An Intemational Joumal
computers \&
mathematics
with applications

Powersums Representing Residues $\bmod p^{k}$, from Fermat to Waring

N. F. Benschop
Amspade Research, NL-5663EZ Geldrop
The Netherlands
benschop@iae.nl

(Received September 1998; accepted December 1998)

Abstract

The ring $Z_{k}(+,.) \bmod p^{k}$ with prime power modulus (prime $p>2$) is analysed. Its cyclic group G_{k} of units has order $(p-1) p^{k-1}$, and all $p^{\text {th }}$ power n^{p} residues form a subgroup F_{k} with $\left|F_{k}\right|=\left|G_{k}\right| / p$. The subgroup of order $p-1$, the core A_{k} of G_{k}, extends Fermat's Small Theorem (FST) to $\bmod p^{k>1}$, consisting of $p-1$ residues with $n^{p}=n \bmod p^{k}$. The concept of carry, e.g., n^{\prime} in FST extension $n^{p-1}=n^{\prime} p+1 \bmod p^{2}$, is crucial in expanding residue arithmetic to integers, and to allow analysis of divisors of $0 \bmod p^{k}$. For large enough $k \geq K_{p}$ (critical precision $K_{p}<p$ depends on p), all nonzero pairsums of core residues are shown to be distinct, up to commutation. The known FLT case ${ }_{1}$ is related to this, and the set $F_{k}+F_{k} \bmod p^{k}$ of $p^{\text {th }}$ power pairsums is shown to cover half of G_{k}. Yielding main result: each residue $\bmod p^{k}$ is the sum of at most four $p^{\text {th }}$ power residues. Moreover, some results on the generative power ($\bmod p^{k>2}$) of divisors of $p \pm 1$ are derived. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords-Waring, Powersum residues, Primitive roots, Fermat, FLT $\bmod p^{k}$.

1. INTRODUCTION

The concept of closure corresponds to a mathematical operation composing two objects into an object of the same kind. Structure analysis is facilitated by knowing a minimal set of generators, to find preserved partitions viz. congruences, that allow factoring the closure. For instance, a finite state machine decomposition using preserved (state) partitions, corresponding to congruences of the sequential closure (semigroup) of its state transformations.

A minimal set of generators is characterized by anticlosure. Then each composition of two generators produces a nongenerator, thus a new element of the closure. These concepts can fruitfully be used for structure analysis of finite residue arithmetic.

For instance positive integer $p^{\text {th }}$ powers are closed under multiplication, but no sum $a^{p}+b^{p}$ yields a $p^{\text {th }}$ power for $p>2$ (Fermat's Last Theorem, FLT). Apparently $p^{\text {th }}$ powers form an efficient set of additive generators. Waring (1770) [1] drew attention to the now familiar representation problem: the sum of how many $p^{\text {th }}$ powers suffice to cover all positive integers. Lagrange (1772) [1] and Euler showed that four squares suffice. The general problem is as yet unsolved.

Our aim is to show that four $p^{\text {th }}$ power residues $\bmod p^{k}$ (prime $p>2, k>0$ large enough) suffice to cover all p^{k} residues under addition. As shown in $[2,3]$, the analysis of residues $a^{p}+b^{p} \bmod p^{k}$ is useful here, because under modulus p^{k} the $p^{\text {th }}$ power residues coprime to p form a proper multiplicative subgroup $F_{k}=\left\{n^{p}\right\} \bmod p^{k}$ of the group of units $G_{k}(.) \bmod p^{k}$, with $\left|F_{k}\right|=\left|G_{k}\right| / p$. The value range $F_{k}+F_{k} \bmod p^{k}$ is studied.

Units group G_{k}, consisting of all residues coprime to p, is in fact known to be cyclic for all $k>0$ [4]. There are p^{k-1} multiples of $p \bmod p^{k}$, so its order $p^{k}-p^{k-1}=(p-1) p^{k-1}$ is a product of two coprime factors, hence we have

$$
\begin{equation*}
G_{k}=A_{k} B_{k} \text { is a direct product of subgroups, with }\left|A_{k}\right|=p-1 \text { and }\left|B_{k}\right|=p^{k-1} \tag{1}
\end{equation*}
$$

The extension subgroup B_{k} consists of all p^{k-1} residues $1 \bmod p$. And in core subgroup A_{k}, of order $\left|A_{k}\right|=p-1$ independent of k, each n satisfies $n^{p}=n \bmod p^{k}$, denoted as $n^{p} \equiv n$. Hence, core A_{k} is the extension of Fermat's Small Theorem (FST) $\bmod p$ to $\bmod p^{k}$ for $k>1$. For more details, see [3].

By a coset argument, the nonzero corepairsums in $A_{k}+A_{k}$, for large enough k, are shown to be all distinct in G_{k}, apart from commutation (Theorem 2.1). This leads to set $F_{k}+F_{k}$ of $p^{\text {th }}$ power pairsums covering almost half of G_{k}, the maximum possible in a commutative closure, and clearly related to Fermat's Last Theorem (FLT) about the anticlosure of the sum of two $p^{\text {th }}$ powers.

Additive analysis of the roots of $0 \bmod p^{2}$, as sums of three $p^{\text {th }}$ power residues, via the generative power of divisors of $p \pm 1$ (Theorem 3.1), yields our main result (Theorem 3.2): the sum of at most four $p^{\text {th }}$ power residues $\bmod p^{k}$ covers all residues, a Waring-for-residues result. Finite semigroup and ring analysis beyond groups and fields is essential, due the crucial role of divisors of zero.

