all distinct residues 1 modp in B that  generate the 
cosets of X in X + X modp k. By (2,2 I) core extension X = A Y  = A { m p  k-e + 1}. Discard 
terms divisible by p (are not in B), then (X + X) n B = (A + A) n B = (A - A) n B = D for 
each core extension. So A + A and X + X have the same coset generators in Gk, namely the core 
increment set D = D~ C Bk. 

PROOF b. Notice successive cores satisfy by definition Ai+l = As modp i. In other words, 
each pth power step i ~ i + 1 : [nP~] p produces one more significant digit (msd) while fixing 
the i less significant digits (lsd). Now n p-1 = n'p + 1 modp 2 has pth power residue [np-t] p = 
nip 2 + 1 modp 3, implying lemma part (b) by induction on i in [np-t] p'. 

This yields an efficient core generation method. Denote f i (n)  = n f ,  with n < p, then 

f i (n )  = np' = [n p] p'- '  = [nn p-l] p,-1 = f i - l ( n )  [n'p' + 1] modp ~+1, implying (3) 

f /(n)  = f / - l ( n )  modp *, next core msd f~_l(n)n 'p  ~ = nntp i ~ 0 modp i+l. (3') 

Notice that  by FST: f k (n)  = n modp, for all k > 0, and 0 < n < p implies n' ~ 0 modp. 

PROOF c. In (a), take Xk = Fp and notice that  Fp + Fp = Fp - Fp modp p contains h distinct 
integer increments 

e l ( n )  = (n + 1 F  - < f ,  (4) 
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which are I m o d p  p, hence in Bp: t hey  genera te  h dist inct  cosets of core Ap in Gp = ApBp m o d p  p, 

a l though  they  are not  core Ap increments .  Repea t ed  pth powers n p~ in cons tan t  p-digi t  precision 

yield increments  ei(n) = (n + 1) p' - n p' m o d p  p, which for i = p - 1 produce  the  increments  of 

core Ap m o d p  p. 
Dis t inct  increments  ei(n) ~ ei(m) m o d p  p remain  dis t inct  for i --* i + 1, shown as follows. 
For nonsymmet r i c  n, m < p ( L e m m a  2.1b) let increments  ei sat isfy 

ei(n) = ei(m) m o d p  j for some j < p (5) 

and 
e~(n) ¢ ei(m) m o d p  j+ l .  (5') 

T h e n  for i --* i + 1 the  same holds, since ei+l(Z) -- [f~(z + 1)] p - [f/(x)] p where  z equals  n and m,  
respectively.  Because in (5, 5') each of the  four f i ( )  t e rms  has form bp 3 + a m o d p  J+l  where  the, 
respectively,  a < pJ yield (5), and the, respectively, msd ' s  b < p cause inequivalence (5').  T h e n  

f i + , 0  = (bP 3 + a) p = aP-lbP 3+1 + an m o d p  j+2 --- ap m o d p  j+ l ,  (6) 

which depends  only on a, and  not  on msd bp 3 of f i 0 .  This  preserves equivalence (5) m o d ~  for 
i --* i + 1, and  similar ly inequivalence (5') m o d ~  +1 because,  depending only on the  respect ive  
a m o d p  j ,  equivalence a t  i + 1 would contradic t  (5') a t  i. Cases i < j and i >_ j behave  as follows. 

For i < j ,  the  successive differences 

ei(n) - ei(m) = yipJ ~ 0 m o d ~ + l  . . .  (6') 

vary  wi th  i f rom i to j - l ,  and  by (3') the  core residues f i ()  m o d p  i sett le for increasing precision i. 
So initial inequivalences m o d p  p (4), and more  specifically m o d p  j+ l  (5), are preserved.  
And  for all i _> j ,  the  differences (6') are some cons tant  cp 3 ¢ 0 m o d p  j+ l ,  again  by (3').  Hence 

by induct ion,  base  (4) and s teps (5,6): core Ap m o d p  p has h = ( p -  1) /2 dist inct  increments ,  so 
crit ical precision Kp < p. II 

Apparent ly ,  Kp is de te rmined  a l ready by the  initial integer increments  el(n) < pP (0 < n < p),  
as the  m i n i m u m  precision k for which nonsymmet r i c  n, m < p (so n + m ~ p - 1) have el(n) 
el(m) m o d p  k. 

