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Abstract

We construct--matrices for simple Lie superalgebravith non-degenerate Killing forms using
Belavin—Drinfeld type triples. This construction gives us the standamhtrices and some non-
standard ones.
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1. Introduction

Let g be a Lie algebra with a non-degenergtmvariant bilinear form(, ). Then the
classical Yang—Baxter equati¢g€@YBE for an element e g® g is

[r127 rl3] + [r127 r23] + [r13, r23] —0.

A solutionr to the classical Yang—Baxter equation is calledlessicalr-matrix (or simply
anr-matrix). r is callednon-degenerat it satisfies

P12 4 21 #0.
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In [1] and [2] Belavin and Drinfeld classified suekmatrices. Their classification is given

by a discrete parameter called admissible(or a Belavin—Drinfeld triple, and a con-
tinuous parametery which satisfies certain relations depending on the given admissible
triple.

In this paper, we aim to develop a similar theory for simple Lie superalgebras. We start
in Section 2 with an overview of the Belavin—Drinfeld result for simple Lie algebras. In
Section 3, we recall some basic definitions amslitts about simple Lie superalgebras, and
after developing the necessary ingrediengsstate our main theorem. The next three sec-
tions of the paper are devoted to the proof of this theorem. Then in Section 7 we construct
variousr-matrices for the Lie superalgebsi2, 1) using the main theorem.

This theorem is very much in the spirit of the Belavin—Drinfeld result. It tells us that,
given a Belavin—Drinfeld type triple, one can construct a non-degenenaiatrix in a
way similar to the construction in the Lie algebra case. However, unlike in the Lie algebra
case, this is not a complete classification result. In fact, in the last section, we construct an
r-matrix that cannot be obtained by this theorem.

Recall that a non-degeneratenatrix » on a simple Lie algebra defines a Lie bialgebra
structure bys (x) = [r, x ® 1+ 1 ® x]. Therefore, the results of Belavin and Drinfeld give
us the classification of Lie bialgebra structures and the corresponding Poisson—Lie struc-
tures associated to a simple Lie algebra [3,4]. Hence a study of hon-degeneratieces
on Lie superalgebras may be a natural step towards a theory of super Poisson—Lie groups.

2. Classification theorem for Lie algebras

Here we recall briefly the main reswf [1] and [2] for Lie algebras. Leg be a simple
Lie algebra. Denote bg the element ofg ® g)¢ that corresponds to the quadratic Casimir
element in the universal enveloping algebigof g. Fix a positive Borel subalgebta-
and a Cartan subalgebjac b.. Let I = {1, a2, ..., «} be the set of simple roots gf
An admissible tripleis a triple (I, I'>, t) wherel; ¢ I andt: 1 — I3 is a bijection
such that

(1) for anye, B € I'1, (t (), T(B)) = (o, B);
(2) for anya e I't there exists & e N such thatr¥ («) ¢ I7.

Fix a system of Weyl-Chevalley generatoss, Y,,, H, for « € I'. Recall that these
elements generate the Lie algelyawith the defining relations[ Xy, Yo;] = 8ij Hy;
[Ha;v Xa/.] = aina/. and[Ha,,, Ya./] = —ajj Ya./ for all «;, o) € r (Wherea,-j =0 (Ho:,-) =
2(ai, o)/ (o, @), along with the well-known Serre relations.

Denote byg; the subalgebra af generated by the elements, Y,, H, forall « € I;.
We define a map by

©(Xo) = X¢(a)s o(Ye) =Yoo, ¢(Hy) = Hy ()

for all « € I'1. Then this can be extended uniquely to an isomorphisgy — g2 because
the relations betweeN, Y,, H, for a € Iy will be the same as the relations between
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Xe(ays Ye(a)s Heo) fOr @ € I (7 is anisometry). Next extendto a bijectiont : I'1 — I'z,

whereT; is the set of those roots which can be written as a non-negative integral linear
combination of the elements @f. In each root spacg,, choose an elemen, such that
(eq, e—o) = 1 for anya andy(eq) = ez(q) forall e € I'y.

Finally, define a partial order on the set of all positive roots

a < B if and only if there exists & € N such thatg = 7 («).

Note that ifo < 8, then necessarily € I'1, f € I'5.
Now we can state the Belavin—Drinfeld theorem ([2]; also see [4]).

Theorem 1.

