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Multivariate Distributions having Weibull Properties* 

LARRY LEE 

Virginia Polytechnic Institute and State University 

Communicated by P. R. Krishnaiah 

Random variables XI ,..., X, are said to have a joint distribution with Weibull 
minimums after arbitrary scaling if mini(aiXi) has a one dimensional Weibull 
distribution for arbitrary constants aj > 0, i = l,..., n. Some properties of 
this class are demonstrated, and some examples are given which show the 
existence of a number of distributions belonging to the class. One of the proper- 
ties is found to be useful for computing component reliability importance. The 
class is seen to contain an absolutely continuous Weibull distribution which 
can be generated from independent uniform and gamma distributions. 

1. INTRODUCTION 

In the following F(x) = P(X, > x1 ,..., X,, > x,J is the joint survival 
function of nonnegative random variables XI ,..., X,, and R = -1ogF is the 
hazard function which is nondecreasing and defined for nonnegative x. 

The Weibull distribution, P(x) = exp(-&), x 3 0, has become an im- 
portant, often used, model for life length. Several multivariate extensions have 
been suggested [lo, 11, 141. However, the extensions appear to have little in 
common with the univariate Weibull distribution except that the marginal 
distributions are Weibull. An exception is the Weibull distribution mentioned 
by Marshall and Olkin [14], and also discussed in [12], which has the following 
form: 

F(x) = exp (-T AJ y? (4”)). x > 0 (1.1) 

with 01 > 0 and hJ > 0 for J E $ where the sets J are elements of the class $ 
of nonempty subsets of (l,..., n} having the property that for each i, i E J for 
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some J E f. For OL = 1, (1.1) is the Marshall-Olkin [ 141 multivariate exponen- 
tial distribution. 

The purpose of this paper is to develop some properties of the class of multi- 
variate distributions having Weibull minimums after arbitrary scaling. Random 
variables XI ,..., X, have such a distribution if for arbitrary constants ai > 0, 
i = l,..., 7t, mini(a,Xi) has a one dimensional Weibull distribution, 

P(mp (aiXi) > t) = exp(--k(a) t”), t 2 0, (1.2) 

for some 01 > 0 and constant k(a) > 0. The Weibull distribution (1.1) belongs 
to this class, as do a number of other distributions which are presented in the 
next section. 

2. CLASSES OF WEIBULL DISTRIBUTIONS 

To clarify differences between distributions satisfying (1.2) and other classes 
of multivariate Weibull distributions it is helpful to consider a hierarchy of 
classes of multivariate Weibull distributions. 

Consider random variables X, ,..., X, having a joint distribution which 
satisfies one of the following conditions. 

(a) Xl ,..., X,, are independent and each Xi has a Weibull distribution of 
the forrnFi(t) = exp(-A$“), t > 0, i = l,..., tt. 

(b) X, ,..., X, have a multivariate Weibull distribution generated from 
independent Weibull distributions by letting 

Xi = min(2,: i E J), i = l,..., n, 

where the sets J are elements of a class $ of nonempty subsets of (l,..., n} 
having the property that for each i, i E J for some J E f, and the random 
variables 2, , J E $, are independent having Weibull distributions of the form 
FJ(t) = exp(-A$“). 

(4 Xl ,-**, X, have a joint distribution satisfying (1.2). 

(4 X, ,..., X,, have a joint distribution with Weibull minimums, that is, 

P(f@ (Xi) > t) = exp(-A@) 

for some A, > 0 and all nonempty subsets S of (l,..., rz). 

(e) Each Xi, i = l,..., n has a Weibull distribution of the form F<(t) = 
exp(-Atto*), with (Y~ > 0, i = l,..., tl. 

The class of Weibull distributions (e) has been described in a slightly different, 
although equivalent, way be Johnson and Katz [9, p. 2691. They mention that 
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by specifying only that Y1 ,..., Y+, have a multivariate distribution with ex- 
ponential marginals, the transformation Xi = Yi’“i, i = I,..., n produces a 
multivariate distribution having Weibull marginals. 

