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Abstract

We constructr-matrices for simple Lie superalgebras with non-degenerate Killing forms usin
Belavin–Drinfeld type triples. This construction gives us the standardr-matrices and some non
standard ones.
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1. Introduction

Let g be a Lie algebra with a non-degenerateg-invariant bilinear form( , ). Then the
classical Yang–Baxter equation(CYBE) for an elementr ∈ g ⊗ g is

[
r12, r13] + [

r12, r23] + [
r13, r23] = 0.

A solutionr to the classical Yang–Baxter equation is called aclassicalr-matrix (or simply
anr-matrix). r is callednon-degenerateif it satisfies

r12 + r21 �= 0.
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In [1] and [2] Belavin and Drinfeld classified suchr-matrices. Their classification is give
by a discrete parameter called anadmissible(or a Belavin–Drinfeld) triple, and a con-
tinuous parameterr0 which satisfies certain relations depending on the given admis
triple.

In this paper, we aim to develop a similar theory for simple Lie superalgebras. We
in Section 2 with an overview of the Belavin–Drinfeld result for simple Lie algebra
Section 3, we recall some basic definitions and results about simple Lie superalgebras, a
after developing the necessary ingredients we state our main theorem. The next three s
tions of the paper are devoted to the proof of this theorem. Then in Section 7 we con
variousr-matrices for the Lie superalgebrasl(2,1) using the main theorem.

This theorem is very much in the spirit of the Belavin–Drinfeld result. It tells us t
given a Belavin–Drinfeld type triple, one can construct a non-degenerater-matrix in a
way similar to the construction in the Lie algebra case. However, unlike in the Lie alg
case, this is not a complete classification result. In fact, in the last section, we const
r-matrix that cannot be obtained by this theorem.

Recall that a non-degenerater-matrix r on a simple Lie algebra defines a Lie bialge
structure byδ(x) = [r, x ⊗ 1+ 1⊗ x]. Therefore, the results of Belavin and Drinfeld gi
us the classification of Lie bialgebra structures and the corresponding Poisson–Lie
tures associated to a simple Lie algebra [3,4]. Hence a study of non-degenerater-matrices
on Lie superalgebras may be a natural step towards a theory of super Poisson–Lie

2. Classification theorem for Lie algebras

Here we recall briefly the main resultof [1] and [2] for Lie algebras. Letg be a simple
Lie algebra. Denote byΩ the element of(g ⊗ g)g that corresponds to the quadratic Casim
element in the universal enveloping algebraUg of g. Fix a positive Borel subalgebrab+
and a Cartan subalgebrah ⊂ b+. Let Γ = {α1, α2, . . . , αr } be the set of simple roots ofg.
An admissible tripleis a triple (Γ1,Γ2, τ ) whereΓi ⊂ Γ andτ :Γ1 → Γ2 is a bijection
such that

(1) for anyα,β ∈ Γ1, (τ (α), τ (β)) = (α,β);
(2) for anyα ∈ Γ1 there exists ak ∈ N such thatτ k(α) /∈ Γ1.

Fix a system of Weyl–Chevalley generatorsXα,Yα,Hα for α ∈ Γ . Recall that these
elements generate the Lie algebrag with the defining relations:[Xαi , Yαj ] = δijHαj ,
[Hαi ,Xαj ] = aijXαj and[Hαi , Yαj ] = −aijYαj for all αi,αj ∈ Γ (whereaij = αj (Hαi ) =
2(αi, αj )/(αi, αi)), along with the well-known Serre relations.

Denote bygi the subalgebra ofg generated by the elementsXα , Yα , Hα for all α ∈ Γi .
We define a mapϕ by

ϕ(Xα) = Xτ(α), ϕ(Yα) = Yτ(α), ϕ(Hα) = Hτ(α)

for all α ∈ Γ1. Then this can be extended uniquely to an isomorphismϕ :g1 → g2 because
the relations betweenXα , Yα , Hα for α ∈ Γ1 will be the same as the relations betwe
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Xτ(α), Yτ(α), Hτ(α) for α ∈ Γ1 (τ is an isometry). Next extendτ to a bijectionτ :Γ 1 → Γ 2,
whereΓ i is the set of those roots which can be written as a non-negative integral
combination of the elements ofΓi . In each root spacegα , choose an elementeα such that
(eα, e−α) = 1 for anyα andϕ(eα) = eτ(α) for all α ∈ Γ 1.

Finally, define a partial order on the set of all positive roots

α ≺ β if and only if there exists ak ∈ N such thatβ = τk(α).

Note that ifα ≺ β , then necessarilyα ∈ Γ 1, β ∈ Γ 2.
Now we can state the Belavin–Drinfeld theorem ([2]; also see [4]).

Theorem 1.

(1) If r0 ∈ h ⊗ h satisfies

r12
0 + r21

0 = Ω0, (1)(
τ (α) ⊗ 1

)
(r0) + (1⊗ α)(r0) = 0 for all α ∈ Γ1 (2)

whereΩ0 ∈ h ⊗ h is theh-component ofΩ , then the elementr of g ⊗ g defined by

r = r0 +
∑
α>0

e−α ⊗ eα +
∑

α,β>0, α≺β

(e−α ⊗ eβ − eβ ⊗ e−α)

is a solution to the system

r12 + r21 = Ω, (3)[
r12, r13] + [

r12, r23] + [
r13, r23] = 0. (4)

(2) Any solution to this system can be obtained as above from some admissible
(Γ1,Γ2, τ ) and somer0 ∈ h ⊗ h that satisfies Eqs.(1) and (2), by choosing a suitabl
triangular decomposition ofg and a set of Weyl–Chevalley generators.

