
Theoretical Computer Science 289 (2002) 783–800
www.elsevier.com/locate/tcs

Algorithms for computing lengths of chains
in integral partition lattices

Honghui Wan∗, John C. Wootton
Computational Biology Branch, National Center for Biotechnology Information,

National Library of Medicine, National Institutes of Health, Building 38A, 8th Floor,
8600 Rockville Pike, Bethesda, MD 20894, USA

Received April 2000; received in revised form October 2001; accepted October 2001
Communicated by A. Apostolico

Abstract

Let Pl;n denote the partition lattice of l with n parts, ordered by Hardy–Littlewood–Polya
majorization. For any two comparable elements x and y of Pl;n, we denote by M (x; y), m(x; y),
f(x; y), and F(x; y), respectively, the sizes of four typical chains between x and y: the longest
chain, the shortest chain, the lexicographic chain, and the counter-lexicographic chain. The covers
u=(u1; : : : ; un) � v=(v1; : : : ; vn) in Pl;n are of two types: N -shift (nearby shift) where vi=ui−1,
vi+1 = ui+1 + 1 for some i; and D-shift (distant shift) where ui − 1= vi = vi+1 = · · ·= vj = uj +1
for some i and j. An N -shift (a D-shift) is pure if it is not a D-shift (an N -shift). We develop
linear algorithms for calculating M (x; y), m(x; y), f(x; y), and F(x; y), using the leftmost pure
N -shift 7rst search, the rightmost pure D-shift 7rst search, the leftmost N -shift 7rst search, and
the rightmost D-shift 7rst search, respectively. Those algorithms have signi7cant applications in
complexity analysis of biological sequences. c© 2002 Elsevier Science B.V. All rights reserved.

MSC: 68Q20; 06B99; 68R15; 92B99; 92-08

Keywords: Algorithm; Length; Chain; Partition lattice; Majorization; Nearby shift; Distant shift

1. Introduction

Many attempts have been made to analyze the compositional complexity of biological
sequences. In particular, we develop fully the axiomatic foundation of compositional

∗ Corresponding author. Fax: +1-301-435-2433.
E-mail address: hwan@nih.gov (H. Wan).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00392 -9

784 H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800

complexity functions of biological sequences based on only three underlying postu-
lates of monotonicity, nonnegativity, and normalizability [19]. The term “compositional
complexity” is used here to denote the complexity only based on residue composition,
regardless of the patterns or periodicity of sequence repetitiveness. Why have com-
positional complexity functions of nucleic acid and protein sequences proved to be
remarkably informative for inferring, describing and understanding biological proper-
ties? The nonspeci7c generality of complexity concepts may seem to be inconsistent
with the goals of much current research that seeks precise molecular details of biolog-
ical structures, dynamics, interactions and evolution. However, these important details
cannot be inferred for a large proportion of genomic and deduced protein sequences
for which relevant experimental data or homologous precedents are lacking. Unbiased
methods of description and inference are necessary to explore sequence data for new
discoveries, and two scienti7c principles make compositional complexity measures a
particularly important part of this inference.
First, DNA and protein sequences do not, in general, resemble random strings

of letters, but rather consist of a heterogeneous mixture of local regions with dis-
tinct genetic functions and evolutionary origins. These regions show many diMer-
ent compositional characteristics and types of sequence patterns, as if written in a
mosaic of diMerent languages. Genomic sequences show, for example, coding se-
quences, untranslated regions, introns, exons, intergenic regions, promoters, termina-
tors, regulatory signals, RNA genes, direct or inverted repeats of widely diMerent
sizes in tandem or interspersed arrangements, microsatellites, CpG islands, centromeres,
telomeres, and origins of replication. A large fraction of protein sequences consist
of multiple domains or modules, including globular folds (many of which may
be classi7ed by sequence homology), helical nonglobular rods and 7bres, mobile
linkers, low-complexity interaction domains, and membrane interaction
segments.
It is well established that the statistical structure of sequences cannot be generally

well described by simple random or Markov models [7,27]. From the viewpoint of
information theory, real sequences are not generated by a simple stochastic process from
a stationary source, and they are not ergodic in their scaling properties. Nevertheless,
methods and algorithms based on local combinatorial complexity of composition have
been successful for analyzing, classifying and segmenting these functionally distinct
regions of DNA and protein sequences [23,24,25,26,27,28].
Second, local sequence complexity of proteins may be thought of as a physical