The classes (a)-(e) contain the corresponding classes of multivariate ex- 
ponential distributions constructed by Esary and Marshall [7]. Each class 
satisfies certain multivariate closure properties similar to those that they describe. 
See their properties P1 , Pz , P3 , P4 . Also each class a-e is a subclass of the one 
which follows it. 

The condition (b) is an alternative and equivalent way to describe the distribu- 
tions of (1.1). The representation of (1.1) in terms of independent random 
variables is discussed in [12]. 

The examples which follow show the classes a-e are distinct since each class 
is seen to contain distributions not belonging to the class preceeding it. 

EXAMPLE 2.1. The bivariate Weibull distribution, F(x, xa) = exp[-(h& + 
Aa@ + X1, max(+, x2)], with X, > 0, ha > 0, h,, > 0, 01~ > 0, 01~ > 0 is 
mentioned by Marshall and Olkin [ 141, and several of its properties are discussed 
by Moeschberger [IS]. If (Ye # 01~ , then P satisfies (e) but not (d). If, however, 
OCR = OLD = (Y and his > 0, then P satisfies (b) but not (a), and in this case 
arises from independent Weibull distributions, P(Z, > t) = exp(--hltu), 
P(Z, > t) = exp(--h,t”) and P(Z,, > t) = exp(--h,,ta) by the representation 
X1 = min(Z, , Z,,) and X, = min(Z, , Z,,) as specified by the condition (b). 

EXAMPLE 2.2. Let Xi and X, have the joint distribution of example 2.1 
with 01~ = 0~~ = (Y and let Yi = cilXi with ci > 0, i = 1,2. Then F((x , yr) = 

exp[-GW3Y + X2c20Y2a + Al2 max(c “Y 1 1a, cz”yz”))]. The distribution of Y1 and 
Yz has a singular component on the line clyl = caya. Thus it differs from 
distributions satisfying (b). If c, # ca and X,, > 0, the joint distribution of Y1 
and Ya satisfies (c) but not (b). 

EXAMPLE 2.3. c((xl, x2) = exp[-(X,4 + x24)1/21 satisfies (c) but not (b). In 
a later section it is shown that this distribution can be generated by a trans- 
formation of independent random variables. C?(x r , x2) is absolutely continuous 
and therefore cannot satisfy (b). That it satisfies (c) can be verified by computing 
P(mini(a,X,) > t) = exp[--t2(a14 + u,~)~/~], t 2 0, for ai > 0, i = 1,2. 

EXA~~~PLE 2.4. Let n(xr , x2) = e((x, , zJF(x, , x2) where P is the distribu- 
tion of example 2.1 with 0~~ = c~z = 2 and G(x, , x2) is the distribution of 
example 2.3. ff(x, , x2) is not absolutely continuous and satisfies (c) but not (b). 

EXAMPLE 2.5. Let X, , X2 have the distribution e((xl , x2) of example (2.3) 
and let Y1 , Y, have the distribution P(yr , y2) = exp[-(2yl* + 2~~s)l/~]. Let 
(Tr , T,) = (X1 , X2) with probability p and (T1 , T2) = ( Y1 , Y2) with prob- 
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ability 1 - p. Then Tr , T, have the distribution of the mixture R(t, , ta) = 
pC?(ti , ta) + (1 - p)F(t, , ta). If 0 < p < 1, then R satisfies (d) but not (c). 

EXAMPLE 2.6. Let F(x, , xa) = ~l(~l)~z(xz)[l + ~(1 - ~r(xi))(l - Ra(~a))] 
where ~&+) = exp(-+), cj > 0, xi >, 0, j = 1,2 are univariate Weibull 
distributions. This bivariate Weibull distribution is mentioned in [lo] as a special 
case of the Morgenstern-Gumbel-Farlie system of distributions. It satisfies (e) 
but it y > 0 does not satisfy (d). 