3. The construction theorem for Lie superalgebras

Now our aim is to develop a similar theory for super structures. Letg be a simple
Lie superalgebra with non-degenerate Killing form. (In fact, most of our results ca
extended to the whole class of classical Lie superalgebras because most of the statem
involving the Killing form may be asserted more generally for a non-degenerate invari
form.)
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3.1. The quadratic Casimir element

Let {Iα} be a homogeneous basis forg and denote by{I∗
α } the dual basis ofg with

respect to the non-degenerate (Killing) form. Thus we have

(
Iα, Iβ

∗) = δαβ.

Denote the parity of a homogeneous elementx ∈ g by |x|; then |Iα| = |I∗
α |, since the

Killing form is consistent, and so the quadratic Casimir element ofg is

Ω =
∑
α

(−1)|Iα ||I ∗
α |Iα ⊗ I∗

α =
∑
α

(−1)|Iα |Iα ⊗ I∗
α .

For a definition of the Casimir element (and many other facts about Lie superalgebras u
here), one can look at [6,8].

Example. Let g = gl(m,n). Fix the basis{eij | 1 � i, j � m + n}, where|eij | = 0 if and
only if 1 � i, j � m or m + 1 � i, j � m + n. The dual basis is

e∗
ij = (−1)[i]eji

where

[j ] =
{

0 if j � m,

1 if j > m

and( , ) is the supertrace form. Then this gives us

Ω =
∑
α

(−1)|Iα |Iα ⊗ I∗
α =

∑
i,j

(−1)|eij |eij ⊗ (−1)[i]eji =
∑
i,j

(−1)[j ]eij ⊗ eji .

3.2. Borel subsuperalgebras and Dynkin diagrams

Let h ⊂ g be a Cartan subalgebra. By definition,h ⊂ g0 is a Cartan subalgebra of th
even part ofg. Let ∆ = ∆0 + ∆1 be the set of all roots ofg associated with the Carta
subalgebrah, where∆0 and∆1 are the even and odd roots respectively. Recall that a Lie
subsuperalgebrab of a Lie superalgebrag is a Borel subsuperalgebraif there is some
Cartan subsuperalgebrah of g and some baseΓ for ∆, such that

b = h ⊕
⊕

α∈∆+
gα

where∆+ is the set of all positive roots.
In the Lie algebra case, subalgebras given by this definition are all maximally sol

and all maximally solvable subalgebras of a simple Lie algebra are of this type. T
fore, this definition agrees with the usual definition of a Borel subalgebra as a max
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solvable subalgebra. However Borel subsuperalgebras as defined above are not ne
maximally solvable. For instance ifα is a positive isotropic root of the simple Lie super
gebrag, and ifb is the sum of all the positive root spaces, thenb is a Borel subsuperalgeb
but is not maximally solvable. The (parabolic) subsuperalgebrap = b ⊕ g−α is also solv-
able. In fact, maximally solvable subsuperalgebras may be more complicated than mer
parabolic. (See [9] for maximally solvable subsuperalgebras ofgl(m,n) andsl(m,n).)

Recall also that different Borel subsuperalgebras may correspond to different Dynkin d
agrams and Cartan matrices. Let us then fix some Borel subsuperalgebrab, or equivalently
some set of simple roots,Γ = {α1, α2, . . . , αr }, and the associated Dynkin diagramD.

3.3. The data for the theorem

In this setup, letΓ1,Γ2 ⊂ Γ be two subsets andτ :Γ1 → Γ2 be a bijection. The triple
(Γ1,Γ2, τ ) will be calledadmissibleif:

(1) for anyα,β ∈ Γ1, (τ (α), τ (β)) = (α,β);
(2) for anyα ∈ Γ1 there exists ak ∈ N such thatτ k(α) /∈ Γ1;
(3) τ preserves the grading of the root space.

Given an admissible triple(Γ1,Γ2, τ ), letΓ i for i = 1,2 be the set of those roots that a
non-negative integral linear combinations of the elements ofΓi . Thenτ extends linearly to
a bijectionτ :Γ 1 → Γ 2, so we can define a partial order on∆+

α ≺ β if and only if there exists ak ∈ N such thatβ = τk(α).

For anyα ∈ Γ , pick a non-zeroeα ∈ gα . Since eachgα is one dimensional, and th
Killing form is a non-degenerate pairing ofgα with g−α , one can uniquely picke−α ∈ g−α

such that(eα, e−α) = 1, so for eachα ∈ Γ

[eα, e−α] = (eα, e−α)hα

wherehα ∈ h is defined by(hα,h) = α(h) for all h ∈ h. The set{hα | α ∈ Γ } is a basis for
h. Hence we can writeΩ0, theh-part ofΩ , as follows

Ω0 =
r∑

i=1

hαi ⊗ h∗
αi

,

where the set{h∗
α | α ∈ Γ } is the basis inh dual to{hα | α ∈ Γ }.

Next, for eachα ∈ ∆+\Γ , choose a non-zeroeα ∈ gα ; this will uniquely determine
e−α ∈ g−α satisfying(eα, e−α) = 1. Then the duals with respect to the standard (Killin
form will be

e∗
α = e−α, e∗−α = (−1)|α|eα
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for all positive rootsα, where |α| is the parity of the rootα. Therefore, the quadrat
Casimir element ofg will be

Ω =
∑

i

(−1)|Ii |Ii ⊗ I∗
i =

r∑
i=1

hαi ⊗ h∗
αi

+
∑
α∈∆

(−1)|eα|eα ⊗ e∗
α

= Ω0 +
∑

α∈∆+
(−1)|α|eα ⊗ e−α +

∑
α∈∆+

e−α ⊗ eα.