For instance,  p = l l  has Kp = 3, and m o d p  3 we have h = 5 dist inct  core increments ,  in base 11 

code: d 3 ( 1 . . . 9 ) =  {4al ,  711, 871, 661, 061, 661, 871, 711, 4a l}  so core A3 has the  max ima l  
five cosets  genera ted  by increments  d3(n). Equivalence d2(4) = d2(5) = 61 m o d p  2 implies 661 
and 061 to be  in the  same  F-cose t  in G3. In fact, 061.601=661 (base 11) wi th  601 in F m o d p  3, 
as are all p residues of form {rap 2 + 1) = (p2 + 1)* m o d p  3. 

As example  of L e m m a  3.1c, wi th  p -- 11 and up to three-digi t  precision 

{n p} = {001, 5a2, 103, 274, 325, 886, 937, ca8, 609, Oaa), 

core A3 = (001,4a2,  103, 974, 525, 586, 137, 9a8, 609, aaa), 

e1(4) = 325 - 274 = 061 and 

e1(5) = 886 - 325 = 561 with  FST-carr ies :  4 p-1 = a l ,  5 p-1 = 71, 6 p-1 = 51 so: 

e2(4) = 525 - 974 = 661 by rule (3) yields: 5 p2 - 4 p2 = [70115 p - [a0114 p = 661, 

e2(5) = 586 - 525 = 061 derived by (3) as: 6 p: - 5 p2 = [50116 p - [70115 p = 061. 

Notice second difference e2(5) - e 2 ( 4 )  = 0 6 1 -  661 = 500 equals el (5) - e l  (4) = 561 - 0 6 1  = 500 
by L e m m a  3.1c. 
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With IFI - ]GI/p and IDkl equal to (p - 1)/2 for large enough k < p, the n o n z e r o  pth power 
pairsums cover nearly half of G. It will be shown that  four pth p o w e r  residues suffice to cover 
not only G modp  k, but all residues Z modp  k. In this additive analysis, we use the following. 

NOTATION. S+t is the set of all sums of t elements in set S, and S + b stands for all sums s + b 
with s q S. 

Extension subgroup B is much less effective as additive generator than F.  Notice that  B - 
{ n p +  1} so that  B + B - { m p  + 2}, and in general B+i - { n p  + i} in G, denoted by N~, the 
subset of G which is i modp. They are also the (additive) translations N~ =- B - 1 + i (i < p) 

of B. Then N1 - B, while only No - { n p }  is not in G, and Ni + Nj -- Ni+j, corresponding to 
addition modp.  

Coresums A+i in general satisfy the next inclusions, implied by 0 6 A+2 -= A + A, 

for all i _> 1 : A+i _C A+(2+i) and F+~ _C F+(2+0. 

F+3 covering all nonzero multiples m p  modp  k (k > 2) in No is related to a special result on 
the number 2 as generator. For instance, a computer scan showed 2 p # 2 m o d p  2 (2 ~t A2) for 
all primes p < 109 except 1093 and 3511, although inequality does hold modp  3 for all primes 
(shown next). Notice that  only 2 divides p - 1 for each odd prime p, so the two-cycle C2 -- +1 
is the only cycle common to all cores for p > 2. The generative power of 2 might be related to it 
being a divisor of p - 1 and p + 1, for all p > 2. 

Regarding the known unsolved problem of a simple rule to find primitive roots of 1 mod pk, 
consider the divisors r of p2 _ 1 = ( p -  1)(p + 1) as generators .  

Recall that  by (1) units group Gk = A k B k  modp  k has core subgroup Ak of order p - 1, for 
any precision k > 0, and extension group Bk = (p + 1)* of all pk-1 residues 1 modp,  generated 
by p + 1 [3, Lemma 2]. In fact, p - 1 generates all 2p k-1 residues +1 modp  k, including Bk.  

In multiplicative cyclic group Gk of order ( p -  1)p k - l ,  it stands to reason to look for generators 
of Gk (primitive roots of 1 modp  k) among the divisors of such powerful generators as p + 1, or 
similarly o f p  2 - 1 = ( p -  1 ) (p+  1). Given prime structure p2 _ 1 = lqi P~', there are 1-[~ (ei + 1) 
divisors, forming a lattice, which is not Boolean since factor 22 makes p2 _ 1 nonsquarefree. 