EXAMPLE 2.7. The bivariate distribution, fr(x, , x2) = (1 - pz) CL=, pajl(c&r, 
j, p) I(c, , $2, j, p) with - 1 < p < 1 representing a correlation index and 
I@, j, p) = [ j!]-r[l - p2]-+r J: yj exp[-y(l - P~)-~] dy denoting the upper 
tail integral of the gamma density is discussed by Krishnaiah [ 1 I]. Actually, he 
presents a more general form of the distribution, but in the present form P 
satisfies (e). If p = 0 and 01~ = C+ = 01, then P satisfies (a), but if p2 > 0 F does 
not satisfy (d). To show (d) is not satisfied when p2 > 0 and 01~ = 0~~ = OL, note 
that the first term of the series defining P provides a lower bound on P( t, t ) which 
can be used to compute lim,,, F(t, t)“-a > 0. Then, using the Poisson expansion 
for I(cita, j, p), an upper bound on F(t, t) with t sufficiently small can be found, 
and used to show that lim,,,F(t, t)&-” = 0. Thus fr cannot satisfy (d) when 
P2 > 0. 

EXAMPLE 2.8. The following distribution,F(x, , ~a) = exp{--c& - caxgz - 

c2[ma4xl y +Jl9 arises from independent variables 2, , 2, and 2, having 
Weibull distributions, P(Z, > t) = exp(-citdi), i = 1, 2, 3 by the transforma- 
tion Xi = min(Z, , 2,) and X2 = min(2, , Z,), and is mentioned by David [6] 
and Lee and Thompson [12]. If a1 # a2, P does not satisfy (e), however, if 
01~ = ova and c, > 0, then ir satisfies (b) but not (a). 

In summary, the class of Weibull distributions (1.2) contains independent 
Weibull distributions satisfying (a) and the class of Weibull distributions (b) 
arising from the Marshal-Olkin [14] models. Examples (2.2), (2.3) and (2.4) 
show the existence of other Weibull distributions satisfying (1.2) which are 
distinct from the classes (a) and (b). 

3. PROPERTIES OF DISTRIBUTIONS HAVING WEIBULL MINIMUMS 
AFTER ARBITRARY SCALING 

A distribution F satisfies (1.2) ‘f 1 an only if the hazard function satisfies the d 
following functional equation: 

R(tx) = PI?(x) for some 
OL > 0 whenever t > 0 and x 3 0. (3-l) 



MULTIVARIATE WEIBULL PROPERTIES 271 

Equation (3.1) is the basis in this section for developing properties of distribu- 
tions having Weibull minimums after arbitrary scaling. 

To show that distributions satisfying (1.2) are continuous, let x’ < x and 

consider lim,;,,l R(x’) = limtrl taR(x, , t-lx; ,..., t-r&) = R(x, , xi ,..., ~6) by 
(3.1) and the right continuity of R. Repeated use of (3.1) and the right continuity 
of R proves that R is left continuous, and thus is continuous. 

In the present section it is assumed that the hazard gradient, Ye = 

(a/ax,) R(x), j = l,..., n exists except possibly on a finite set of values of xj . 

Further, it is assumed that ri(x) is a continuous function of xi with the exception 
of the points where it fails to exist. Let Ye represent the right hand derivative 
at the exceptional points, which is assumed to exist for all x. 

Absolutely continuous distributions satisfy such conditions as do also the 
multivariate Weibull distributions satisfying (1.1). For the distribution (1 .l), 
F(x) is a continuous function of x and rj(x) = CJ h,~lx~-~l,(x) where I,(x) = 1 
(and zero otherwise) if j E J and xi > max{x$: i E J and i # j}, with max $ = 0 

whenever the null set occurs. It is seen that ri(x) is continuous in xj except on a 
finite set of values and can be defined at the exceptional values by the right hand 
derivative. 