Example (continued). Once again, letg = gl(m,n). Let h andb be the diagonal matrice
and the upper triangular matrices, respectively. Then the positive root spaces are span
by {eij | i < j }. If for each positive rootα, we leteα be the uniqueeij ∈ gα , theni < j and
e−α = (−1)[i]eji . We will have

e∗
α = e∗

i.j = (−1)[i]eji = e−α,

e∗−α = (−1)[i]e∗
ji = (−1)[i](−1)[j ]eij = (−1)|α|eα

and the above formula forΩ will agree with the Casimir element found earlier.

3.4. Statement of the theorem

We are now ready to state our main theorem. Its proof will be presented in the nex
sections.

Theorem 2. Let r0 ∈ h ⊗ h satisfy

r12
0 + r21

0 = Ω0, (1)(
τ (α) ⊗ 1

)
(r0) + (1⊗ α)(r0) = 0 for all α ∈ Γ1. (2)

Then the elementr of g ⊗ g defined by

r = r0 +
∑
α>0

e−α ⊗ eα +
∑

α,β>0, α≺β

(
e−α ⊗ eβ − (−1)|α|eβ ⊗ e−α

)
(∗)

is a solution to the system

r12 + r21 = Ω, (3)[
r12, r13] + [

r12, r23] + [
r13, r23] = 0. (4)

Remark. If g is a simple Lie algebra, then(∗) reduces to the corresponding equation
Theorem 1.
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Let g be a simple Lie superalgebra with non-degenerate Killing form. Fix a ho
geneous basis{Iα} for g and denote by{I∗

α } the dual basis ofg with respect to the
non-degenerate (Killing) form.

Lemma 1. Letf :g → g be an even linear map, and setr = (f ⊗ 1)Ω . Then the system o
equations

r12 + r21 = Ω, (3)[
r12, r13] + [

r12, r23] + [
r13, r23] = 0 (4)

is equivalent to the system

f + f ∗ = 1, (5)

(f − 1)
[
f (x), f (y)

] = f
([

(f − 1)(x), (f − 1)(y)
])

(6)

wheref ∗ stands for the adjoint off with respect to the standard from( , ).

Remark. This lemma is a basic step in the proof of Theorem 1, and our proof will fo
the presentation in [4] with some modifications.

Proof. We have

r12 + r21 = (f ⊗ 1)Ω + (1⊗ f )Ω = (f ⊗ 1)Ω + (
f ∗ ⊗ 1

)
Ω = ((

f + f ∗) ⊗ 1
)
Ω

which proves the equivalence of the statements

Ω = r12 + r21 and 1= (
f + f ∗).

Next we show that the CYBE forr (that is, Eq. (4)), translates to a nice expressio
terms of the associated functionf . We have

r = (f ⊗ 1)Ω =
∑
α

(−1)|Iα |f (Iα) ⊗ I∗
α .

Let us write the three terms of the CYBE:

[
r12, r13] =

∑
α,β

(−1)|Iα |+|Iβ |(−1)|Iα ||Iβ |[f (Iα), f (Iβ)
] ⊗ I∗

α ⊗ I∗
β ,

[
r12, r23] =

∑
α,β

(−1)|Iα |+|Iβ |f (Iα) ⊗ [
I∗
α , f (Iβ)

] ⊗ I∗
β ,

[
r13, r23] =

∑
(−1)|Iα |+|Iβ |(−1)|Iα ||Iβ |f (Iα) ⊗ f (Iβ) ⊗ [

I∗
α , I∗

β

]
.

α,β
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Here we use the consistency of the form, the evenness off , and

[a ⊗ b ⊗ 1, c ⊗ 1⊗ d] = (−1)|b||c|[a, c] ⊗ b ⊗ d,

[a ⊗ b ⊗ 1,1⊗ c ⊗ d] = a ⊗ [b, c] ⊗ d,

[a ⊗ 1⊗ b,1⊗ c ⊗ d] = (−1)|b||c|a ⊗ c ⊗ [b, d].

We rewrite the last sum so that it ends with⊗I∗
β

∑
α,β

(−1)|Iα |+|Iβ |(−1)|Iα ||Iβ |f (Iα) ⊗ f (Iβ) ⊗ [
I∗
α , I∗

β

]

= −
∑
α,β

(−1)|Iα |+|Iβ |f (Iα) ⊗ f
([

I∗
α , Iβ

]) ⊗ Iβ
∗

where we use the invariance of the form, and the supersymmetry of the bracket.
Therefore we can rewrite the CYBE as

∑
α,β

(−1)|Iβ |
(

(−1)|Iα |(−1)|Iα ||Iβ |[f (Iα), f (Iβ)] ⊗ I∗
α

+(−1)|Iα |f (Iα) ⊗ [I∗
α , f (Iβ)]

−(−1)|Iα |f (Iα) ⊗ f ([I∗
α , Iβ ])

)
⊗ I∗

β = 0.

Since the{I∗
β } form a basis forg, this last equation implies that, for any choice ofβ

(∑
α(−1)|Iα |(−1)|Iα ||Iβ |[f (Iα), f (Iβ)] ⊗ I∗

α

+∑
α(−1)|Iα |f (Iα) ⊗ [I∗

α , f (Iβ)]
−∑

α(−1)|Iα |f (Iα) ⊗ f ([I∗
α , Iβ ])

)
= 0.

We want to rewrite the second and the third sums so that they end with⊗Iα
∗. After

some calculation, the second term becomes

∑
α

(−1)|Iα |f (Iα) ⊗ [
I∗
α , f (Iβ)

] = −
∑
α

(−1)|Iα |(−1)|Iα ||Iβ |f
([

Iα, f (Iβ)
]) ⊗ I∗

α .