2. CORE INCREMENTS AS COSET GENERATORS

The two component groups of $G_{k} \equiv A_{k} \cdot B_{k}$ are residues $\bmod p^{k}$ of two monomials: the core function $A_{k}(n)=n^{q_{k}}\left(q_{k}=\left|B_{k}\right|=p^{k-1}\right)$ and extension function $B_{k}(n)=n^{\left|A_{k}\right|}=n^{p-1}$. Core function $A(n)$ has odd degree with a q-fold zero at $n=0$, and is monotone increasing for all n. Its first difference $d_{k}(n)=A_{k}(n+1)-A_{k}(n)$ of even degree has a global minimum integer value of 1 at $n=0$ and $n=-1$, and symmetry centered at $n=-1 / 2$. Thus, integer equality $d_{k}(m)=d_{k}(n)$ for $m \neq n$ holds only if $m+n=-1$, called one-complements.

Hence, the next definition of a critical precision $k=K_{p}$ for residues with the same symmetric property is relevant for every odd p, not necessarily prime. Core difference $d_{k}(n)$ is $1 \bmod p$, so it is referred to as core increment $d_{k}(n)$. To simplify notation, the precision index k is sometimes omitted, with \equiv denoting equivalence $\bmod p^{k}$, especially since core A_{k} has order $p-1$ independent of k.

Define critical precision K_{p} as the smallest k for which the only equivalences among the coreincrements $d_{k}(n) \bmod p^{k}$ are the above described one-complement symmetry for $n \bmod p$, so these increments are all distinct for $n=1 \ldots(p-1) / 2$.

Notice that K_{p} depends on p, for instance $K_{p}=2$ for $p \leq 7, K_{11}=3, K_{13}=2$, and the next $K_{p}=4$ for $p=73$. Upperbound $K_{p}<p$ will be derived in the next section (Lemma 3.1c), so no 'Hensel lift' [5] occurs. Notice that $\left|F_{k}\right| /\left|A_{k}\right|=p^{k-2}$, so that $A_{2}=F_{2}=\left\{n^{p}\right\} \bmod p^{2}$.
LEMMA 2.1. Integer core-function $A_{k}(n)=n^{p^{k-1}}$ and its increment $d_{k}(n)=A_{k}(n+1)-A_{k}(n)$ both have period p for residues $\bmod p^{k}$ with:
(a) odd symmetry $A_{k}(m) \equiv-A_{k}(n)$ at complements $m+n=0 \bmod p$,
(b) even symmetry $d_{k}(m) \equiv d_{k}(n)$ at one-complements $m+n=-1 \bmod p$,
(c) let D_{2} be the set of distinct increments $d_{2}(n) \bmod p^{2}$ of $F_{2}=A_{2}$ for $0<n \leq$ ($p-$ 1)/2, then there are $\left|F_{k}+F_{k} \backslash 0\right|=\left|F_{k}\right|\left|D_{2}\right|=\left|G_{k}\right|\left|D_{2}\right| / p$ nonzero $p^{\text {th }}$ power pairsums $\bmod p^{k}($ any $k>1)$.

Proof.
(a) Core function $A_{k}(n)=n^{q_{k}} \bmod p^{k}\left(q_{k}=p^{k-1}, n \neq 0,-1 \bmod p\right)$ has $p-1$ distinct residues for each $k>0$, satisfying $\left(n^{q}\right)^{p}=n^{q} \bmod p^{k}$, with $A_{k}(n)=n \bmod p$ due to FST. Apparently, including $A_{k}(0)=0$, we have: $A_{k}(n+p)=A_{k}(n) \bmod p^{k}$ for each $k>1$, with period p in n. And $A_{k}(n)$ of odd degree $q=q_{k}$ has odd symmetry because

$$
A_{k}(-n)=(-n)^{q}=-n^{q}=-A_{k}(n) \bmod p^{k} .
$$

(b) Increment $d_{k}(n)=A_{k}(n+1)-A_{k}(n) \bmod p^{k}$ also has period p because

$$
d_{k}(n+p)=(n+p+1)^{q_{k}}-(n+p)^{q_{k}}=(n+1)^{q_{k}}-n^{q_{k}}=d_{k}(n) \bmod p^{k} .
$$

This yields residues $1 \bmod p$ in extension group B_{k}. It is an even degree polynomial, with leading term $q_{k} \cdot n^{q_{k}-1}$, and even symmetry

$$
d_{k}(n-1)=n^{q_{k}}-(n-1)^{q_{k}}=-(-n)^{q_{k}}+(-n+1)^{q_{k}}=d_{k}(-n)
$$

so $d_{k}(m)=d_{k}(n) \bmod p^{k}$ for one-complements: $m+n=-1 \bmod p$.
(c) Write F for $F_{k}($ any $k>1)$, the subgroup of $p^{\text {th }}$ power residues $\bmod p^{k}$ in units group G_{k}. Then subgroup closure $F F=F$ implies $F+F=F(F+F)=F(F-F)$, since $F+F=F-F$ due to -1 in F for odd prime $p>2$. So nonzero pairsum set $F+F \backslash 0$ is the disjoint union of cosets of F in G, as generated by differences $F-F$. Due to (1): $G_{k}=A_{k} B_{k}=F_{k} B_{k}$, where $A_{k} \subseteq F_{k}$, it suffices to consider only differences $1 \bmod p$, hence in extension group $B=B_{k}$, that is, in $(F-F) \cap B$.
This amounts to $\left|D_{2}\right| \leq h=(p-1) / 2$ distinct increments $d_{2}(n)$, for $n=1 \ldots h$ due to even symmetry (b), and excluding $n=0$ involving noncore $A_{2}(0)=0$. These $\left|D_{2}\right|$ cosets of F_{k} in G_{k} yield: $\left|F_{k}+F_{k} \backslash 0\right|=\left|F_{k}\right|\left|D_{2}\right|$, where $\left|F_{k}\right|=\left|G_{k}\right| / p=(p-1) p^{k-2}$ and $\left|D_{2}\right| \leq(p-1) / 2$.