The hazard gradient is useful for describing failure rate properties of multi- 
variate distributions. In [lo] it is shown that ri(x) can be interpreted as the 
failure rate of the conditional distributions of & given that Xi > xi , i # ,j, 

i = l,..., n. It reduces to the usual concept of failure rate when the distribution 
involves independent random variables. In [4] the hazard gradient is used to 
describe certain multivariate monotone failure rate concepts, and to characterize 
the loss of memory property of the Marshall-Olkin distribution. Further 
discussion of the hazard gradient is given in [13]. 

THEOREM 1. Let X, ,..., X, have a joint distribution satisfying (1.2) with 
(Y > 0 given by (1.2) and having the hazard gradient rj(x), j = l,..., n. Then 

(a) rj(tx) = t”-%j(x), j = l,..., n for all vectors x 3 0 and scalar t > 0. 

(b) Ye is mnincreusing in xi for i # j, i = l,..., 12. 

(c) rj(x) is nondecreasing in x, , j = 1, r. ., n providing 01 > 1. 

Proof. (a) Using (3.1) write R(x) = xiaR(lj , x;‘x) where the notation 

(lj , x;rx) represents a vector with a one in the jth position and the remaining 
elements have been multiplied by the scalar x;l. For i fj, Ye = xjm(a/ax,) R(li, 
x;lx) = ~~-4~(l,, x;lx). Therefore, r,(tx) = (txi)“-rri(li , x;‘x) = t”%,(x), 
for any x > 0 and t > 0. 

(b) First observe from (3.1) that (-a/&c,)~(tx) = tari( for t > 0. 
Since -t-a(a/axj)F(tx) is nonincreasing in xi , for i # j, and all t > 0, and 
since lim,,,+ -t-m(a/ax,)F(tx) = YJx), we have that r%(x) is nonincreasing 
inx*fori#j. 
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(c) From part a, T,(X) = xy-l~~(l~ , x;lx). Also from part b, ~~(1, , x;h) is 
nondecreasing in xj , and since by assumption 01 > 1, it follows that Y,(X) is 
nondecreasing in xj . 

As pointed out in references [2] and [5] a form of positive dependence is 
likely to be a reasonable assumption for many reliability problems. For random 
variables X, ,..., X,, satisfying (1.2), part b of the theorem can be used to show 
that each subset S of the variables is right tail increasing (See [5] for a discussion 
of right tail increasing) in the remaining set S. That is, the conditional probability 

P(x, > xi , i E S 1 X, > y3 , j E S) = exp[--R(x, y) + R(O, Y)] 

is nondecreasing in yj , j E s. From part b we have (a/6yi) R(x, y) is non- 
increasing in xi . Therefore, (alay,) Ii(x, y) < (8/8yr) R(0, y), which says that 
R(x, y) - R(O, y) is nonincreasing in yj , j E s. This proves right tail increasing 
for distributions (1.2). 

For a second application consider XI ,..., X, satisfying (1.2) with OL > 1. 
This corresponds to min,(a,X,) having a one dimensional IFR (increasing failure 
rate) Weibull distribution for each choice of constants ai > 0, i = l,..., n. 
Part c of the theorem shows that the distributions (1.2) have the property that 
Johnson and Kotz [lo] call multivariate IHR (increasing hazard rate). 

Next consider V = min(Xi) and define the event that X, coincides with V by 

xj = vex, < lnl(XJ. 

Since for distributions satisfying (b) of section 2 there is positive probability of 
tied values, it is important to note when computing P(X, = V) that equality 
is allowed in (3.2). 