The third sum splits into two different sums when we use Eq. (3)

−
∑
α

(−1)|Iα |f (Iα) ⊗ f
([

I∗
α , Iβ

])

= −
∑
α

(−1)|Iα |f (Iα) ⊗ [
I∗
α , Iβ

] +
∑
α

(−1)|Iα |f (Iα) ⊗ f ∗([I∗
α , Iβ

])
.

We calculate these terms separately
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−
∑
α

(−1)|Iα |f (Iα) ⊗ [
I∗
α , Iβ

] =
∑
α

(−1)|Iα |(−1)|Iα ||Iβ |f
([

Iα, Iβ

]) ⊗ I∗
α ,

∑
α

(−1)|Iα |f (Iα) ⊗ f ∗([I∗
α , Iβ

]) = −
∑
α

(−1)|Iα |(−1)|Iα ||Iβ |f
([

f (Iα), Iβ

]) ⊗ I∗
α .

Hence we get

∑
α

(−1)|Iα |(−1)|Iα ||Iβ |
( [f (Iα), f (Iβ)] − f ([Iα, f (Iβ)])

+f ([Iα, Iβ ]) − f ([f (Iα), Iβ ])
)

⊗ I∗
α = 0.

Again using the fact that the{I∗
α } form a basis forg, we obtain, for allα,β[

f (Iα), f (Iβ)
] − f

([
Iα, f (Iβ)

]) + f
([Iα, Iβ ]) − f

([
f (Iα), Iβ

]) = 0

which can be rewritten as

(f − 1)
[
f (Iα), f (Iβ)

] = f
([

(f − 1)(Iα), (f − 1)(Iβ)
])

,

which is equivalent to

(f − 1)
[
f (x), f (y)

] = f
([

(f − 1)(x), (f − 1)(y)
])

for all x, y ∈ g . (6)

This proves one direction of the lemma. To see the other direction, we need only
the steps above backwards. Hence one can easily see that a functionf satisfying Eqs. (5)
and (6) will correspond to anr-matrix r ∈ g ⊗ g that satisfies Eqs. (3) and (4). This co
pletes the proof. �
Lemma 2. Letf0 be a linear map onh, and setr0 = (f0 ⊗ 1)Ω0. Then the system

r12
0 + r21

0 = Ω0, (1)(
τ (α) ⊗ 1

)
(r0) + (1⊗ α)(r0) = 0 for all α ∈ Γ1 (2)

is equivalent to the system

f0 + f ∗
0 = 1, (7)

f0(hα) = (f0 − 1)(hτ(α)) for all α ∈ Γ1. (8)

Proof. We will prove a stronger result, namely, that, for any 1� s, t � r , the system o
equations

r12
0 + r21

0 = Ω0, (αt ⊗ 1)(r0) + (1⊗ αs)(r0) = 0
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is equivalent to the following system of equations

f0 + f ∗
0 = 1, f0(hαs ) = (f0 − 1)(hαt ).

It is easy to see the equivalence of the first equations

r12
0 + r21

0 = (f0 ⊗ 1+ 1⊗ f0)Ω0 = ((
f0 + f ∗

0

) ⊗ 1
)
Ω0 = Ω0

if and only if f0 + f0
∗ = 1.

Next we look at(αt ⊗ 1)r0 + (1⊗ αs)r0. This is equal to

(αt ⊗ 1)

(∑
i

f0(hαi ) ⊗ h∗
αi

)
+ (1⊗ αs)

(∑
i

f0(hαi ) ⊗ h∗
αi

)

=
∑

i

αt

(
f0(hαi )

) · h∗
αi

+
∑

i

αs

(
f ∗

0

(
h∗

αi

)) · hαi

=
∑

i

αt

(∑
k

(
f0(hαi ), hαk

)
h∗

αk

)
· h∗

αi
+

∑
i

αs

(∑
k

(
f ∗

0

(
h∗

αi

)
, hαk

)
h∗

αk

)
· hαi

=
∑
i,k

(
f0(hαi ), hαk

)
αt

(
h∗

αk

) · h∗
αi

+
∑
i,k

(
f ∗

0

(
h∗

αi

)
, hαk

)
αs

(
h∗

αk

) · hαi .

We have

αs

(
h∗

αk

) = (
hαs , h

∗
αk

) = δsk and αt

(
h∗

αk

) = (
hαt , h

∗
αk

) = δtk.

Therefore the above expression becomes

∑
i

(
f0(hαi ), hαt

)
h∗

αi
+

∑
i

(
f ∗

0

(
h∗

αi

)
, hαs

)
hαi

=
∑

i

(
hαi , f

∗
0 (hαt )

)
h∗

αi
+

∑
i

(
h∗

αi
, f0(hαs )

)
hαi

= f ∗
0 (hαt ) + f0(hαs ) = (1− f0)(hαt ) + f0(hαs ).

This shows that(αt ⊗ 1)r0 + (1 ⊗ αs)r0 = (1 − f0)(hαt ) + f0(hαs ). Clearly, one side is
equal to zero if and only if the other side is. This proves the lemma.�

We also need the consistency of the system of equations

r12
0 + r21

0 = Ω0, (1)(
τ (α) ⊗ 1

)
(r0) + (1⊗ α)(r0) = 0 for all α ∈ Γ1. (2)
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However, the arguments used to prove this are the same as for the Lie algebra case (see
for details), and hence will not be included here.

The results of this section allow us to translate the conditions on the continuous
meter of the main theorem into conditions on a linear mapf0 :h → h, and the CYBE and
Eq. (3) become conditions on the associated linear mapf :g → g. Thus we can restate ou
problem as follows: given an admissible triple(Γ1,Γ2, τ ) with a linear mapf0 : h → h

satisfying Eqs. (7) and (8), construct a linear mapf :g → g satisfying Eqs. (5) and (6).