For many primes $K_{p}=2$, so $\left|D_{2}\right|=(p-1) / 2$, and Fermat's $p^{\text {th }}$ power residue pairsums cover almost half the units group G_{k}, for any precision $k>1$. But even if $K_{p}>2$, with $\left|D_{2}\right|<(p-1) / 2$, this suffices to express each residue $\bmod p^{k}$ as the sum of at most four $p^{\text {th }}$ power residues (Theorem 3.2), as shown in the next section.

Theorem 2.1. For a, b in core $A \bmod p^{k}$, and $k \geq K_{p}$
all nonzero pairsums $a+b \bmod p^{k}$ are distinct, apart from commutation, so

$$
|(A+A) \backslash 0|=\frac{1}{2}|A|^{2}=\frac{(p-1)^{2}}{2} .
$$

Proof. Core $A_{k} \bmod p^{k}($ any $k>1)$, here denoted by A as subgroup of units group G, satisfies $A A=A$ so the set of all core pairsums can be factored as $A+A=A(A+A)$. Hence, the nonzero pairsums are a (disjoint) union of the cosets of A generated by $A+A$. Since $G=A B$ with $B=\{n=1 \bmod p\}$, there are $|B|=p^{k-1}$ cosets of A in G. Then intersection $D=(A+A) \cap B$ of all residues $1 \bmod p$ in $A+A$ generates $|D|$ distinct cosets of A in G.
Due to -1 in core A, we have $A=-A$ so that $A+A=A-A$. View set A as function values $A(n)=n^{|B|} \bmod p^{k}$, with $A(n)=n \bmod p(0<n<p)$. Then successive core increments $d(n)=A(n+1)-A(n)$ form precisely intersection D, yielding all residues $1 \bmod p$ in $A+A=$ $A-A$. Distinct residues $d(n)$ generate distinct cosets, so by definition of K_{p} there are for $k \geq K_{p}:|D|=(p-1) / 2$ cosets of core A generated by $d(n) \bmod p^{k}$.

3. CORE EXTENSIONS FROM A_{k} TO F_{k}, AND THEIR PAIRSUMS $\bmod p^{k}$

Extension group $B \bmod p^{k}$, with $|B|=p^{k-1}$ has only subgroups of order $p^{e}(e=0 \ldots k-1)$. So $G \equiv A B$ (1) has k subgroups $X^{(e)}$ that contain core A, called core extensions, of order $\left|X^{(e)}\right|=(p-1) p^{e}$, with core $A=X^{(0)}, F=X^{(k-2)}$, and $G=X^{(k-1)}$.
Now $p+1$ generates B of order p^{k-1} in G_{k} [3, Lemma 2], and similarly

$$
\begin{equation*}
p^{i}+1 \text { of period } p^{k-i}(i=1 \ldots k-1) \text { in } G \text { generate the } k-1 \text { subgroups of } B . \tag{2}
\end{equation*}
$$

Let $Y^{(e)} \subseteq B$, of order p^{e}, then all core extensions are cyclic with product structure

$$
X^{(e)} \equiv A Y^{(e)} \text { in } G(.), \text { where }|A| \text { and }\left|Y^{(e)}\right| \text { are relative prime. }
$$

Using (2) with $k-i=e$ yields

$$
Y^{(e)} \equiv\left(p^{k-e}+1\right)^{*} \equiv\left\{m p^{k-e}+1\right\} \bmod p^{k}(\text { all } m)
$$

As before, using residues $\bmod p^{k}$ for any $k>1: D=(A-A) \cap B$ contains the set of core increments. Then Theorem 2.1 on core pairsums $A+A$ is generalized as follows (Lemma 3.1a) to the set $X+X$ of core extension pairsums $\bmod p^{j}(j>1)$, with $F+F(F e r m a t ~ s u m s)$ for $j=k-2$.

Extend Fermat's Small Theorem FST: $n^{p-1}=1 \bmod p$ to $n^{p-1}=n^{\prime} p+1 \bmod p^{2}$, which defines the FST-carry n^{\prime} of $n<p$. This yields an efficient core generation method (b) to compute $n^{p^{i}} \bmod p^{i+1}$, as well as a proof (c) of critical precision upperbound $K_{p}<p$.
Lemma 3.1. For core increments $D_{k}=\left(A_{k}-A_{k}\right) \cap B_{k}$ in $G_{k}=A_{k} B_{k} \bmod p^{k>1} \quad$ (prime $p>2$), $p^{\text {th }}$ power residues set $F_{k}=\left\{n^{p}\right\} \bmod p^{k}$, and X_{k} any core extension $A_{k} \subseteq X_{k} \subseteq F_{k}$,
(a) $X_{k}+X_{k} \equiv X_{k} D_{k}$, so core-increments D_{k} generate the X_{k}-cosets in $X_{k}+X_{k}$,
(b) $\left[n^{p-1}\right]^{p^{i-1}}=n^{\prime} p^{i}+1 \bmod p^{i+1}$, where FST-carry n^{\prime} of n does not depend on i, and $n^{p^{i}}=\left[n^{\prime} p^{i}+1\right] n^{p^{i-1}} \bmod p^{i+1}$,
(c) for $k=p:\left|D_{p}\right|=(p-1) / 2 \bmod p^{p}$, so critical precision $K_{p}<p$.