(1) If ro € h ® h satisfies

ro? + 16" = o, 1)

(t(@) ®1)(r0) + (1R a)(ro) =0 foralla el (2)

where$2p € h ® b is theh-component of2, then the elementof g ® g defined by

V=V0+Z€_a®€a+ Z (€—a®€ﬁ—€ﬁ®€_a)
a>0 a,$>0, a<p

is a solution to the system

r12+ r21 — Q, (3)
[r12’ 1’13] + [r12’ 1’23] + [}"13, 1’23] =0. (4)

(2) Any solution to this system can be obtained as above from some admissible triple
(I, Iz, t) and someyg € h ® h that satisfies Eqg1) and (2), by choosing a suitable
triangular decomposition of and a set of Weyl-Chevalley generators.

3. Theconstruction theorem for Lie superalgebras

Now our aim is to develop a similar theory for super structures.g be a simple
Lie superalgebra with non-degenerate Killing form. (In fact, most of our results can be
extended to the whole class of classical Ligeralgebras because most of the statements
involving the Killing form may be asserted megenerally for a non-degenerate invariant
form.)
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3.1. The quadratic Casimir element

Let {I,} be a homogeneous basis fprand denote by 7} the dual basis of with
respect to the non-degenerate (Killing) form. Thus we have

(s 18) = Sup-

Denote the parity of a homogeneous elemerd g by |x|; then|I,| = |I}], since the
Killing form is consistent, and so the quadratic Casimir elementisf

fo Z(_1)|1a||1§|[a QI = Z(_l)\la\[a QI
o o

For a definition of the Casimir element (andmgabther facts about Lie superalgebras used
here), one can look at [6,8].

Example. Let g = gl(m, n). Fix the baside;; | 1 <i, j <m 4+ n}, wherele;;| =0 if and
onlyif1<i,j<morm+1<i, j<m+n.Thedual basisis

ef; = (=Dlej;
where
. 0 if j<m,
1= { 10t >m
and(, ) is the supertrace form. Then this gives us
Q=) VL= (D"l Dei =) (DY @eji.
o i,j i,j
3.2. Borel subsuperalgebras and Dynkin diagrams

Leth C g be a Cartan subalgebra. By definitidnc g is a Cartan subalgebra of the
even part ofg. Let A = Ag + Az be the set of all roots of associated with the Cartan
subalgebrd), whereAg and Az are the even and odd roots pestively. Recall that a Lie
subsuperalgebra of a Lie superalgebrg is a Borel subsuperalgebr# there is some
Cartan subsuperalgebaf g and some basg for A, such that

b=he P

aeAT

whereA™ is the set of all positive roots.

In the Lie algebra case, subalgebras given by this definition are all maximally solvable,
and all maximally solvable subalgebras of a simple Lie algebra are of this type. There-
fore, this definition agrees with the usual definition of a Borel subalgebra as a maximally
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solvable subalgebra. However Borel subsuperalgebras as defined above are not necessarily
maximally solvable. For instancedfis a positive isotropic root of the simple Lie superal-
gebrag, and ifb is the sum of all the positive root spaces, tihéa a Borel subsuperalgebra
but is not maximally solvable. The (parabolic) subsuperalggbta & g_4 is also solv-
able. In fact, maximally solvable subsuplgebras may be more complicated than merely
parabolic. (See [9] for maximally solvable subsuperalgebrag(ef, n) andsl(m, n).)

Recall also that different Borel subsupertigas may correspond to different Dynkin di-
agrams and Cartan matrices. Let us then fix some Borel subsuperaigebegjuivalently
some set of simple root$; = {«1, a2, ..., ¢}, and the associated Dynkin diagrdmm

3.3. The data for the theorem

In this setup, letry, I> € I be two subsets and: I'T1 — I be a bijection. The triple
(I'1, Iz, T) will be calledadmissibléf:

(1) foranya, g € I, (t(a), T(B)) = (o, B);
(2) for anya e I'y there exists & e N such thatr* («) ¢ I'y;
(3) t preserves the grading of the root space.

Given an admissible triple™, Iz, 7), letT'; fori = 1, 2 be the set of those roots that are
non-negative integral linear combinations of the elements o6fhent extends linearly to
a bijectiont: I'1 — I', so we can define a partial order gt

a < B if and only if there exists & € N such tha = 7 («).

For anya € I', pick a non-zere, € g,. Since eacly, is one dimensional, and the
Killing form is a non-degenerate pairing gf with g_,, one can uniquely pick_, € g_,
such thatley,e_o) =1, so foreaclw e I”

lew, e—o] = (eq, e—a)hy

whereh, € b is defined by(h,, h) = a(h) forall h € h. The sef{h, | @ € I'} is a basis for
h. Hence we can writ&2g, theh-part of £2, as follows

r
0= ha; @,
i=1

where the sefh}, | « € I'} is the basis irh dual to{h, |« € I'}.