5. The Cayley transform

Following [2], we will now introduce a variation on the theme of Cayley transfor
For a linear functionf :g → g with (f − 1) invertible, theCayley transformof f is Θ =
f/(f − 1). If f satisfies Eq. (5), thenΘ∗ = f ∗/(f − 1)∗ = (1− f )/ − f . Then we can
see thatΘΘ∗ = 1, soΘ preserves the invariant form. Iff also satisfies Eq. (6), then w
have[Θ(x),Θ(y)] = Θ([x, y]), soΘ is a Lie superalgebra automorphism.

However, this does not work for simple Lie algebras, and in fact it does not work for
ple Lie superalgebras, either. To see this, assume thatf is a linear map satisfying Eqs. (5
and (6),f − 1 is invertible, andΘ is defined as above. ThenΘ − 1 is the inverse off − 1,
so det(Θ − 1) �= 0. But we have:

Lemma 3. If Θ is an automorphism of a finite dimensional(classical) simple Lie superal-
gebrag, thendet(Θ − 1) = 0.

Proof. The automorphismΘ restricts to a (Lie algebra) automorphismθ on g0, the even
part ofg. g0 is reductive with non-trivialg0

′ = [g0,g0]. g0
′ is semisimple andθ restricts to

an automorphismϕ on g0
′. Using Theorem 9.2 of [2] we can find some non-zerox ∈ g0

′
with ϕ(x) = x. ThenΘ(x) = x and hencex ∈ Ker(Θ − 1). Thus det(Θ − 1) = 0. �

Thus Eqs. (5) and (6) imply thatf − 1 is not invertible. Therefore, we cannot define
Cayley transform as above for the functions we are interested in.

However it turns out that we can modify our definition and still get a lot of what we w
First note that for any linear operatorf , Ker(f ) ⊂ Im(f − 1) and Ker(f − 1) ⊂ Im(f ).
We will define theCayley transform off to be the functionΘ : Im(f − 1)/Ker(f ) →
Im(f )/Ker(f − 1) that maps(f − 1)(x) to f (x). (It is easy to check that this is we
defined.) This version of the Cayley transform will be sufficient for our purposes. We

Lemma 4. Letf :g → g be a linear map satisfying

f + f ∗ = 1. (5)

ThenKer(f ) = Im(f −1)⊥, Ker(f −1) = Im(f )⊥, and the mapΘ preserves the invarian
form. Furthermore,f satisfies

(f − 1)
[
f (x), f (y)

] = f
([

(f − 1)(x), (f − 1)(y)
])

, (6)
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if and only ifIm(f ) andIm(f − 1) are Lie subsuperalgebras ofg, andΘ is a Lie superal-
gebra isomorphism.

Remark. The proof of this lemma is exactly the same as the proof of the analogous
in the Lie algebra case. See [2].

6. The construction—end of the proof of the theorem

For a given admissible triple(Γ1,Γ2, τ ), and a linear mapf0 :h → h satisfying Eqs. (7)
and (8), we want to construct a functionf :g → g that will satisfy Eqs. (5) and (6). Here
how we proceed.

DefineΓ i andτ as above. Also define the following Lie subsuperalgebras ofg

hi =
⊕
α∈Γi

Chα, gi = hi ⊕
∑
α∈Γ i

(gα ⊕ g−α),

n
+
i =

∑
α∈∆+/Γ i

gα, p
+
i = gi + ni

+,

n
−
i =

∑
α∈∆+/Γ i

g−α, p
−
i = gi + n

−
i .

We can see that then+/−
i are ideals inp+/−

i .
Let f0 :h → h satisfy Eq. (8). Then

hα = (f0 − 1)(hτ(α) − hα), hτ(α) = f0(hτ(α) − hα)

for all α ∈ Γ1. This implies thathα ∈ Im(f0 − 1) and hτ(α) ∈ Im(f0). Thereforeh1 ⊂
Im(f0 − 1), andh2 ⊂ Im(f0).

Fix a Weyl–Chevalley basis{Xαi , Yαi ,Hαi | αi ∈ Γ }. It is known that such a set o
generators exists and satisfies the usual Serre-type relations (see [5] and [7] for details
Define a mapϕ by

ϕ(Xα) = Xτ(α), ϕ(Yα) = Yτ(α), ϕ(Hα) = Hτ(α)

for all α ∈ Γ1. Then this can be extended to an isomorphismϕ :g1 → g2 because the
relations betweenXα , Yα , Hα for α ∈ Γ1 will be the same as the relations betwe
Xτ(α), Yτ(α),Hτ(α) for α ∈ Γ1. (Here we are using the fact thatτ is an isometry pre
serving grading.) Note thatϕ−1 is a map fromg2 onto g1. Since τ is an isometry,
(ϕ(x), y)g2 = (x,ϕ−1(y))g1 for all x ∈ g1, y ∈ g2. But ϕ∗ should mapg2 into g1 and sat-
isfy exactly the same conditions; henceϕ∗ = ϕ−1.
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For eachα ∈ ∆, choose an elementeα ∈ gα such that(eα, e−α) = 1 for any α, and
ϕ(eα) = eτ(α) for all α ∈ Γ 1. The conditions onτ ensure that this is possible. Next defi
a linear map as follows

ψ(x) =
{

ϕ(x) if x ∈ g1,

0 if x ∈ n
+
1 .

This restricts to a map onn+ = ⊕
α>0 gα , sincen+ = (g1 ∩ n+) ⊕ n

+
1 . The proof of the

following lemma is exactly the same as in the Lie algebra case (see [2]):

Lemma 5. det(ψ − 1) is non-zero if and only ifτ satisfies the second condition in t
definition of an admissible triple.