Proof a. Write X for $X_{k}^{(e)}$, then as in Theorem 2.1: $X+X=X-X=(X-X) X$. For residues $\bmod p^{k}$, we seek intersection $(X-X) \cap B$ of all distinct residues $1 \bmod p$ in B that generate the cosets of X in $X+X \bmod p^{k}$. By $\left(2,2^{\prime}\right)$ core extension $X=A Y=A\left\{m p^{k-e}+1\right\}$. Discard terms divisible by p (are not in B), then $(X+X) \cap B=(A+A) \cap B=(A-A) \cap B=D$ for each core extension. So $A+A$ and $X+X$ have the same coset generators in G_{k}, namely the core increment set $D=D_{k} \subset B_{k}$.
Proof b. Notice successive cores satisfy by definition $A_{i+1}=A_{i} \bmod p^{i}$. In other words, each $p^{\text {th }}$ power step $i \rightarrow i+1:\left[n^{p^{i}}\right]^{p}$ produces one more significant digit (msd) while fixing the i less significant digits (lsd). Now $n^{p-1}=n^{\prime} p+1 \bmod p^{2}$ has $p^{\text {th }}$ power residue $\left[n^{p-1}\right]^{p}=$ $n^{\prime} p^{2}+1 \bmod p^{3}$, implying lemma part (b) by induction on i in $\left[n^{p-1}\right]^{p^{i}}$.

This yields an efficient core generation method. Denote $f_{i}(n)=n^{p^{i}}$, with $n<p$, then

$$
\begin{align*}
& f_{i}(n)=n^{p^{i}}=\left[n^{p}\right] p^{p^{i-1}}=\left[n n^{p-1}\right] p^{p^{i-1}}=f_{i-1}(n)\left[n^{\prime} p^{i}+1\right] \bmod p^{i+1}, \text { implying } \tag{3}\\
& f_{i}(n)=f_{i-1}(n) \bmod p^{i}, \text { next core } \operatorname{msd} f_{i-1}(n) n^{\prime} p^{i}=n n^{\prime} p^{i} \neq 0 \bmod p^{i+1} .
\end{align*}
$$

Notice that by FST: $f_{k}(n)=n \bmod p$, for all $k \geq 0$, and $0<n<p$ implies $n^{\prime} \neq 0 \bmod p$.
Proof c. In (a), take $X_{k}=F_{p}$ and notice that $F_{p}+F_{p}=F_{p}-F_{p} \bmod p^{p}$ contains h distinct integer increments

$$
\begin{equation*}
e_{1}(n)=(n+1)^{p}-n^{p}<p^{p}, \tag{4}
\end{equation*}
$$

which are $1 \bmod p^{p}$, hence in B_{p} : they generate h distinct cosets of core A_{p} in $G_{p}=A_{p} B_{p} \bmod p^{p}$, although they are not core A_{p} increments. Repeated $p^{\text {th }}$ powers $n^{p^{t}}$ in constant p-digit precision yield increments $e_{i}(n)=(n+1)^{p^{i}}-n^{p^{i}} \bmod p^{p}$, which for $i=p-1$ produce the increments of core $A_{p} \bmod p^{p}$.

Distinct increments $e_{i}(n) \neq e_{i}(m) \bmod p^{p}$ remain distinct for $i \rightarrow i+1$, shown as follows.
For nonsymmetric $n, m<p$ (Lemma 2.1b) let increments e_{i} satisfy

$$
\begin{equation*}
e_{i}(n)=e_{i}(m) \bmod p^{j} \text { for some } j<p \tag{5}
\end{equation*}
$$

and

$$
e_{i}(n) \neq e_{i}(m) \bmod p^{j+1} .
$$

Then for $i \rightarrow i+1$ the same holds, since $e_{i+1}(x)=\left[f_{i}(x+1)\right]^{p}-\left[f_{i}(x)\right]^{p}$ where x equals n and m, respectively. Because in $\left(5,5^{\prime}\right)$ each of the four $f_{i}()$ terms has form $b p^{j}+a \bmod p^{j+1}$ where the, respectively, $a<p^{j}$ yield (5), and the, respectively, msd's $b<p$ cause inequivalence (5^{\prime}). Then

$$
\begin{equation*}
f_{i+1}()=\left(b p^{j}+a\right)^{p}=a^{p-1} b p^{j+1}+a^{p} \bmod p^{j+2}=a^{p} \bmod p^{j+1}, \tag{6}
\end{equation*}
$$

which depends only on a, and not on msd $b p^{j}$ of $f_{i}()$. This preserves equivalence (5) $\bmod p^{j}$ for $i \rightarrow i+1$, and similarly inequivalence $\left(5^{\prime}\right) \bmod p^{j+1}$ because, depending only on the respective $a \bmod p^{j}$, equivalence at $i+1$ would contradict (5^{\prime}) at i. Cases $i<j$ and $i \geq j$ behave as follows.
For $i<j$, the successive differences

$$
e_{i}(n)-e_{i}(m)=y_{i} p^{j} \neq 0 \bmod p^{j+1} \ldots
$$

vary with i from 1 to $j-1$, and by $\left(3^{\prime}\right)$ the core residues $f_{i}() \bmod p^{i}$ settle for increasing precision i.
So initial inequivalences $\bmod p^{p}(4)$, and more specifically $\bmod p^{j+1}(5)$, are preserved.
And for all $i \geq j$, the differences (6^{\prime}) are some constant $c p^{j} \neq 0 \bmod p^{j+1}$, again by (3^{\prime}). Hence by induction, base (4) and steps (5,6): core $A_{p} \bmod p^{p}$ has $h=(p-1) / 2$ distinct increments, so critical precision $K_{p}<p$.
Apparently, K_{p} is determined already by the initial integer increments $e_{1}(n)<p^{p}(0<n<p)$, as the minimum precision k for which nonsymmetric $n, m<p$ (so $n+m \neq p-1$) have $e_{1}(n) \neq$ $e_{1}(m) \bmod p^{k}$.