Next, for eacha € AT\I", choose a non-zera, € g,; this will uniquely determine
e_q € g— Satisfying(ey, e—y) = 1. Then the duals with respect to the standard (Killing)
form will be

er=e_q, et = (=Dle,
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for all positive rootse, where|«| is the parity of the rootv. Therefore, the quadratic
Casimir element of will be

r
0= Z(_l)\li\ll_ ® Ii* _ Zhai ®h;k:,- + Z(_l)\ealea ® e;
i

i=1 aeA

=20+ Z (—D)lley @ e_q + Z e_q Rey.

aeAT aeAt

Example (continued. Once again, lefj = gl(m, n). Let h andb be the diagonal matrices
and the upper triangular matrices, respeastivThen the positive root spaces are spanned
by {e;; | i < j}. If for each positive rook, we lete, be the unique;; € g, theni < j and

e—q = (=Dlile;;. We will have

er=ef;=(Dleji=e_,,

ety = (=Dl = (DD ey = (-1)leq
and the above formula fae will agree with the Casimir element found earlier.
3.4. Statement of the theorem

We are now ready to state our main theorem. Its proof will be presented in the next three
sections.

Theorem 2. Letrg € h ® b satisfy
ro+rgt =, 1)
(t(@) ®1)(r0) + (1®a)(ro) =0 forall o € I'. (2)

Then the elementof g ® g defined by

r=ro+ Ze_a ey + Z (e_a ®eg — (—1)‘“'6,3 ® e_a) (%)
a>0 o,f>0, a<p

is a solution to the system

A2y 2o 3)
[rlz, rl3] + [rlz, r23] + [rl3, r23] =0. (4)

Remark. If g is a simple Lie algebra, thefx) reduces to the corresponding equation in
Theorem 1.
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4, Technical lemmas

Let g be a simple Lie superalgebra with non-degenerate Killing form. Fix a homo-
geneous basi$l,} for g and denote by{7;} the dual basis ofy with respect to the
non-degenerate (Killing) form.

Lemmal. Let f:g — g be an even linear map, and set (f ® 1)$2. Then the system of
equations

2y r2l= . 3
[r127 rl3] + [r127 r23] + [rl3, r23] -0 (4)
is equivalent to the system
f+r=1 ®)
(f =D[f @), fM]=F([(f = D), (f = DH(M)]) (6)

where f* stands for the adjoint of with respect to the standard from).

Remark. This lemma is a basic step in the proof of Theorem 1, and our proof will follow
the presentation in [4] with some modifications.

Proof. We have
Pl =(febe+Ae N2=ebe+(ffene=((f+r)o12
which proves the equivalence of the statements
2=r24+r2 and 1= (f+ f*).

Next we show that the CYBE for (that is, Eqg. (4)), translates to a nice expression in
terms of the associated functigh We have

r=(fen2=) (-Hfru) 1.

Let us write the three terms of the CYBE:

[r12. 7] = Y ()l el () elel [ f (1), )] @ 15 ® 1,
a)/B

[r12’ r23] _ Z(—l)“"‘ﬂlﬁlf([a) Q [[;, f([,s)] ® IE,
o.p

[r23,r23) = Y (- etHlel () lllsl £(1,) @ £ (1g) @ [13. 5]
a,p
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Here we use the consistency of the form, the evennegs afd

@®b®1Lce1ed =D clebed,
[Rb®1L1Qc®dl=a®[b,c]®d,
@®1eb,10c®dl=(-D"aixc® b, dl.

We rewrite the last sum so that it ends w@l‘lg

Z(_l)\la\ﬂlﬁl(_1)|1a||1ﬂ|f(]a) ® flp) ® [](;k7 IE]
a’/B

= = S DI (1) @ £([13 15]) © 1"
o,

where we use the invariance of the form, and the supersymmetry of the bracket.
Therefore we can rewrite the CYBE as

(=DMl (—D)HellBI[ £ (1), FUIRI® I
Y=l ( +H(=D D £ () @ 113, £ Up))] ) ® I} =0.
B — (=)l £ (1) ® f(LLE, 15])

Since the{I;;} form a basis fog, this last equation implies that, for any choicefof

+ Y, (=Dl F(1)y @ 1%, fIp)]

(Za(—l)’a(—l)’a’ﬁ[f(la), fUpI® 1;>
=0
=Y (=Dl f(1)y ® F(IE, I5])

We want to rewrite the second and the third sums so that they endwith. After
some calculation, the second term becomes

Y )y @ 13, fUp] =| =Y (=D )b p([1y, fUp)]) @ I

The third sum splits into two different sums when we use Eq. (3)
=2 VU @ £([1 16])
=S DMl r @ (15 15] + > (=Dl () ® f*([1 15)).