Therefore we can define a function onn+ by

f+ = ψ

ψ − 1
= −(

ψ + ψ2 + · · ·).
Clearly the sum on the right-hand side is finite asψ is nilpotent. Notice thatψ∗ and sof ∗+
are maps onn− = ⊕

α<0 gα , since the Killing form induces a non-degenerate pairing
n+ with n−.

Now define a linear map onn− by

f− = 1− f ∗+ = 1+ ψ∗ + ψ∗2 + · · · .
Then definef to be the function whose restriction toh, n+, n− is f0, f+, f−, respectively.
(Note thatf is even.) We have

f + f ∗ = (f0 + f+ + f−) + (f0 + f+ + f−)∗

= (
f0 + f ∗

0

) + (
f+ + f ∗−

) + (
f ∗+ + f−

)
= 1h + 1n+ + 1n− = 1g.

Lemma 4 implies that, to show thatf satisfies Eq. (6), one only needs to show t
C1 = Im(f − 1) andC2 = Im(f ) are Lie subsuperalgebras ofg, and the Cayley transform
Θ of f is a Lie superalgebra isomorphism. We have

C1 = Im(f − 1) = Im(f0 − 1) ⊕ Im(f+ − 1) ⊕ Im(f− − 1),

C2 = Im(f ) = Im(f0) ⊕ Im(f+) ⊕ Im(f−).

We have seen that Im(f0 − 1) ⊃ h1 and Im(f0) ⊃ h2. We will therefore defineV1, V2
as (vector) subspaces ofh such that Im(f0 − 1) = h1 ⊕ V1 and Im(f0) = h2 ⊕ V2.

In the Lie algebra case, the Killing form restricts to a positive definite non-degenera
form on (the real subspace generated by{Hα | α ∈ Γ } of) h. So we can define the orthog
nal complements ofh1 andh2 with respect to this form; call thesehc andhc ; then we have
1 2
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h = h1 ⊕ hc
1 = h2 ⊕ hc

2. Then for a fixedf0, the two subspacesV1 andV2 are uniquely de-
termined if we add the condition thatVi ⊂ hc

i . In the super case, this is no longer possib
the real Cartan subalgebrah may have isotropic elements and subspaces ofh may intersect
their orthogonal complements non-trivially. However in our case we still can definehc

i as
follows

hc
i =

⊕
α∈Γ \Γi

Chα.

Thus we still can writeh = hi ⊕ hc
i , and still can demand thatVi ⊂ hc

i . In this way theVi

are then well defined, but clearly depend on the choice ofΓ .
Next we compute

Im(f+ − 1) = Im

(
1

ψ − 1

)
= n+,

Im(f− − 1) = Im

(
ψ∗

1− ψ∗

)
= Im

(
ψ∗) = g1 ∩ n−,

Im(f+) = Im

(
ψ

1− ψ

)
= Im(ψ) = g2 ∩ n+,

Im(f−) = Im

(
1

1− ψ∗

)
= n−

where we use the fact thatψ − 1 is invertible. The above then yields

C1 = p
+
1 ⊕ V1, C2 = p

−
2 ⊕ V2.

It is now easy to check thatC1 andC2 are both closed under the bracket and hence are
subsuperalgebras ofg.

Finally we need to see that the Cayley transformΘ is a Lie superalgebra isomorphism
We note that by the last lemma above,Ci ⊃ C⊥

i . So we have

C⊥
1 = (

p
+
1 ⊕ V1

)⊥ = n
+
1 ⊕ (h1 ⊕ V1)

⊥ = n
+
1 ⊕ (

h⊥
1 ∩ V ⊥

1

) ⊂ p
+
1 ⊕ V1

and similarly

C⊥
2 = (

p
−
2 ⊕ V2

)⊥ = n
−
2 ⊕ (h2 ⊕ V2)

⊥ = n
−
2 ⊕ (

h
⊥
2 ∩ V ⊥

2

) ⊂ p
−
2 ⊕ V2.

Henceh⊥
i ∩ V ⊥

i ⊂ hi ⊕ Vi , and so

C1/C⊥
1 = p

+
1 ⊕ V1

(p+
1 ⊕ V1)⊥

=
( ⊕

gα ⊕ g−α

)
⊕ h1 ⊕ V1

h⊥
1 ∩ V ⊥

1
α∈Γ 1
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and similarly

C2/C⊥
2 = p

−
2 ⊕ V2

(p−
2 ⊕ V2)⊥

=
( ⊕

α∈Γ 2

gα ⊕ g−α

)
⊕ h2 ⊕ V2

h⊥
2 ∩ V ⊥

2

.

SinceCi is a Lie subsuperalgebra andC⊥
i is an ideal, there is a Lie superalgebra struct

on Ci/C⊥
i . But [gα,g−α] = CHα , therefore there is a complete copy ofhi and a copy of

gi in Ci/C⊥
i . Thush⊥

i ∩ V ⊥
i ⊂ Vi , and

Ci/C⊥
i = gi ⊕ Vi

h⊥
i ∩ V ⊥

i

.

So we need to show that

Θ :g1 ⊕ V1

h⊥
1 ∩ V ⊥

1

→ g2 ⊕ V2

h⊥
2 ∩ V ⊥

2

is a Lie superalgebra isomorphism.
We first note thatΘ(x) = ϕ(x) for all x ∈ g1. Indeed ifα ∈ Γ1

Xα = (f+ − 1)(Xτ(α) − Xα)

and so is mapped viaΘ to

f+(Xτ(α) − Xα) = Xτ(α)

and similarly

Yα = (f− − 1)(Yτ(α) − Yα)

is mapped viaΘ to

f−(Yτ(α) − Yα) = Yτ(α).