For instance, $p=11$ has $K_{p}=3$, and $\bmod p^{3}$ we have $h=5$ distinct core increments, in base 11 code: $d_{3}(1 \ldots 9)=\{4 a 1,711,871,661,061,661,871,711,4 a 1\}$ so core A_{3} has the maximal five cosets generated by increments $d_{3}(n)$. Equivalence $d_{2}(4)=d_{2}(5)=61 \bmod p^{2}$ implies 661 and 061 to be in the same F-coset in G_{3}. In fact, $061.601=661$ (base 11) with 601 in $F \bmod p^{3}$, as are all p residues of form $\left\{m p^{2}+1\right\}=\left(p^{2}+1\right)^{*} \bmod p^{3}$.

As example of Lemma 3.1c, with $p=11$ and up to three-digit precision

$$
\begin{aligned}
\left\{n^{p}\right\} & =\{001,5 a 2,103,274,325,886,937, a a 8,609,0 a a\}, \\
\text { core } A_{3} & =\{001,4 a 2,103,974,525,586,137,9 a 8,609, a a a\}
\end{aligned}
$$

$$
\begin{aligned}
& e_{1}(4)=325-274=061 \text { and } \\
& e_{1}(5)=886-325=561 \text { with FST-carries: } 4^{p-1}=a 1,5^{p-1}=71,6^{p-1}=51 \text { so: } \\
& e_{2}(4)=525-974=661 \text { by rule (3) yields: } 5^{p^{2}}-4^{p^{2}}=[701] 5^{p}-[a 01] 4^{p}=661, \\
& e_{2}(5)=586-525=061 \text { derived by (3) as: } 6^{p^{2}}-5^{p^{2}}=[501] 6^{p}-[701] 5^{p}=061 .
\end{aligned}
$$

Notice second difference $e_{2}(5)-e_{2}(4)=061-661=500$ equals $e_{1}(5)-e_{1}(4)=561-061=500$ by Lemma 3.1c.

With $|F|=|G| / p$ and $\left|D_{k}\right|$ equal to $(p-1) / 2$ for large enough $k<p$, the nonzero $p^{\text {th }}$ power pairsums cover nearly half of G. It will be shown that four $p^{\text {th }}$ power residues suffice to cover not only $G \bmod p^{k}$, but all residues $Z \bmod p^{k}$. In this additive analysis, we use the following.
Notation. S_{+t} is the set of all sums of t elements in set S, and $S+b$ stands for all sums $s+b$ with $s \in S$.

Extension subgroup B is much less effective as additive generator than F. Notice that $B \equiv$ $\{n p+1\}$ so that $B+B \equiv\{m p+2\}$, and in general $B_{+i} \equiv\{n p+i\}$ in G, denoted by N_{i}, the subset of G which is $i \bmod p$. They are also the (additive) translations $N_{i} \equiv B-1+i(i<p)$ of B. Then $N_{1} \equiv B$, while only $N_{0} \equiv\{n p\}$ is not in G, and $N_{i}+N_{j} \equiv N_{i+j}$, corresponding to addition $\bmod p$.

Coresums A_{+i} in general satisfy the next inclusions, implied by $0 \in A_{+2} \equiv A+A$,

$$
\text { for all } i \geq 1: A_{+i} \subseteq A_{+(2+i)} \quad \text { and } \quad F_{+i} \subseteq F_{+(2+i)}
$$

F_{+3} covering all nonzero multiples $m p \bmod p^{k}(k \geq 2)$ in N_{0} is related to a special result on the number 2 as generator. For instance, a computer scan showed $2^{p} \neq 2 \bmod p^{2}\left(2 \notin A_{2}\right)$ for all primes $p<10^{9}$ except 1093 and 3511 , although inequality does hold $\bmod p^{3}$ for all primes (shown next). Notice that only 2 divides $p-1$ for each odd prime p, so the two-cycle $C_{2}= \pm 1$ is the only cycle common to all cores for $p>2$. The generative power of 2 might be related to it being a divisor of $p-1$ and $p+1$, for all $p>2$.

Regarding the known unsolved problem of a simple rule to find primitive roots of $1 \bmod p^{k}$, consider the divisors r of $p^{2}-1=(p-1)(p+1)$ as generators.

Recall that by (1) units group $G_{k}=A_{k} B_{k} \bmod p^{k}$ has core subgroup A_{k} of order $p-1$, for any precision $k>0$, and extension group $B_{k}=(p+1)^{*}$ of all p^{k-1} residues $1 \bmod p$, generated by $p+1$ [3, Lemma 2]. In fact, $p-1$ generates all $2 p^{k-1}$ residues $\pm 1 \bmod p^{k}$, including B_{k}.

In multiplicative cyclic group G_{k} of order $(p-1) p^{k-1}$, it stands to reason to look for generators of G_{k} (primitive roots of $1 \bmod p^{k}$) among the divisors of such powerful generators as $p \pm 1$, or similarly of $p^{2}-1=(p-1)(p+1)$. Given prime structure $p^{2}-1=\prod_{i} p_{i}^{e_{i}}$, there are $\prod_{i}\left(e_{i}+1\right)$ divisors, forming a lattice, which is not Boolean since factor 2^{2} makes $p^{2}-1$ nonsquarefree.