We calculate these terms separately
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=Y D Uy @ 13, 1p] =| Y (=Dl (=)ol ([1,, Ig]) @ I

DD @ ([ 1p]) =| = Y (=DMl D)l £ ([£ o), Ig]) @ 1

Hence we get

el 4\ alllg] [f(la)’f(lﬁ)]_f([laaf(lﬁ)])) x_
2 DY (+f([1a,1ﬁ])—f([f(la),l,g]) ®l =0

Again using the fact that thig ¥} form a basis fog, we obtain, for alk, 8

[fUo). fUD] = f([Iar fUD]) + f (U Ig1) — f([f ). Ig]) =0

which can be rewritten as

(f =D[fUo). fUp] = F([(f = DU, (f = DUp)]),

which is equivalent to

(f=D[f®), fM]=F([(f =D, (f =D»]) forallx,yeg | (6)

This proves one direction of the lemma. To see the other direction, we need only trace
the steps above backwards. Hence one can easily see that a fufstitisfying Egs. (5)

and (6) will correspond to an-matrix r € g ® g that satisfies Eqgs. (3) and (4). This com-
pletes the proof. O

Lemma 2. Let fp be a linear map ory, and setrgp = (fo ® 1)£20. Then the system

r&z + rgl = 0, (1)
(t(@) ®1)(r0) + (1Q a)(ro) =0 foralla ey (2)
is equivalent to the system
fot+fo =1 (7)
fo(ha) = (fo— D(hr()) foralleeIt. (8)

Proof. We will prove a stronger result, namely, that, for ang 1, r < r, the system of
equations

B2 +rgt =920, (@ ®D0o)+(1®a)(ro) =0
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is equivalent to the following system of equations
fot+ fo=1 Jotha,) = (fo— D (he,).

It is easy to see the equivalence of the first equations

et +rgt=(fo®1+1® fo)R0 = ((fo+ /) ® 1)20 =0
ifand only if fo+ fo* = 1.

Next we look at(o; ® 1)rg + (1 ® as)ro. This is equal to

(ar ® 1)<Zf0(h0!i) ®hzi> + (1®01s)(2f0(ha,-) ®h;,)
—Zat folh,)) - +Zas f5(h

=Za,<2 folhay), hay ) ) hE +Z“S<Z h.). hak)hiik)'haf

= (folha,). hay ) (hf,) - b, +Z f5 (%) hay )ers () - ey -

ik

We have
o (h;k) = (ha, h;k) =8 and o (h;k) = (h,, h;k) = 8.
Therefore the above expression becomes

Z(fo(ha,-) ha, )%, +Z 5 (%) hay ) h,

—Z wis I3 (ha)) I, +Z ;> folha,))h

= fo (ha,) + fO(has) =(1- fO)(ha,) + fO(haS)o

This shows thate; ® 1)ro + (1 ® as)ro = (1 — fo)(he,) + fo(he,). Clearly, one side is
equal to zero if and only if the other side is. This proves the lemna.

We also need the consistency of the system of equations

ro+rgt = S0, (1)
(t(@)®1)(ro) + 1@ a)(r0) =0 foralla e I1. (2)
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However, the arguments used to prove thesthe same as for the Lie algebra case (see [2]
for details), and hence will not be included here.

The results of this section allow us to translate the conditions on the continuous para-
meter of the main theorem into conditions on a linear niggh — b, and the CYBE and
Eq. (3) become conditions on the associated linear fhgp— g. Thus we can restate our
problem as follows: given an admissible tripl€y, I, ) with a linear mapfo: h — b
satisfying Egs. (7) and (8), construct a linear mam — g satisfying Eqgs. (5) and (6).

5. The Cayley transform

Following [2], we will now introduce a variation on the theme of Cayley transforms.
For a linear functiory : g — g with (f — 1) invertible, theCayley transfornof f is ©® =
f/(f =1).If f satisfies Eq. (5), the®* = f*/(f —1D*=A—- f)/ — f. Then we can
see tha ®* =1, so® preserves the invariant form. Jf also satisfies Eq. (6), then we
have[® (x), ®(y)] = ©([x, y]), SO8 is a Lie superalgebra automorphism.