To develop a special property of distributions satisfying (1.2), let Yj = 
minizi(Xi) and write 

p(X,=yandV>x).=I~P(Yj~tIX,=t)f,(t)dt (3.3) z 

since the densityf,(t) of Xi exists for the distributions of (1.2). 
The integrand of (3.3) is equal to lim4,+ PP(Yj > X, 2 t, t < X, < t + d), 

which is equal to the difference of the limits, limd+O+ d-lP(Y, 2 t, 
t < Xj < 2 + A) - lim,+ A-lf’(t ,< Yj < X, , t ,< X, < t + d). Both terms 
of the difference exist, and the second term is zero as can be seen by representing 
the triangular region (t < Y! < X, , t < X, < t + d) of two dimensional 
Euclidean space as the limit of a union of rectangles, and examining 
lim bo+ lim,,, d-l~~~~p(t+j/n~Y,<t+(j+I)/n~Xi<t+d),then 
changing the order of taking limits. 
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Thus the integrand of (3.3) is equal to 

lim FP(Y, > t, t < Xi < t + A) = r& ,..., t)P(t,..., t). 
A-.0+ 

(3.4) 

The integrand is also equal to 

P(Xj = v 1 v = t)g(t) (3.5) 

where g(t) = -(d/dt)F(t,..., t) is the density function of V. Equating (3.4) and 
(3.5) gives the conditional probability, 

P(Xj = v 1 v = t) = rj(t ,...) t)F(t )...) t)[g(t)]-1. (3.6) 

The following theorem extends a property of the Marshall-Olkin [14] distribu- 
tion (see [2]) to the class of distributions having Weibull minimums after arbi- 
trary scaling. 

THEOREM 2. Let Xl ,..., X, have a joint distribution satisfying (1.2) with 
hazard gradient Y,(X) computed as the right hand derivative. Then V is independent 
of the events X, = V, j = l,..., n. Also, P(X, = V) = ~~(l,.,., I)/&(1 ,..., 1). 

Proof. Since for distributions satisfying (1.2),g(t) = ortamlR(l,..., l)F(t,..., t), 

and from theorem 1, part a, r,(t ,..., t) = tU-lrj(l ,..., 1) it is seen that (3.6) 
simplifies to YJ,..., I)/&(1 ,..., 1). Therefore, P(X, = V 1 V = t) is constant 
in t which proves the independence of V and Xj = V. 

4. APPLICATION-COMPUTING COMPONENT RELIABILITY IMPORTANCE 

One problem arising in reliability practice is that of assessing the importance 
of the individual components of a system. Some components are more likely 
to cause system failure than others. 

Importance measures have been suggested by Barlow and Proschan [3] and 
others. Of course the result of applying importance measures depends on 
assumptions made concerning component life lengths. Suppose it is desired to 
allow for some form of dependence in the joint distribution of life lengths, and 
further that the life lengths follow the Marshall-Olkin distribution, or some 
alternative distribution satisfying (1.2). T wo properties of such distributions 
were mentioned earlier following theorem 1 which help make their use appealing 
as models of the distribution of life lengths. 

Let T(X) represent system life length and suppose the system is coherent 
having minimal path sets Pl ,..., P,, . Suppose Xl, X, ,..., X,, represent com- 
ponent life lengths. Then T(X) = max+l,...,9 (rj) where r3 = min,,p, (X,), 
j = I,..., p. This representation of system life length in terms of minimal path 
sets is discussed in [2]. 
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Barlow and Proschan [3] define their measure of a component’s reliability 
importance as the probability that component life length coincides with system 
life length. If the two coincide, the component is said to cause the system to fail. 
Since 

P(4 = G>) = P(+yy (75) = Xi) 3 .., 

is the probability of the union of p events, the importance measure can be 
expressed as follows: 

P(X, = 7(X)) = $J P(T~ = Xi) - i P(min(Tj , rJ = Xi) 
j=l j,k=l;j#k 

+ *** f P(min(-r, ,..., T,) = Xi). (4.1) 

Barlow and Proschan [3] express their formulas for the importance measure 
in terms of the system reliability function for the case of independent component 
life lengths, and thus (4.1) is not mentioned by them. 