Notice that  for each unit n in Gk, we have n p-  1 in Bk,  and n pk- 1 in core Ak,  while intersection 
Ak N Bk = 1 modp  k, the single unity of Gk. No generator g of Gk can be in core Ak, since 
Ig*l = ( P -  1)P k - l ,  while the order In*l of n 6 Ak divides [Akl - - P -  1. Hence, p must divide the 
order of any noncore residue. If n < pk, then n can be interpreted both as integer and as residue 
mod pk. It  turns out that  analysis modulo p3 suffices to show that  the divisors r of p 5= 1 are 
outside core, so r p # r modp3: a necessary but not sufficient condition for a primitive root. This 
amounts to quadratic analysis of an extension of Fermat 's Small Theorem (FST) on  pth power 
residues, including two carry digits (base p). 

THEOREM 3.1. DIVISORS OF p + 1. 

I f  r > 1 divides p2 _ 1, then r p # r m o d  pk ( k > 3). 

PROOF. r p 7t r modp  k implies inequality modp  k+l. With A2 = F2 = {n  p} modp  2, so each pth 
power is in core A2 modp  2, it suffices to show r p ~ r modp 3. Factorize p2 _ 1 = rs,  with positive 
integer cofactors r and s. Then rs  = - 1  modp  2, so opposite signed cofactors { r , - s }  or { - r ,  s} 
form an inverse pair modp  2. Inverses in a finite group G have equal order (period) in G, with 
order two automorphism n ~-* n -1. So orders [r*[ and [(-s)*[ are equal in G2. 

Notice rs  -- p2 _ 1 is not in core A3, where - 1  modp  3 is the only core residue that  is - 1  modp,  
since the p -  1 core residues niSei of Ak are distinct # 0 modp  (FST). In fact, (rs) p = (p2_ 1)p = 
- 1  modp  3 and no smaller exponent yields this. So p2 _ 1 = rs  has order 2p in G3, generating all 
2p residues +1 modp  2, with inverse pair {r v, - s  p} of equal order in G3. Core A3 is closed under 
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multiplication, so at most one cofactor of noncore product  r s  can be in core. In fact, neither is 
in c o r e  AJ, so both r p - 1  and s p-1 are ~ 1 m o d p  a, seen as follows. 

By G3 = A j B 3  (1): each n E G3 has product  form n = n 'n"  m o d p  a of two components,  

with n '  in core A3 and n"  in extension group Bj.  Then r P ( - s )  p = 1 m o d p  3, where r p and - s  p 

as inverse pair in G3 have equal order, and each component forms an inverse pair of equal orders 

in A3 and B3 (coprime), respectively. The latter must divide [Bj] = p2, and discarding order 1 
(both r, s cannot  be in core, as shown) their common order is p or p2. For any unit n the order 
of n p divides tha t  of n, so p dividing the common order of r p and s p implies p dividing also those 
of r and s, hence cofactors r and s of p2 _ 1 are both  outside core Aj. | 

NOTES. 

1. A generator g < p of G2, so Ig*[ = (P - 1)p, also generates Gk m o d p  k>2 of order (p - 
1)pk-1 [4]. 

2. Cofactors r, s in r s  = p2 _ 1 -- (p - 1)(p + 1) have equal period in G3, up to a factor of 2, 

so only r <_ p +  1 need be inspected for periodic analysis. Recall exceptions p = 1093, 3511 
with 2 p = 2 m o d p  2, the only two primes p < 109 with this property. Of the 79 primes 
up to 401, there are seven primes with r p = r m o d p  2 for some divisor r I p2 _ 1 and 

cofactor s, namely 

p ( r ) :  11(3), 29(14), 37(18), 181(78), 257(4S), 281(20), 313(104). 

3. A generator g of Gk is outside core, but g [ p ± 1 (Theorem 3.1) does not guarantee 

Gk = g*. 
4. However, computat ional  evidence seems to suggest the next conjecture. 

CONJECTURE. A t  /east one divisor g [ p ± 1 (pr ime p > 2) generates  Gk, or h a l / o f  
Gk wi th  - 1  missing: then  comp lemen t s  - n  m o d p  k yield the  other hal f  o f  Gk (e.g., 

p - - 7 3 :  G 3 = ± 6 "  = ± 1 2 " ) .  

5. The theorem also holds for divisors of p2 + 1, obviating "up to a factor 2" in the proof. 

For odd prime p holds: 2 divides both p - 1 and p + l ,  and 3 divides one of them, hence the 
following. 

COROLLARY 3.1. For pr ime  p ( including p = 2), k _> 3 and n = 2, 3 

n p ~ n m o d p  k, and in fact  ± {n, n -1 } m o d p  k are outside core Ak>2 for every  odd pr ime.  

In set notation: quadruple Q(r)  = + {r, r - l } ,  r [  ( p ±  1), and k >_ 3 imply Q(r )  ~ A k  = O. 