molecular property, related to the ability of any polypeptide chain to adopt a unique
globular fold. This property is embodied in the concept that proteins are edited statis-
tical polymers [8] that have evolved many diMerent sequences of random nature [5],
each of stereospeci7c structure. High sequence complexity is also consistent with the
random energy model of protein folding, which corresponds to the spin glass the-
ory of polymer physics [9,4]. Complexity measurements on natural protein sequences
are generally consistent with this theoretical perspective [24,25] with a few exceptions,
globular domains are generally of high compositional complexity, contrasting with non-
globular or conformationally mobile lower-complexity regions which show regular or
irregular sequence repetition.

H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800 785

In most previous work on biological sequences, the ‘local’ complexity measures
have been based on well-known functions in information theory or statistical theory,
such as informational entropy, information content, data compression schemes, or frac-
tal dimension. Those ‘local’ measures resemble entropy functions and are inherently
dependent on an underlying probability distribution. Local measures cannot rigorously
compare complexity across sequences of substantially diMerent size, because real se-
quences show very irregular heterogeneity and do not have the necessary ergodicity in
scaling and asymptotic properties. Recently, we have started to develop a new class
of scale-independent, distribution-independent complexity functions by means of four
types of chains on integer partition lattices (see Section 2.5). Their scaling proper-
ties do not depend on the assumption of ergodicity [20,19], as required for global
comparisons of genomic or protein sequences of any size, which overcomes a crucial
limitation of earlier methods. A member G1 of the new class, derived from the longest
chain in the integer partition lattice, has some important applications in molecular evo-
lution. Actually, the distributions of G1 were calculated in [20] for the entire sets of
translated proteins encoded by extensively sequenced genomes. The results establish
the existence of a clear evolutionary principle, common to bacteria, archaea and eu-
karyotes, that the proteins encoded by more extreme AT -rich and GC-rich genomes
have generally lower compositional complexity than those of more typical organisms.
In addition, the points of intersection of G1 and G2, another complexity function de-
7ned by using the shortest chain in the integer partition lattice, provide a natural
basis for segmentation of a sequence and particularly a new possibility to 7nd out
those functional distinct regions of sequences [22]. Those points of intersection corre-
spond to the points of contact between globular and non-globular domains in protein
sequences.
To implement and apply these new types of complexity measures for analyzing and

classifying functionally distinct regions of both nucleotide and amino acid sequences, it
is crucial to develop eQcient algorithms for computing sizes of chains in integral parti-
tion lattices. A goal of this paper is to devise novel algorithms to calculate four typical
chains between a comparable pair in the partition lattice, de7ned in Section 2.4: the
longest chain, the shortest chain, the lexicographic chain, and the counter-lexicographic
chain.

2. State vectors and integral partition lattices

This section is devoted to a survey of concepts and results about state vectors and
integral partition lattices, which will be needed later.

2.1. State vectors

Let A= {a1; a2; : : : ; an} denote an alphabet in which ai is called the letter of type i
(16i6n). In particular, the 20-letter, amino acid alphabet of proteins or the purine=
pyrimidine alphabet for DNA can be used. Let Al denote the set of all sequences of
length l over A for a positive integer l. For a sequence s∈Al, si is the ith symbol

786 H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800

(or residue) of s. In addition, we denote by ui the number of occurrences of ai in s
(16i6n). Clearly, u1 + u2 + · · ·+ un= l and 06ui6l. The vector u=(u1; u2; : : : ; un)
is called the composition vector of s, and the con7guration au11 a

u2
2 · · · aunn is called a

composition of s. For convenience, we may omit those terms in con7gurations whose
corresponding letters do not appear in s. The vector v=(v1; v2; : : : ; vn) is called the
(complexity) state vector of s where v1¿v2¿ · · ·¿vn is the decreasing rearrangement
of u1; u2; : : : ; un. The set of sequences with the state vector v is called v-equivalence
class or v-composition class, denoted by S(v). For example, the nucleotide sequence
TTGTGTTT has u1 = u2 = 0, u3 = 2, u4 = 6; v1 = 6, v2 = 2, v3 = v4 = 0, n=4 and l=8.
The alphabet in this case is A= {A,C,G,T}, the composition vector is (0; 0; 2; 6). The
composition is G2T6 and the state vector is v=(6; 2; 0; 0). |S(v)|=336. The (6; 2; 0; 0)-
equivalence class S(6; 2; 0; 0) consists of 336 sequences and the set A8 of 8-nucleotide
sequences contains 65536 sequences.
The state vector provides an excellent “data structure” for intrinsically representing