Notice that for each unit n in G_{k}, we have n^{p-1} in B_{k}, and $n^{p^{k-1}}$ in core A_{k}, while intersection $A_{k} \cap B_{k}=1 \bmod p^{k}$, the single unity of G_{k}. No generator g of G_{k} can be in core A_{k}, since $\left|g^{*}\right|=(p-1) p^{k-1}$, while the order $\left|n^{*}\right|$ of $n \in A_{k}$ divides $\left|A_{k}\right|=p-1$. Hence, p must divide the order of any noncore residue. If $n<p^{k}$, then n can be interpreted both as integer and as residue $\bmod p^{k}$. It turns out that analysis modulo p^{3} suffices to show that the divisors r of $p \pm 1$ are outside core, so $r^{p} \neq r \bmod p^{3}$: a necessary but not sufficient condition for a primitive root. This amounts to quadratic analysis of an extension of Fermat's Small Theorem (FST) on $p^{\text {th }}$ power residues, including two carry digits (base p).
Theorem 3.1. Divisors of $p \pm 1$.

$$
\text { If } r>1 \text { divides } p^{2}-1, \text { then } r^{p} \neq r \bmod p^{k}(k \geq 3)
$$

Proof. $r^{p} \neq r \bmod p^{k}$ implies inequality $\bmod p^{k+1}$. With $A_{2}=F_{2}=\left\{n^{p}\right\} \bmod p^{2}$, so each $p^{\text {th }}$ power is in core $A_{2} \bmod p^{2}$, it suffices to show $r^{p} \neq r \bmod p^{3}$. Factorize $p^{2}-1=r s$, with positive integer cofactors r and s. Then $r s=-1 \bmod p^{2}$, so opposite signed cofactors $\{r,-s\}$ or $\{-r, s\}$ form an inverse pair $\bmod p^{2}$. Inverses in a finite group G have equal order (period) in G, with order two automorphism $n \leftrightarrow n^{-1}$. So orders $\left|r^{*}\right|$ and $\left|(-s)^{*}\right|$ are equal in G_{2}.

Notice $r s=p^{2}-1$ is not in core A_{3}, where $-1 \bmod p^{3}$ is the only core residue that is $-1 \bmod p$, since the $p-1$ core residues $n^{\left|B_{k}\right|}$ of A_{k} are distinct $\neq 0 \bmod p(\mathrm{FST}) . \operatorname{In}$ fact, $(r s)^{p}=\left(p^{2}-1\right)^{p}=$ $-1 \bmod p^{3}$ and no smaller exponent yields this. So $p^{2}-1=r s$ has order $2 p$ in G_{3}, generating all $2 p$ residues $\pm 1 \bmod p^{2}$, with inverse pair $\left\{r^{p},-s^{p}\right\}$ of equal order in G_{3}. Core A_{3} is closed under
multiplication, so at most one cofactor of noncore product $r s$ can be in core. In fact, neither is in core A_{3}, so both r^{p-1} and s^{p-1} are $\neq 1 \bmod p^{3}$, seen as follows.
By $G_{3}=A_{3} B_{3}$ (1): each $n \in G_{3}$ has product form $n=n^{\prime} n^{\prime \prime} \bmod p^{3}$ of two components, with n^{\prime} in core A_{3} and $n^{\prime \prime}$ in extension group B_{3}. Then $r^{p}(-s)^{p}=1 \bmod p^{3}$, where r^{p} and $-s^{p}$ as inverse pair in G_{3} have equal order, and each component forms an inverse pair of equal orders in A_{3} and B_{3} (coprime), respectively. The latter must divide $\left|B_{3}\right|=p^{2}$, and discarding order 1 (both r, s cannot be in core, as shown) their common order is p or p^{2}. For any unit n the order of n^{p} divides that of n, so p dividing the common order of r^{p} and s^{p} implies p dividing also those of r and s, hence cofactors r and s of $p^{2}-1$ are both outside core A_{3}.
Notes.

1. A generator $g<p$ of G_{2}, so $\left|g^{*}\right|=(p-1) p$, also generates $G_{k} \bmod p^{k>2}$ of order $(p-$ 1) $p^{k-1}[4]$.
2. Cofactors r, s in $r s=p^{2}-1=(p-1)(p+1)$ have equal period in G_{3}, up to a factor of 2 , so only $r \leq p+1$ need be inspected for periodic analysis. Recall exceptions $p=1093,3511$ with $2^{p}=2 \bmod p^{2}$, the only two primes $p<10^{9}$ with this property. Of the 79 primes up to 401 , there are seven primes with $r^{p}=r \bmod p^{2}$ for some divisor $r \mid p^{2}-1$ and cofactor s, namely

$$
p(r): 11(3), 29(14), 37(18), 181(78), 257(48), 281(20), 313(104) .
$$

3. A generator g of G_{k} is outside core, but $g \mid p \pm 1$ (Theorem 3.1) does not guarantee $G_{k}=g^{*}$.
4. However, computational evidence seems to suggest the next conjecture.

Conjecture. At least one divisor $g \mid p \pm 1$ (prime $p>2$) generates G_{k}, or half of G_{k} with -1 missing: then complements $-n \bmod p^{k}$ yield the other half of G_{k} (e.g., $\left.p=73: G_{3}= \pm 6^{*}= \pm 12^{*}\right)$.
5. The theorem also holds for divisors of $p^{2}+1$, obviating "up to a factor 2 " in the proof.

For odd prime p holds: 2 divides both $p-1$ and $p+1$, and 3 divides one of them, hence the following.

Corollary 3.1. For prime p (including $p=2$), $k \geq 3$ and $n=2,3$
$n^{p} \neq n \bmod p^{k}$, and in fact $\pm\left\{n, n^{-1}\right\} \bmod p^{k}$ are outside core $A_{k>2}$ for every odd prime.
In set notation: quadruple $Q(r)= \pm\left\{r, r^{-1}\right\}, r \mid(p \pm 1)$, and $k \geq 3$ imply $Q(r) \cap A_{k}=\emptyset$.
Moreover, the product of $r \notin A_{k}$ with a core element is outside core: $\left[Q(r) A_{k}\right] \cap A_{k}=\emptyset$.
Hence, 2 is not in core $A \bmod p^{k}$ for any prime $p>2$. This relates to $p-1$ having divisor 2 for all p, and $C_{2}=\{-1,1\}$ as the only common subgroup of $Z(.) \bmod p^{k}$ for all primes $p>2$. And 2 not in core implies the same for its complement and inverse, -2 and $\pm 2^{-1}$.