Moreover, the product  of r ~ Ak with a core element is outside core: [ Q(r)Ak ] N Ak = 0. 

Hence, 2 is not in core A m o d p  k for any prime p >2. This relates to p - 1 having divisor 2 for 
all p, and C2 = { - 1 ,  1} as the only common subgroup of Z(.) m o d p  k for all primes p >2. And 2 
not in core implies the same for its complement and inverse, - 2  and ± 2 -1. 

Notice tha t  No m o d p  k consists of all multiples mp of p, and their base p code ends on '0' ,  
so [N01 - - p k - 1 .  In fact, No consists of all divisors of 0, the maximal nilpotent subsemigroup of 
Z(.)  m o d p  k, the semigroup of residue multiplication. For prime p, there are just two idempotents  
in Z(.)  modpk:  1 in G and 0 in No, so G and No are complementary in Z, noted No - Z \ G. 

For prime p > 2, consider integer pth power function F(n )  = {nV}, with Fk denoting set 

F ( n )  m o d p  k for all n ~ 0 modp,  and core function A k ( n )  -- n vk-1 , with core A2 = F2. Multiples 
mp  (m ~ 0 modp)  are not pth power residues (which are 0 modp2),  thus are not in Fk for any 
k > 1. But  they are sums of three pth power residues: mp E F+3 m o d p  k for any k > 1, shown 
next. In fact, due to FST we have F(n )  -- n m o d p  for all n, so F ( r ) + F ( s ) + F ( t )  = r + s + t  modp,  
which for a sum 0 m o d p  of positive triple r, s, t implies r + s + t = p. 
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LEMMA 3.2. For m ~ 0 modp:  mp E F+3 m o d p  k>l, hence 

each multiple mp  m o d p  k>l outside Fk is the sum of  three pth power residues (in Fk). 

PROOF. Analysis m o d p  ~ suffices, because each mp m o d p  k>l is reached upon multiplication 

by Fk, due to (.) distributing over (+).  Core Ak has order p - 1 for any k >0, and F2 = A2 
implies powersums F2 + F2 + F2 mod p2 to be sums of three core residues. 

Assume A(r)  + A(s)  + A(t)  = mp ~ 0 m o d p  2 for some positive r, s, t with r + s + t = p. 

Such mp ¢ A2 generates all IA2mpl = [A21 = p - 1 residues in No \ 0 m o d p  2. And for each 
prime p > 2, there are many such coresums mp with m ~ 0 modp,  seen as follows. 

Any positive triple (r, s, t) with r + s + t = p yields, by FST, coresum A(r)  + A(s)  + A(t)  = 

r ÷ s ÷ t -- p modp ,  hence with a coresum mp m o d p  2. If m -- 0, then this solves FLT casel for 
residues m o d p  2, for instance the cubic roots of 1 m o d p  2 for each prime p = 1 mod 6, see [3]. 

Nonzero m is the dominant  case for any prime p > 2. In fact, normation upon division by one 
of the three core terms in units group G2 yields one unity core term, say A(t)  -- 1 m o d p  2, hence 
t = l .  T h e n r + s = p - l y i e l d s A ( r ) + A ( s ) = m p - 1  m o d p  2 , w h e r e 0 < m < p .  

There  are 1 _< ID2[ < ( p -  1)/2 distinct cosets of F2 = A2 in G2 (Lemmas 2.1 and 3.1), yielding 
as many  distinct core pairsums mp - 1 m o d p  2 in set A2 ÷ A2. 

For most primes, take r = s equal to h = ( p -  1)/2 and t = 1, with core residue A(h)  = h = 

- 2  -1 modp.  Then 2 A ( h ) + l  = mp = 0 modp,  with summation indices h + h + l  - - p .  For 
instance, p = 7 has A(3) = 43 mod 72 (base 7), and 2A(3) + 1 = 16 + 1 = 20. 

If  for some prime p, we have in this case m = 0 modp,  then 2A(h) = - 1  m o d p  2, hence 
A(h)  = h p = h m o d p  2, and thus, also A(2) = 2 p = 2 m o d p  2. In such rare cases (for primes 
< 109 only p -- 1093 and p -- 3511), a choice of other triples r + s + t = p exists for which 
A(r)  + A(s)  + A(t)  = mp ~ 0 m o d p  2, as just shown. 

For instance, 2 p -- 2 m o d p  2 for p=1093, but 3 p -- 936p + 3 m o d p  2 so that  instead of (h, h, 1), 
one applies (r, s, 1) where r = ( p -  1)/3 and s = ( p -  1)2/3. And p = 3511 has 3 p -- 21p+3 m o d p  2, 
while 31p - 1 allows a similar index triple with coresum mp ~ 0 m o d p  2. 