sequences. This type of representation possesses several advantages: it is informative
and of intuitive biological signi7cance, and it is computationally simple and eQcient.
A partition of a positive integer l is a representation

l = p1 + p2 + · · ·+ pn (p1 ¿ p2 ¿ · · ·¿ pn ¿ 0): (1)

We also use the vector representation for the partition: (p1; p2; : : : ; pn). The numbers
p1; : : : ; pn are the parts of the partition, in which p1 is called the largest part. Hence
(1) is a partition of l into n parts. All partitions and vectors throughout this paper are
integral, whose parts or components are arranged in decreasing order (we may allow
trailing zero components in vectors and partitions), unless otherwise speci7ed.
From the viewpoint of combinatorial set theory, the set Al can exactly be partitioned

into the union of v-equivalence classes:

Al =
⋃

v1+v2+···+vn=l
S(v1; v2; : : : ; vn);

where the union ranges over all partitions of l with n parts (every partition is ranked
in decreasing order). Thus, it is natural to consider the set of partitions of a positive
integer associated with Al.
For any partition z=(z1; z2; : : : ; zn) of l with n parts, we denote the kth partial sum

by �k(z), i.e.

�k(z) = z1 + z2 + · · ·+ zk :

Also, we write �(z)= (�1(z); �2(z); : : : ; �n(z)) and call it to be the partial-sum vector
of z. For example, the partial-sum vector of (4; 2; 1; 1) is (4; 6; 7; 8).

2.2. Majorization and integral partition lattices

Let x=(x1; x2; : : : ; xn) and y=(y1; y2; : : : ; yn) be two partitions of l with n parts.
We say y majorizes x, write it as x≺ y or y� x, if the partial sums of y are at least

H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800 787

as big as the corresponding partial sums of x:

�k(x)6 �k(y) (k = 1; 2; : : : ; n− 1) and �n(x) = �n(y):

That is, y majorizes x if and only if the partial-sum vector of y is componentwisely
greater than or equal to that of x: �(y)¿�(x). For example, (4; 2; 1; 1)≺ (4; 2; 2; 0).
However, there is no the majorization ordering relationship between (4; 2; 1; 1) and
(3; 3; 2; 0).

The notation and terminology of majorization of real numbers are due to Hardy,
Littlewood and Polya [6]. This mathematical concept has been shown to have many
applications to problems in the 7elds of statistics, economics, ecology, sociology, polit-
ical science, system science, operations research, and information theory, as well as in
many branches of mathematics, such as combinatorics, algebra, geometry, and matrix
theory. For two 7xed positive integers l and n, we de7ne (Pl; n;≺) to be the partially
ordered set (poset) consisting of all partitions of l with n parts, ordered by majoriza-
tion [10,11]. An element x in Pl; n is the top (bottom) element of Pl; n if x� z (x≺ z)
for every z in Pl; n. Divide l by n and let q be the quotient and r be the remain-
der (06r¡n). Then Pl; n is a lattice with top element x(l)top = (l; 0; : : : ; 0) and bottom
element

x(l)bot = (q+ 1; : : : ; q+ 1︸ ︷︷ ︸
r

; q; : : : ; q);

that is, for any two elements x and y in Pl; n, there exist the supremum (the least upper
bound) and the in?mum (the greatest lower bound) of x and y. Further explanations
of these terms, together with the proofs of stated results here are found in [10,11,13].
Pl; n is called an n-part partition lattice of l.
The set of state vectors of all sequences in Al on alphabet A, ordered by ma-

jorization, is identical with the lattice (Pl; n;≺). The size of the partition lattice Pl; n,
denoted by pn(l), i.e., the accurate number of state vectors in Pl; n, is computable from
well-established principles of combinatorial number theory [2,26], although there is no
elementary explicit formulation for it. Actually, the investigation of the deeper proper-
ties of pn(l) was one of the jewels of 20th century analysis, involving researches of
Hardy and Ramanujan and further work by Rademacher. The whole story is described
in Andrews [2]. To estimate the value of pn(l), the following asymptotic formula is
useful [11,14]:

pn(l) ∼ (l+ n)n−1

n!(n− 1)!
(l → ∞):