However, this does not work for simple Lie algebras, and in fact it does not work for sim-
ple Lie superalgebras, either. To see this, assumeytliigmt linear map satisfying Eqgs. (5)
and (6),f — 1 isinvertible, and® is defined as above. Thén — 1 is the inverse of — 1,
so det® — 1) # 0. But we have:

Lemma 3. If ® is an automorphism of a finite dimensiorelassica) simple Lie superal-
gebrag, thendet® — 1) =0.

Proof. The automorphisn® restricts to a (Lie algebra) automorphishon g, the even
part ofg. gg is reductive with non-triviaig’ = [gg, g51. 95’ iS semisimple and restricts to
an automorphisnp on gg'. Using Theorem 9.2 of [2] we can find some non-zero g5’
with ¢ (x) = x. Then® (x) = x and hence € Ker(® — 1). Thusdet® —1)=0. O

Thus Egs. (5) and (6) imply thgt — 1 is not invertible. Therefore, we cannot define the
Cayley transform as above for the functions we are interested in.

However it turns out that we can modify our definition and still get a lot of what we want.
First note that for any linear operatgr, Ker(f) Cc Im(f — 1) and KeKf — 1) C Im(f).
We will define theCayley transform off to be the functiom® :Im(f — 1)/ Ker(f) —
Im(f)/Ker(f — 1) that maps(f — 1)(x) to f(x). (It is easy to check that this is well
defined.) This version of the Cayley transform will be sufficient for our purposes. We have:

Lemmad. Let f: g — g be a linear map satisfying
f+f=L (5)

ThenKer(f) = Im(f — 1)+, Ker(f —1) = Im(f)*, and the mag preserves the invariant
form. Furthermore f satisfies

(f =D[f), fFM] = F([(f =D, (f =DWM]). (6)
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if and only ifim(f) andIm(f — 1) are Lie subsuperalgebras gf and® is a Lie superal-
gebra isomorphism.

Remark. The proof of this lemma is exactly the same as the proof of the analogous result
in the Lie algebra case. See [2].

6. The construction—end of the proof of thetheorem

For a given admissible tripl@™, I, t), and a linear mayp : h — § satisfying Egs. (7)
and (8), we want to construct a functigh g — g that will satisfy Egs. (5) and (6). Here is
how we proceed.

Definel"; andT as above. Also define the following Lie subsuperalgebras of

hi = @ Chy, gi = hi 57 Z (goz @g—a)a

ael; OZEF,‘

=Y ge P =ginit,

O(EA+/1:i

D D S LT
aeA+/T;

We can see that the”/ ™ are ideals i/ .
Let fo:h — b satisfy EqQ. (8). Then

he = (fO - 1)(ht(a) — hy), hr(a) = fO(ht(a) —hy)

for all « € I'1. This implies thath, € Im(fo — 1) and i) € IMm(fo). Thereforehy C
Im(fo — 1), andbz C Im(fo).

Fix a Weyl-Chevalley basi$Xy,, Yo, Hy; | i € I'}. It is known that such a set of
generators exists and satisfies the usuateSiype relations (see [5] and [7] for details).
Define a mag by

QD(Xa):Xr(a)a (p(Ya)ZYt(a)’ ©(Hy) =Hr(a)

for all @ € I'1. Then this can be extended to an isomorphigny; — g2 because the
relations betweerX,, Y., H, for « € It will be the same as the relations between
Xr()s Ye(a), Hr o) fOr « € I'1. (Here we are using the fact thatis an isometry pre-
serving grading.) Note thap~! is a map fromg, onto g;. Sincer is an isometry,
(@(x), ¥)gp = (x, 07 1())g, for all x € g1, y € g2. But¢* should mapy; into g; and sat-
isfy exactly the same conditions; henge= ¢~ 1.
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For eacha € A, choo_se an element, € g, such that(ey, e_y) = 1 for any«, and
p(eq) = ez(y) forall « € I'1. The conditions orr ensure that this is possible. Next define
a linear map as follows

p(x) if x g,
1/’(’C)={o if x €.

This restricts to a map on,. = @, ¢ga, SiNCENy = (g1 Nny) @ n{. The proof of the
following lemma is exactly the same as in the Lie algebra case (see [2]):

Lemma 5. det(yy — 1) is non-zero if and only it satisfies the second condition in the
definition of an admissible triple.