Lemma 3.2 leads to the main additive result for residues in ring Z[+,  .] m o d p  k 

each residue m o d p  k is the sum of at most four pth power residues. 

In fact, with subgroup F = {n p} of G in semigroup Z(.) m o d p  k, subsemigroup No - {mp} of 
divisors of zero, and extension group B --- N1 - N 0 + l  in G, we have the following. 

THEOREM 3.2. For residues m o d p  k (k _> 2, pr ime p >2) 

Z=-No U G - F + 3  U F+4. 

PROOF. Analysis m o d p  2 suffices, by extension Lemma 3.1, and by Lemma 3.2 all nonzero multi- 

ples o f p  are No \ 0 - F+3, while 0 E F+2 because - 1  E F.  Hence, F+2 U F+3 covers No. Adding 
an extra  te rm F yields F+3 U F+4 D N o + F ,  which also covers A N o +  A D A ( N 0 + I )  = A B  = G 
because 1 E A and A C_ F,  so all of Z -= No t2 G is covered. | 

NOTES. 

1. Case p = 3 is easily verified by complete inspection as follows. Analysis m o d p  3 (The- 
orem 3.2) is rarely needed; for instance, condition 2 p ~ 2 mod p2 holds for all primes 
p < 109 except for the two primes 1093 and 3511. So m o d p  2 will suffice for p -- 3; 
moreover, F -- A m o d p  2. 

Now F -- { -1 ,  1} - +1 so that  F + F -- {0, +2}. Adding +1 yields F+3 - +{1,3} 
and again F+4 -- {0, :t=2, +4}, so that  F+3 U F+4 indeed cover all residues mod 3 2. Notice 
tha t  F+3 and F+4 are disjoint which, although an exception, necessitates their union in 
the general s ta tement  of Theorem 3.2. 

It  is conjectured that  F+3 C F+4 for p >6, then Z - F+4 for primes p > 6. 
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. For p = 5, again  use analysis mod  p2, and test  if F ( 2 A ( h ) +  1) covers all nonzero m5 m o d  52 
( L e m m a  3.2). Again F = A m o d p  2, implying A(h)  E F.  Now core A --- F - (25) * - 

{ 7 , - 1 , - 7 ,  1} - ±{1,  7}, while h _-- 2 wi th  A(2) - 7, or in base 5 code: A(2) - 12 and 

2A(h)  + 1 - 30. Hence, F ( 2 A ( h )  + 1) ~ ±{01,  12}30 -- ±{30,  10}. This  set  indeed covers 
all four nonzero residues m5 rood 52. 

4. C O N C L U S I O N S  

T h e  appl ica t ion  of e l ementa ry  semigroup concepts  to s t ruc ture  analysis of residue a r i thmet ic  
m o d p  k [2,3,6] is very useful, allowing divisors of zero. Fe rma t ' s  inequali ty and War ing ' s  repre- 
sen ta t ion  are abou t  powersums,  thus abou t  addi t ive proper t ies  of closures in Z( . )  m o d p  k. 

F e r m a t ' s  inequality, viewed as ant±closure, reveals n p as a powerful set  of addi t ive genera tors  of 
Z ( + ) .  Now Z( . )  has idempoten t  1, genera t ing only itself, while 1 generates  all of  Z ( + )  (Peano) .  

Similarly, expand ing  1 to the  subgroup  F - ( n  p} o f p  th power residues in Z( . )  m o d p  k, of  order  

IFI = IGI/p, yields a mos t  efficient addit ive genera tor  with: F+3 t2 F+4 - Z ( + )  m o d p  k for any  

p r ime  p > 2. This  is compat ib le  for p = 2 with the known result  of each posit ive integer being 
the  sum of a t  most  four squares.  

T h e  concept  of critical precis ion (base p) is very useful for linking integer symmet r i c  proper t ies  
to  residue a r i thmet ic  m o d p  k, and quadra t ic  analysis ( m o d p  3) for generat ive  purposes  such as 

pr imi t ive  roots.  
Finally, for p -- 2, the mos t  pract ical  of primes: p2 _ 1 = p ÷ 1 -- 3 is in fact a semipr imi t ive  

root  of  1 m o d 2  k for k _> 3 (Theorem 3.1: Note  4, [3]: L e m m a  2) yielding a useful engineering 

result  [7]. 
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