Clearly, the number pn(l) becomes very big for a large l. For example, there are a
(rounded) total of 1:1× 1052 amino acid sequences of length 40 on the 20-letter protein
alphabet, which correspond to 35251 complexity state vectors, i.e., p20(40)= 35251
[26,27].

788 H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800

2.3. Order diagram

Two distinct elements x and y of (Pl; n;≺) are comparable if either x ≺ y or y≺ x,
and incomparable otherwise; y is said to cover x if x ≺ y and there is no element z
in Pl; n such that x≺ z ≺ y. If y covers x in (Pl; n;≺), then x is called a lower cover of
y, y is called an upper cover of x, and {x; y} is called a covering pair. For (Pl; n;≺),
it is clear that the entire relation is determined by the covering relation. The following
result describes the covering relation in the partition lattice.

Proposition 2.1 (Wan [11,12]). Let x=(x1; x2; : : : ; xn)≺ y=(y1; y2; : : : ; yn) in Pl; n.
Then y covers x if and only if there exist indices i¡j such that x= y − ei + ej,
and either j= i + 1 or xi = xi+1 = · · · = xj, where ek denotes the vector with one in
the kth position and zeros elsewhere:

ek = (0; : : : ; 0; 1︸ ︷︷ ︸
k

; 0; : : : ; 0︸ ︷︷ ︸
n−k

):

The covering relation of a poset can be displayed via an graphical rendering with an
implied upward orientation, which is called the order diagram. A point is drawn for
each element of the poset, and line segments are drawn between these points according
to the following two rules: (i) If one element x is less that another element y in the
poset, then the point corresponding to x appears lower in the drawing than the point
corresponding to y. (ii) The line segment between the points corresponding to any two
elements x and y of the poset is included in the drawing if and only if x and y are a
covering pair.
In graph-theoretic terms, a 7nite poset P is a lattice if and only if for any two ele-

ments x and y in P, there exist a unique least common ancestor and a unique greatest
common descendant of x and y in its order diagram. This is an essential combinatorial
characterization of 7nite lattices [11,16], and, indeed is the graph-theoretic de7nition
of a 7nite lattice. As a lattice, Pl; n has special restricted properties, compared with
acyclic directed graphs in general, such as being triangle-free and having conjugate
relationships between pairs of elements.
As an example, Fig. 1, left column illustrates the order diagram of the 4-part

integral partition lattice P8;4 of 8 which shows the 7fteen possible state vectors of
8-nucleotide sequences on the 4-letter DNA alphabet A= {A,C,G,T}. The top element
is x(8)top = (8; 0; 0; 0) and the bottom element is x(8)bot = (2; 2; 2; 2): One of these state vec-
tors, (6; 2; 0; 0), has 12 diMerent compositions shown in middle column, with diMerent
nucleotides assigned to the four numbers in this vector, and each of these compositions
has 28 possible sequences, as indicated on the right. The (6; 2; 0; 0)-equivalence class
S(6; 2; 0; 0) consists of 336 sequences. The possibility of 28 sequences per composition
makes (6; 2; 0; 0) more complex than, for example, (7; 1; 0; 0) which has only 8 possible
sequences per composition. There are, in total, 165 diMerent compositions generated by
15 state vectors in P8;4. Elementary considerations yield that all compositions with the
same state vector have the identical number of possible sequences, and therefore have
the same compositional complexity value.

H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800 789

Fig. 1. The order diagram of P8; 4, compositions and sequences.