Also it is easy to see that sinceHα = (f0 − 1)(Hτ(α) − Hα) for eachα ∈ Γ1, Θ sendsHα to
f0(Hτ(α) − Hα) = Hτ(α). Hence the restriction ofΘ to g1 is exactly the Lie superalgeb
isomorphismϕ.

Next we look at howΘ acts on the Cartan part of theCi/Ci
⊥. We have

Ci/C⊥
i =

( ⊕
α∈Γ i

gα ⊕ g−α

)
⊕ hi ⊕ Vi

h⊥
i ∩ V ⊥

i

,

i.e.,Ci/C⊥
i is the direct sum of a Cartan part and a non-Cartan part. Then the argu

above show thatΘ, like ϕ, maps the non-Cartan part ofC1/C⊥ into the non-Cartan par
1
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of C2/C⊥
2 . Also, sinceΘ preserves the invariant form, it maps the Cartan part ofC1/C⊥

1
to the Cartan part ofC2/C⊥

2

Θ
((

non-Cartan ofC1/C⊥
1

)⊥) = (
non-Cartan ofC2/C⊥

2

)⊥
.

In other words

Θ

(
h1 ⊕ V1

h⊥
1 ∩ V ⊥

1

)
=

(
h2 ⊕ V2

h⊥
2 ∩ V ⊥

2

)
.

Sincehi ⊕ Vi/(h
⊥
i ∩ V ⊥

i ) is abelian,Θ restricts to an isomorphism there as well. Theref
Θ is an isomorphism. Therefore the associated linear mapf satisfies Eqs. (5) and (6) an
so corresponds to anr-matrix satisfying Eqs. (3) and (4).

Checking that the functionf constructed in this way yields the tensorr of Eq. (∗) is
straightforward. This completes the proof of the theorem.

7. Examples: r-matrices on sl(2, 1)

Recall that two Dynkin diagrams of a given Lie superalgebra may be non-isomorph
but one can be obtained from another via a chain of odd reflections (see [10] for inform
about odd reflections and more on root systems of graded Lie algebras). Then we ma
to know howr-matrices obtained from two non-isomorphic Dynkin diagrams are relate
at all. This question in all its generality needs to be addressed systematically. Howev
will see that at least in the case ofsl(2,1), if r andr ′ are the standardr-matrices associate
to the Dynkin diagramsD andD′, respectively, andD′ is obtained fromD by the odd
reflectionσα associated to the rootα, thenr ′ is the image ofr underσα .

7.1. Dynkin diagrams of sl(2,1)

The roots ofsl(2,1) are

∆0 = {ε1 − ε2, ε2 − ε1}, ∆1 = {ε1 − λ1, ε2 − λ1, λ1 − ε1, λ1 − ε2}
whereεi is the (restriction to the Cartan subalgebra ofsl(2,1) of the) standard basis
εi(Ejk) = δij δik, andλ1 = ε3. Denote the set of simple roots byΓ .

There are six possible Dynkin diagrams:

(1) Γ (D1) = {ε1 − ε2, ε2 − λ1}. We will setα1 = ε1 − ε2 andα2 = ε2 − λ1. α1 is even;
α2 is odd. The third positive root isα1 + α2 and is odd.

(2) Γ (D2) = {ε1 − λ1, λ1 − ε2} = {α1 + α2,−α2}. D2 is obtained fromD1 via the odd
reflectionσα2. The third positive root isα1 and is even.

(3) Γ (D3) = {λ1 − ε1, ε1 − ε2} = {−α1 − α2, α1}. D3 is obtained fromD2 via the odd
reflectionσα1+α2. The third positive root is−α2 and is odd.

(4) Γ (D4) = −Γ (D1) = {−α1,−α2}. The third positive root is−α1 − α2 and is odd.
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(5) Γ (D5) = −Γ (D2) = {−α1 − α2, α2}. The third positive root is−α1 and is even.D5
is obtained fromD4 via σ−α2, as expected.

(6) Γ (D6) = −Γ (D3) = {α1 + α2,−α1}. The third positive root isα2 and is odd.D6 is
obtained fromD5 via the odd reflectionσ−α1−α2.

Hence, up to sign, there are three Dynkin diagrams, and these can be obtained fr
another via a chain of odd reflections (which change the signs of some of the odd ro
a positive even root stays positive).

7.2. The standardr-matrices

Given r0 ∈ h ⊗ h satisfyingr0 + r21
0 = Ω0, the standardr-matrix for a fixed Dynkin

diagram is

r = r0 +
∑
α>0

e−α ⊗ eα.

So fixingr0 we write down the standardr-matrices for the above diagrams:

(1) D1: let eα1 = E12, eα2 = E23, eα1+α2 = E13. This determinese−α by (eα, e−α) = 1:
e−α1 = E21, e−α2 = E32, e−α1−α2 = E31. Therefore we get

rst (D1) = r0 + (E21 ⊗ E12) + (E32 ⊗ E23) + (E31 ⊗ E13).

(2) D2: let eα1 = E12, e−α2 = E32, eα1+α2 = E13. This determinese−α by (eα, e−α) = 1:
e−α1 = E21, eα2 = −E23, e−α1−α2 = E31. Therefore we get

rst (D2) = r0 + (E21 ⊗ E12) − (E23 ⊗ E32) + (E31 ⊗ E13).

(3) D3: let eα1 = E12, e−α2 = E32, e−α1−α2 = E31. This determinese−α by (eα, e−α) = 1:
e−α1 = E21, eα2 = −E23, eα1+α2 = −E13. Therefore we get

rst (D3) = r0 + (E21 ⊗ E12) − (E23 ⊗ E32) − (E13 ⊗ E31).