Therefore we can define a function an by

v 2
fe=g1= (W +v=+--).
Clearly the sum on the right-hand side is finiteyags nilpotent. Notice tha#/* and sof}
are maps om_ = P, _y g«, Since the Killing form induces a non-degenerate pairing of
ny with n_.
Now define a linear map om_ by

fo=1—fr=14y +y* 24

Then definef to be the function whose restrictionfon,, n_ is fo, f+, f—, respectively.
(Note thatf is even.) We have

f+fr=Uo+ f++ 1)+ o+ fr+ f)F
= (fo+ f3) + (f++ f2) + (£ + /-)
=1y + 10, +10_ =1,
Lemma 4 implies that, to show thdt satisfies Eq. (6), one only needs to show that

Ci1=Im(f — 1) andC, = Im(f) are Lie subsuperalgebrasgmfand the Cayley transform
® of f is a Lie superalgebra isomorphism. We have

Ci=Im(f =D =Im(fo—-D&Im(f; - &Im(f- -1,
C2=Im(f) =Im(fo) ® Im(f1) & Im(f-).

We have seen that Ififp — 1) D b1 and Im(fo) D ho. We will therefore defind/1, Vo
as (vector) subspacesiptuch that Inifo — 1) = h1 & V1 and Im( fp) = b2 @ V.

In the Lie algebra case, the Killing form teists to a positive definite non-degenerate
form on (the real subspace generated Hy | « € I'} of) h. So we can define the orthogo-
nal complements df; andbhz with respect to this form; call thedg andb5; then we have:
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b= b1 @ b = b2 @ b3. Then for a fixedfo, the two subspaceg and V> are uniquely de-
termined if we add the condition th&} C bhy. In the super case, this is no longer possible;
the real Cartan subalgehifanay have isotropic elements and subspacésnay intersect
their orthogonal complements non-trilha However in our case we still can defim¢ as
follows

b= P Chy.

ael\T}
Thus we still can writéh = b; @ b7, and still can demand that C b;. In this way theV;

are then well defined, but clearly depend on the choicE.of
Next we compute

Im(fy —1) = Im( ! 1) =ny,

Im(f- =1 =Im{ - 1//1#*) m(y*) =giNn_,

Im(fQ:Im(LI//) Im(y) =g2Nnyg,

| =1 = =
m(f-)= m(l_l//*> =n_

where we use the fact thdt — 1 is invertible. The above then yields

C1=p] ® V1, Ca=p, & V2.

It is now easy to check tha&f; andC2 are both closed under the bracket and hence are Lie
subsuperalgebras gf

Finally we need to see that the Cayley transf@dnis a Lie superalgebra isomorphism.
We note that by the last lemma abo@,D> Cl.l. So we have

Ct=(piev) =nf@®mevnt=nie®invi)cpfen
and similarly
Cr=(p;@V2) =n; ®(H20 VD' =n; @& (b NV5) Cp; & Ve

Hencebh; N V- C b; @ V;, and so

pfoWV1 < ) hi® V1
C1/Ci=—2—— o @ ——
S AR @g b ) O AV
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and similarly

P, ®V2 < > eV,
C2/Cy=—2—"- gu D g
T (p, ® Vo)t EB * prnvi

Since(; is a Lie subsuperalgebra alﬂ;L is an ideal, there is a Lie superalgebra structure
on C,»/Cl.l. But [g., g—«] = CH,, therefore there is a complete copytpfand a copy of
g; in C;/C. Thush- NVt c v;, and

Vi

C,’/C»L =0i® T ——7-
CTEEy,

So we need to show that

O gro 1 o2
GO > 0 ® ————
by N Vit by N Vs

is a Lie superalgebra isomorphism.
We first note that® (x) = ¢ (x) for all x € g1. Indeed ife € I}

Xo = (f+ - 1)(Xt(a) - on)

and so is mapped vi@ to

J+Xe@) — Xa) = X ()
and similarly
Yo = (f= =D (Yz(@) — Yo)
is mapped via® to
f-Ye@) = Yo) =Ye (o).
Alsoitis easy to see that sinég, = (fo — 1)(H(«) — He) foreachu € I';, © sendsH,, to
Sfo(Hr () — Hy) = Hr(«). Hence the restriction a® to gz is exactly the Lie superalgebra

isomorphismyp.
Next we look at how® acts on the Cartan part of thig /Cit. We have

hi @ Vi
Ci/Clt = ( . ga@g_a> b; Vl,
OZEFI'
ie., C,~/Cl.L is the direct sum of a Cartan part and a non-Cartan part. Then the arguments
above show tha®, like ¢, maps the non-Cartan part 6‘fl/C1l into the non-Cartan part
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of Cy/ CZL. Also, since® preserves the invariant form, it maps the Cartan paﬂfﬁfCll
to the Cartan part of 2/ C5

@ ((non-Cartan ofC1/C3) ") = (non-Cartan oC2/C3 ) ™.