Noting that min(Tj , 7.k) = min,,,jupk (X,), and so on, it is seen that each 
term of the various sums reduces to computing probabilities like those expressed 
in theorem 2. Note also that if i $ Pj v Pk and if XI , X, ,. .., X, have an ab- 
solutely continuous distribution then P(min(T9 , rk) = Xi) = P(min,,pjvp, 
(Xn) = Xi) = 0. Other terms may equal zero for the same reason. 

To illustrate the application of theorem 2 for a two out of three system, let 
X, , X, , X, represent component life lengths having the joint distribution 
F(x) = exp[--(xi2 + 2xa2 + 3x32)1/z]. A two out of three system fails when any 
two of its components fail. System life length is T(X) = max[min(X, , X,), 
min(X, , Xs), min(X, , Xs)]. Using (4.1) it is seen that P(X, = T(X)) = 
P(X, = min(X, , X,)) + P(X, = min(X, , X,)) - 2P(X, = min(X, , X, , X,)), 
since the remaining terms become zero for the reason mentioned above. From 
theorem 2 we have P(X, = min(X, , X,)) = Y~( 1, 1 , O)/R( 1, 1,O) = 4 , P(X, = 
min(X, , X,)) = r,(l , 0, l)/R( 1, 0, 1) = ), and P(X, = min(X, , X, , Xx)) = 
~~(1, 1, 1)/R(l) 1, 1) = & . Thus the probability that component 1 causes the 
system to fail is Q + + - ) = 4. Similar computations would show P(X, = 
r(X)) = g and P(X, = T(X)) = >z6. 

5. AN ABSOLUTELY CONTINUOUS WEIBULL DISTRIBUTION 

Consider the following bivariate Weibull distribution: 

hl ,x2) = expF+9P + &+f)Yl (5.1) 

with hi > 0, xi > 0, i = 1,2, /3 > 0 and 0 < y < 1. This distribution has 
the properties discussed in section 3. For /+ = 1 it reduces to the third of the 
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three distributions studied by Gumbel [S], and has several properties in common 
with the Marshall-Olkin distribution, e.g., exponential marginals, exponential 
minimums after arbitrary scaling and the independence property discussed in 
theorem 2. The distribution easily extends to n variables. 

Let us show that random variables Xi , X, having distribution (5.1) can be 
represented in terms of independent random variables. Such a representation 
can be useful for analyzing properties of the distribution and generating random 
samples. 

Consider the random variables 

zi = XiXiB, i= 1,2 (5.2) 

and their joint distribution given by 

(%G, z2) = exp[--(3 + ~2>yl. (5.3) 

The joint density function is of the form 

gh7 z2> = Ml - yk + z2)ye2 + y2(z1 + 22)2y-2] exp[-(2, + z2)‘]. (5.4) 

Consider next the transformation 

u = Zl/(Zl + Z,), 

s = (4 + Z2Y 
(5.5) 

having the jacobian ( l/y)S21y-1. 
The joint density of U and S is given by 

h(24, S) = [(l - r) + pie-8, 

0 < u < 1, 0 < s < co. Thus U and S are independent random variables 
with U having a uniform distribution on the interval (0, 1) and the distribution 
of S is a mixture of gamma distributions having the density 

h(s) = [l - y + ys]e+, s > 0. 

In summary we have from (5.5) that 

z, = USIIy , 

z, = (1 - U) Sl’y 
(5.6) 

are represented in terms of independent random variables U and S. 
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It is an easy exercise to compute the covariance from the distributions of 
UandS: 

COVZl 3 22) = (l/Y) WY) - UlY2) ~2(w 

where F(X) = sr tz-le-t dt is the gamma function. 
Using formulas 6.1.2 and 6.1.18 for the gamma function given in [I], it is 

possible to show that the covariance is decreasing in y. Since for y  = I, Z, and 
Z, are independent, it follows that the covariance must be nonnegative for all 

O<y<l. 
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