Notice that $N_{0} \bmod p^{k}$ consists of all multiples $m p$ of p, and their base p code ends on ' 0 ', so $\left|N_{0}\right|=p^{k-1}$. In fact, N_{0} consists of all divisors of 0 , the maximal nilpotent subsemigroup of $Z(.) \bmod p^{k}$, the semigroup of residue multiplication. For prime p, there are just two idempotents in $Z(.) \bmod p^{k}: 1$ in G and 0 in N_{0}, so G and N_{0} are complementary in Z, noted $N_{0} \equiv Z \backslash G$.

For prime $p>2$, consider integer $p^{\text {th }}$ power function $F(n)=\left\{n^{p}\right\}$, with F_{k} denoting set $F(n) \bmod p^{k}$ for all $n \neq 0 \bmod p$, and core function $A_{k}(n)=n^{p^{k-1}}$, with core $A_{2}=F_{2}$. Multiples $m p(m \neq 0 \bmod p)$ are not $p^{\text {th }}$ power residues (which are $0 \bmod p^{2}$), thus are not in F_{k} for any $k>1$. But they are sums of three $p^{\text {th }}$ power residues: $m p \in F_{+3} \bmod p^{k}$ for any $k>1$, shown next. In fact, due to FST we have $F(n)=n \bmod p$ for all n, so $F(r)+F(s)+F(t)=r+s+t \bmod p$, which for a sum $0 \bmod p$ of positive triple r, s, t implies $r+s+t=p$.

Lemma 3.2. For $m \neq 0 \bmod p: m p \in F_{+3} \bmod p^{k>1}$, hence each multiple $m p \bmod p^{k>1}$ outside F_{k} is the sum of three $p^{\text {th }}$ power residues (in F_{k}).
Proof. Analysis $\bmod p^{2}$ suffices, because each $m p \bmod p^{k>1}$ is reached upon multiplication by F_{k}, due to (.) distributing over (+). Core A_{k} has order $p-1$ for any $k>0$, and $F_{2}=A_{2}$ implies powersums $F_{2}+F_{2}+F_{2} \bmod p^{2}$ to be sums of three core residues.
Assume $A(r)+A(s)+A(t)=m p \neq 0 \bmod p^{2}$ for some positive r, s, t with $r+s+t=p$.
Such $m p \notin A_{2}$ generates all $\left|A_{2} m p\right|=\left|A_{2}\right|=p-1$ residues in $N_{0} \backslash 0 \bmod p^{2}$. And for each prime $p>2$, there are many such coresums $m p$ with $m \neq 0 \bmod p$, seen as follows.

Any positive triple (r, s, t) with $r+s+t=p$ yields, by FST, coresum $A(r)+A(s)+A(t)=$ $r+s+t=p \bmod p$, hence with a coresum $m p \bmod p^{2}$. If $m=0$, then this solves FLT case ${ }_{1}$ for residues $\bmod p^{2}$, for instance the cubic roots of $1 \bmod p^{2}$ for each prime $p=1 \bmod 6$, see [3].
Nonzero m is the dominant case for any prime $p>2$. In fact, normation upon division by one of the three core terms in units group G_{2} yields one unity core term, say $A(t)=1 \bmod p^{2}$, hence $t=1$. Then $r+s=p-1$ yields $A(r)+A(s)=m p-1 \bmod p^{2}$, where $0<m<p$.

There are $1 \leq\left|D_{2}\right| \leq(p-1) / 2$ distinct cosets of $F_{2}=A_{2}$ in G_{2} (Lemmas 2.1 and 3.1), yielding as many distinct core pairsums $m p-1 \bmod p^{2}$ in set $A_{2}+A_{2}$.

For most primes, take $r=s$ equal to $h=(p-1) / 2$ and $t=1$, with core residue $A(h)=h=$ $-2^{-1} \bmod p$. Then $2 A(h)+1=m p=0 \bmod p$, with summation indices $h+h+1=p$. For instance, $p=7$ has $A(3)=43 \bmod 7^{2}$ (base 7), and $2 A(3)+1=16+1=20$.

If for some prime p, we have in this case $m=0 \bmod p$, then $2 A(h)=-1 \bmod p^{2}$, hence $A(h)=h^{p}=h \bmod p^{2}$, and thus, also $A(2)=2^{p}=2 \bmod p^{2}$. In such rare cases (for primes $<10^{9}$ only $p=1093$ and $p=3511$), a choice of other triples $r+s+t=p$ exists for which $A(r)+A(s)+A(t)=m p \neq 0 \bmod p^{2}$, as just shown.
For instance, $2^{p}=2 \bmod p^{2}$ for $p=1093$, but $3^{p}=936 p+3 \bmod p^{2}$ so that instead of $(h, h, 1)$, one applies $(r, s, 1)$ where $r=(p-1) / 3$ and $s=(p-1) 2 / 3$. And $p=3511$ has $3^{p}=21 p+3 \bmod p^{2}$, while $3 \mid p-1$ allows a similar index triple with coresum $m p \neq 0 \bmod p^{2}$.
Lemma 3.2 leads to the main additive result for residues in ring $Z[+,.] \bmod p^{k}$

$$
\text { each residue } \bmod p^{k} \text { is the sum of at most four } p^{\text {th }} \text { power residues. }
$$