@(5169V1>_<52€BV2)

by nve) oy v )

Sinceh; @ V;/(hi- N V1) is abelian® restricts to an isomorphism there as well. Therefore
® is an isomorphism. Therefore the associated linear yhaptisfies Egs. (5) and (6) and
so corresponds to anmatrix satisfying Egs. (3) and (4).

Checking that the functiorf constructed in this way yields the tensoof Eqg. (x) is
straightforward. This completes the proof of the theorem.

In other words

7. Examples: r-matriceson d(2, 1)

Recall that two Dynkin diagrams of a giveneLsuperalgebra may be non-isomorphic,
but one can be obtained from another via a chain of odd reflections (see [10] for information
about odd reflections and more on root systems of graded Lie algebras). Then we may wish
to know howr-matrices obtained from two non-isomorphic Dynkin diagrams are related, if
at all. This question in all its generality needs to be addressed systematically. However, we
will see that at least in the casesd2, 1), if » andr’ are the standangmatrices associated
to the Dynkin diagrams and D’, respectively, and’ is obtained fromD by the odd
reflectiono,, associated to the roat, thenr’ is the image of underoy,.

7.1. Dynkin diagrams of &, 1)
The roots ofsl(2, 1) are
Ag={e1— 2,62 — &1}, Aj={e1— 1,62 — A1, A1 — €1, A1 — €2}

whereg; is the (restriction to the Cartan subalgebras@®, 1) of the) standard basis:
i (Ejr) = 8;;6ik, andi1 = 3. Denote the set of simple roots Y.
There are six possible Dynkin diagrams:

(1) I'(D1) = {e1 — 2,82 — A1}. We will setag =¢e1 — &2 andap = e2 — A1. @1 IS even;
a2 is odd. The third positive root i8; + a2 and is odd.

(2) I'(D2) ={e1 — A1, A1 — &2} = {1 + a2, —a2}. D> is obtained fromD; via the odd
reflectiono,, . The third positive root is; and is even.

(3) I'(D3) = {A1 — &1,€1 — €2} = {—a1 — a2, a1}. D3 is obtained fromD> via the odd
reflectionoy, +«,. The third positive root is-« and is odd.

(4) I'(Dg) = —I'(D1) = {—a1, —a2}. The third positive root is-a; — a2 and is odd.
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(5) I'(Ds) = —TI'(D2) = {—a1 — a2, a2}. The third positive root is-a1 and is evenDs
is obtained fromD4 via o_,,, as expected.

(6) I'(Dg) = —I'(D3) = {a1 + a2, —a1}. The third positive root isr; and is odd.Dg is
obtained fromDs via the odd reflection_q,; —q,.

Hence, up to sign, there are three Dynkin diagrams, and these can be obtained from one
another via a chain of odd reflections (which change the signs of some of the odd roots but
a positive even root stays positive).

7.2. The standard-matrices

Givenrg € h ® b satisfyingrg + rglz £20, the standard-matrix for a fixed Dynkin
diagram is

r:ro—i-Ze,a@ea.

a>0

So fixingrg we write down the standardmatrices for the above diagrams:

(1) D1: let eq; = E12, e, = E23, €q;+a, = E13. This determineg_, by (ey, e—y) =1:
e—q, = E21, ¢4, = E32, e_4,—«, = E31. Therefore we get

rst(D1) =ro+ (E21® E12) + (E32® E23) + (E31® E13).

(2) D2: letey, = E12, e—ay = E32, €a,+4, = E13. This determines_, by (eq, e—¢) = 1:
e_ay, = E21, ey, = —E23, e_o;—a, = E31. Therefore we get

rs:(D2) =ro+ (E21® E12) — (E23® E32) + (E31® E13).

(3) Ds:letey, = E12, e—o, = E32, €—qy—a, = E31. This determines_, by (ey, e—y) = 1:
e_q, = E21, 4, = —E23, ey, +a, = —E13. Therefore we get

rs:(D3) =ro+ (E21® E12) — (E23® E32) — (E13® E31).

(4) Ds:lete_o, = E21,e—q, = E32,€_4;—a, = E31. Thisdetermines_, by (ey, e—o) = 1:
eq; = E12, €4, = —E23, eq,+a, = —E13. Therefore we get

rsi(Da) =ro+ (E12® E21) — (E23® E32) — (E13® E31).