(4) D4: let e−α1 = E21, e−α2 = E32, e−α1−α2 = E31. This determinese−α by (eα, e−α) = 1:
eα1 = E12, eα2 = −E23, eα1+α2 = −E13. Therefore we get

rst (D4) = r0 + (E12 ⊗ E21) − (E23 ⊗ E32) − (E13 ⊗ E31).

(5) D5: let e−α1 = E21, eα2 = E23, e−α1−α2 = E31. This determinese−α by (eα, e−α) = 1:
eα1 = E12, e−α2 = E32, eα1+α2 = −E13. Therefore we get

rst (D5) = r0 + (E12 ⊗ E21) + (E32 ⊗ E23) − (E13 ⊗ E31).
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(6) D6: let e−α1 = E21, eα2 = E23, eα1+α2 = E13. This determinese−α by (eα, e−α) = 1:
eα1 = E12, e−α2 = E32, e−α1−α2 = E31. Therefore we get

rst (D6) = r0 + (E12 ⊗ E21) + (E32 ⊗ E23) + (E31 ⊗ E13).

We note that the first three of ther-matrices constructed above (and similarly the
three) are connected via odd reflections which correspond to the odd reflections th
nect the associated Dynkin diagrams. The even reflection which changes the signs
even roots will connect the first threeto the last three. Hence all theser-matrices are relate
to one another via (even or odd) reflections.

7.3. Constructing non-standardr-matrices

The non-standardr-matrices that we can construct with our theorem come from the
diagramsD2 andD5.

ForD2 letΓ1 = {α1 + α2} andΓ2 = {−α2}. Defineτ (α1 + α2) = −α2. The partial order
on positive roots will be:α1 + α2 ≺ −α2. Given thatr0 satisfies

(−α2 ⊗ 1)(r0) + (
1⊗ (α1 + α2)

)
(r0) = 0,

the associatedr-matrix will be

rns1 = r0 + (E21 ⊗ E12) − (E23 ⊗ E32) + (E31 ⊗ E13)

+ (
(E31 ⊗ E32) + (E32 ⊗ E31)

)
.

The first few terms will actually make uprst (D2) for the chosenr0, so we can rewrite th
above as

rns1 = rst (D2) + (E31 ⊗ E32) + (E32 ⊗ E31).

ForD5 letΓ1 = {α2} andΓ2 = {−α1 − α2}. Defineτ (α2) = −α1 − α2. The partial order
on positive roots will be:α2 ≺ −α1 − α2. Given thatr0 satisfies

(
(−α1 − α2) ⊗ 1

)
(r0) + (1⊗ α2)(r0) = 0,

the associatedr-matrix will be

rns2 = r0 + (E12 ⊗ E21) + (E32 ⊗ E23) − (E13 ⊗ E31)

+ (
(E32 ⊗ E31) + (E31 ⊗ E32)

)
.

The first few terms will actually make uprst (D5) for the chosenr0, so we can rewrite th
above as

rns2 = rst (D5) + (E32 ⊗ E31) + (E31 ⊗ E32).
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Note that if forD2, we redefineτ so thatτ (−α2) = α1 + α2, then−α2 ≺ α1 + α2, and
we get

rns3 = rst (D2) + (−E23 ⊗ E13) + (−E13 ⊗ E23);

and if forD5, we redefineτ by τ (−α1−α2) = α2, then the order becomes:−α1 − α2 ≺ α2,
and we get

rns4 = rst (D5) + (−E13 ⊗ E23) + (−E23 ⊗ E13).

8. Conclusion

In the Lie algebra case, the main classification theorem comes in two parts. The co
structive part that gives anr-matrix for a given admissible triple is accompanied with th
assertion that any givenr-matrix that satisfiesr + r21 = Ω can be obtained by the sam
construction for a suitable choice of an admissible triple. We would like to prove su
assertion for Lie superalgebras, or come up with a counterexample.

We consider once again the simple Lie superalgebrasl(2,1). We define

f (E11 + E33) = 0, f (E22 + E33) = E22 + E33,

f (E21) = 0, f (E12) = E12,

f (E23) = 0, f (E13) = E13,

f (E31) = −E13, f (E32) = E23 + E32

and extendf to a linear map ong. We can easily check that this function satisfies Eq.
which is equivalent to the associated 2-tensor being anr-matrix.

We write the quadratic Casimir element

Ω = Ω0 + (E12 ⊗ E21 + E21 ⊗ E12) + (−E13 ⊗ E31 + E31 ⊗ E13)

+ (−E23 ⊗ E32 + E32 ⊗ E23)

whereΩ0 = (E11 + E33) ⊗ (−E22 − E33) + (−E22 − E33) ⊗ (E11 + E33). Then if we
definer(f ) to be the 2-tensor(f ⊗ 1)Ω , we get

r(f ) = r0 + E12 ⊗ E21 − E13 ⊗ E31 + E32 ⊗ E23 − E13 ⊗ E13 + E23 ⊗ E23

wherer0 = (−E22 − E33) ⊗ (E11 + E33). Clearlyr(f ) satisfies Eq. (3).
Thisr-matrix is not among those constructed using Theorem 2. In fact we can prov

the two subsuperalgebras Im(f ) and Im(f − 1) will never be simultaneously isomorph
to root subsuperalgebras. The corresponding subsuperalgebras for functions construc
by the theorem will always be root subsuperalgebras. Thus the Belavin–Drinfeld typ
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we used is not enough to classify all solutions to the system of Eqs. (3) and (4). A ful
sification result should also explain howr-matrices obtained from non-isomorphic Dynk
diagrams are related to one another. We hope toaddress these problems in a separate pa
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