In fact, with subgroup $F=\left\{n^{p}\right\}$ of G in semigroup $Z(.) \bmod p^{k}$, subsemigroup $N_{0} \equiv\{m p\}$ of divisors of zero, and extension group $B \equiv N_{1} \equiv N_{0}+1$ in G, we have the following.
Theorem 3.2. For residues $\bmod p^{k}(k \geq 2$, prime $p>2)$

$$
Z \equiv N_{0} \cup G \equiv F_{+3} \cup F_{+4} .
$$

Proof. Analysis $\bmod p^{2}$ suffices, by extension Lemma 3.1, and by Lemma 3.2 all nonzero multiples of p are $N_{0} \backslash 0 \equiv F_{+3}$, while $0 \in F_{+2}$ because $-1 \in F$. Hence, $F_{+2} \cup F_{+3}$ covers N_{0}. Adding an extra term F yields $F_{+3} \cup F_{+4} \supseteq N_{0}+F$, which also covers $A N_{0}+A \supseteq A\left(N_{0}+1\right)=A B=G$ because $1 \in A$ and $A \subseteq F$, so all of $Z \equiv N_{0} \cup G$ is covered.
Notes.

1. Case $p=3$ is easily verified by complete inspection as follows. Analysis $\bmod p^{3}$ (Theorem 3.2) is rarely needed; for instance, condition $2^{p} \neq 2 \bmod p^{2}$ holds for all primes $p<10^{9}$ except for the two primes 1093 and 3511. So $\bmod p^{2}$ will suffice for $p=3$; moreover, $F=A \bmod p^{2}$.

Now $F \equiv\{-1,1\} \equiv \pm 1$ so that $F+F \equiv\{0, \pm 2\}$. Adding ± 1 yields $F_{+3} \equiv \pm\{1,3\}$ and again $F_{+4} \equiv\{0, \pm 2, \pm 4\}$, so that $F_{+3} \cup F_{+4}$ indeed cover all residues mod 3^{2}. Notice that F_{+3} and F_{+4} are disjoint which, although an exception, necessitates their union in the general statement of Theorem 3.2.

It is conjectured that $F_{+3} \subseteq F_{+4}$ for $p>6$, then $Z \equiv F_{+4}$ for primes $p>6$.
2. For $p=5$, again use analysis $\bmod p^{2}$, and test if $F(2 A(h)+1)$ covers all nonzero $m 5 \bmod 5^{2}$ (Lemma 3.2). Again $F=A \bmod p^{2}$, implying $A(h) \in F$. Now core $A \equiv F \equiv\left(2^{5}\right)^{*} \equiv$ $\{7,-1,-7,1\} \equiv \pm\{1,7\}$, while $h \equiv 2$ with $A(2) \equiv 7$, or in base 5 code: $A(2) \equiv 12$ and $2 A(h)+1 \equiv 30$. Hence, $F(2 A(h)+1) \equiv \pm\{01,12\} 30 \equiv \pm\{30,10\}$. This set indeed covers all four nonzero residues $m 5 \bmod 5^{2}$.

4. CONCLUSIONS

The application of elementary semigroup concepts to structure analysis of residue arithmetic $\bmod p^{k}[2,3,6]$ is very useful, allowing divisors of zero. Fermat's inequality and Waring's representation are about powersums, thus about additive properties of closures in $Z(.) \bmod p^{k}$.

Fermat's inequality, viewed as anticlosure, reveals n^{p} as a powerful set of additive generators of $Z(+)$. Now $Z($.$) has idempotent 1$, generating only itself, while 1 generates all of $Z(+)$ (Peano).

Similarly, expanding 1 to the subgroup $F \equiv\left\{n^{p}\right\}$ of $p^{\text {th }}$ power residues in $Z(.) \bmod p^{k}$, of order $|F|=|G| / p$, yields a most efficient additive generator with: $F_{+3} \cup F_{+4} \equiv Z(+) \bmod p^{k}$ for any prime $p>2$. This is compatible for $p=2$ with the known result of each positive integer being the sum of at most four squares.

The concept of critical precision (base p) is very useful for linking integer symmetric properties to residue arithmetic $\bmod p^{k}$, and quadratic analysis $\left(\bmod p^{3}\right)$ for generative purposes such as primitive roots.

Finally, for $p=2$, the most practical of primes: $p^{2}-1=p+1=3$ is in fact a semiprimitive root of $1 \bmod 2^{k}$ for $k \geq 3$ (Theorem 3.1: Note 4, [3]: Lemma 2) yielding a useful engineering result [7].

REFERENCES

1. E.T. Bell, The Development of Mathematics, pp. 304-306, McGraw-Hill, (1945).
2. N.F. Benschop, The semigroup of multiplication $\bmod p^{k}$, an extension of Fermat's Small Theorem, and its additive structure, Semigroups and their Applications, (July 1996).
3. N.F. Benschop, Fermat's Small and Last Theorem, and a new binary number code, Grenoble, (also available as http://www.iae.nl/users/benschop/199706-1.dvi), Logic and Architecture Synthesis, 133-140, (December 1996).
4. T.M. Apostol, Introduction to Analytical Number Theory, Theorems 10.4-10.6, Springer-Verlag, (1976).
5. G. Hardy and E. Wright, An Introduction to the Theory of Numbers, Chapter 8.3, Theorem 123, Oxford University Press, (1979).
6. S. Schwarz, The role of semigroups in the elementary theory of numbers, Math. Slovaca 31 (4), 369-395, (1981).
7. N.F. Benschop, Patent US-5923888 logarithmic multiplier (dual bases 2 and 3), (July 1999).
8. A. Clifford and G. Preston, The algebraic theory of semigroups, AMS Survey \#71, 130-135, (1961).