(5) Ds:lete_q, = E21, €q, = E23, €—4,—a, = E31. This determines_, by (ey, e—o) = 1:
eq; = E12, ey, = E32, €4,+4, = —E13. Therefore we get

rs:(Ds) =ro+ (E12® E21) + (E32® E23) — (E13® E31).
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(6) De: lete_q, = E1, eq, = E23, €ay+a, = E13. This determines_, by (ey, e—y) = 1:
eq; = E12, e_y, = E3, €_q,—o, = E31. Therefore we get

rsi(Dg) =ro+ (E12® E21) + (E32® E23) + (E31® E13).

We note that the first three of thematrices constructed above (and similarly the last
three) are connected via odd reflections which correspond to the odd reflections that con-
nect the associated Dynkin diagrams. The even reflection which changes the signs of the
even roots will connect the first thréethe last three. Hence all thesenatrices are related
to one another via (even or odd) reflections.

7.3. Constructing non-standardmatrices
The non-standargkmatrices that we can construct with our theorem come from the two
diagramsD; and Ds.

ForDglet I't = {a1 + a2} andl» = {—ay}. Definer (w1 + a2) = —a. The partial order
on positive roots will bex1 + a2 < —a2. Given thatrg satisfies

(=2 ® 1)(r0) + (1® (a1 + 2)) (ro) =0,
the associated-matrix will be
fnsy =70+ (E21® E12) — (E23® E32) + (E31® E13)
+ ((E31® E32) + (E32® E31)).

The first few terms will actually make up,(D>) for the chosemp, so we can rewrite the
above as

Fusy = Ist(D2) + (E31® E32) + (E32® E31).

ForDslet I't = {ap} andl» = {—a1 — ap}. Definer (wp) = —a1 — «p. The partial order
on positive roots will bexs < —a1 — ap. Given thatrg satisfies

(o1 — a2) ® 1) (r0) + (1® a2)(r0) =0,
the associated-matrix will be
Tnsy =70+ (E12® E21) + (E32® E23) — (E13® E31)
+ ((E32® E31) + (E31Q E30)).

The first few terms will actually make up, (Ds) for the chosemp, so we can rewrite the
above as

Tns, = Ist(Ds) + (E32® E31) + (E31® E32).
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Note that if for D,, we redefiner so thatr (—a2) = a1 + az, then—a < a1 + a2, and
we get

Tnsy =I5t (D2) + (—E23® E13) + (—E13® E23);

and if for Ds, we redefing by t(—a1 —a2) = a2, then the order becomesw; — a2 < a2,
and we get

Tnsqg =75:1(Ds5) + (—E13® E23) + (—E23® E13).

8. Conclusion

In the Lie algebra case, the main clagsifion theorem comes in two parts. The con-
structive part that gives anmatrix for a given admissibleiple is accompanied with the
assertion that any givenmatrix that satisfies + 21 = £2 can be obtained by the same
construction for a suitable choice of an admissible triple. We would like to prove such an
assertion for Lie superalgebras, or come up with a counterexample.

We consider once again the simple Lie superalgsltifal). We define

f(E11+ E33) =0, f(E22+ E33) = E22+ E33,
f(E21) =0, f(E12) = E12,
f(E23) =0, f(E13) = E13,
f(E31) = —E1s, f(E32) = E23+ E32
and extendf to a linear map org. We can easily check that this function satisfies Eq. (6)

which is equivalent to the associated 2-tensor being-aratrix.
We write the quadratic Casimir element

=20+ (E12Q E21+ E21Q E12) + (—E13® E31+ E31® E13)
+ (—E23® E32+ E32Q E23)

where 2o = (E11+ E33) ® (—E22 — E33) + (—E22 — E33) ® (E11 + E33). Then if we
definer(f) to be the 2-tensaff ® 1)$2, we get

r(f)=ro+ E12Q® E21— E13® E31+ E32® E23— E13® E13+ E23® E23

whererg = (—E22 — E33) ® (E11 + E33). Clearlyr(f) satisfies Eq. (3).
Thisr-matrix is not among those constructed using Theorem 2. In fact we can prove that
the two subsuperalgebras (if) and Im(f — 1) will never be simultaneously isomorphic
to root subsuperalgebras. The correspondingsaperalgebras for functions constructed
by the theorem will always be root subsuperalgebras. Thus the Belavin—Drinfeld type data
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we used is not enough to classify all solutions to the system of Egs. (3) and (4). A full clas-
sification result should also explain hewmatrices obtained from non-isomorphic Dynkin
diagrams are related to one another. We hopeltiress these problems in a separate paper.
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