2.4. Covering chains and shifts

A subset C of Pl; n is called a chain if any two elements in C are comparable, and
is called an antichain if no two elements in C are comparable. The size of a chain
C in Pl; n is the number of elements in C. A chain x(1)≺ x(2)≺ · · · ≺x(r) in Pl; n is
called a covering chain or (a saturated chain) between x(1) and x(r) if x(i+1) cov-
ers x(i) for all i with 16i6r − 1. For x≺ y in Pl; n, we de7ne the maximum size
M (x; y) and the minimum size m(x; y) from y to y to be the sizes of the longest
covering chain and of the shortest covering chain from x to y, respectively. For ex-
ample, (3; 3; 1; 1)≺ (4; 2; 1; 1)≺ (5; 2; 1; 0) is a chain in P8;4, but not a covering chain.
(3; 3; 1; 1)≺ (4; 2; 1; 1)≺ (4; 2; 2; 0)≺ (4; 3; 1; 0)≺ (5; 2; 1; 0) is both a covering chain and
the longest chain. {(5; 1; 1; 1); (3; 3; 2; 0)} is an antichain. The maximum size from
(3; 3; 1; 1) to (5; 2; 1; 0) is 5 and the minimum size is 4.

A special type of subset of Pl; n is the closed interval [x; y] = {z∈Pl; n|x≺ z≺ y}, de-
7ned whenever x≺ y. We denote by Lx(y) the set of lower covers (children) of y in the
interval [x; y]. For example, [(4; 2; 1; 1); (5; 2; 1; 0)]= {(4; 2; 1; 1); (4; 2; 2; 0); (4; 3; 1; 0);

790 H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800

(5; 1; 1; 1); (5; 2; 1; 0)} in P8;4.

L(4;2;1;1)(5; 2; 1; 0) = {(4; 3; 1; 0); (5; 1; 1; 1)}:

For x and y in Pl; n, by Proposition 2.1 x is obtained by a “unit transformation” of
y—shifting 1 from the ith component yi to the jth component yj of y. Of course, the
resulting vector x should be decreasing. In fact, there are two types of covers [10,11].
If j= i+1, i.e., x= y−ei+ei+1, then we call y� x is a nearby shift (N -shift, in short).
If xi = xj, i.e., x= y − ei + ej and xi = · · · = xj, then we call y� x is a distant shift
(D-shift, in short). Note that a cover y� x can be both an N -shift and a D-shift (if
j= i+1 and xi = xj), and in this case it is called an ND-shift. An N -shift (a D-shift) is
pure if it is not a D-shift (an N -shift) [11,15]. In the partition lattice P8;4, for example,
(5; 2; 1; 0)� (4; 3; 1; 0) is a pure N -shift, (5; 2; 1; 0)� (5; 1; 1; 1) is a pure D-shift, and
(4; 2; 1; 1)� (3; 3; 1; 1) is an ND-shift.

Now we de7ne a linear order-lexicographic order (dictionary order) on Pl; n. For
two elements x=(x1; x2; : : : ; xn) and y=(y1; y2; : : : ; yn) in Pl; n, de7ne x¡y, if there is
some k with 16k6n, such that xj =yj for 16j¡k, but xk¡yk . We now de7ne two
typical chains between two comparable elements x≺ y as follows.

De�nition 2.1. For a covering pair x≺ y in Pl; n where x is not a lower cover (child)
of y, we write y= y(1) and 7rst select a y(2)∈Lx(y(1)). Then, we continue to choose
a y(i+1) ∈Lx(y(i)) (i.e., take a child of y(i) in the interval [x; y]) until y(r) = x. Thus,
we obtain a covering chain between y and x:

y = y(1) � y(2) � · · · � y(r) = x: (2)

If each y(i+1) is the maximal element (largest child) in Lx(y(i)) under the lexico-
graphic ordering (i=1; 2; : : : ; r − 1), then the chain (2) is called the lexicographic
chain (L-chain, in short) between y and x. If each y(i+1) is the minimal element
(smallest child) in Lx(y(i)) under the lexicographic ordering (i=1; 2; : : : ; r − 1), then
the chain (2) is called the counter-lexicographic chain (CL-chain, in short) between y
and x.
The sizes of the L-chain and of the CL-chain between x and y are called the lexi-

cographic size and the counter-lexicographic size between x and y, respectively.

2.5. Measures based on sizes of chains

For a sequence s in the v-equivalence class S(v), we have presented four new
complexity functions in [19] based on the sizes of the following four typical chains
between a comparable pair in the partition lattice Pl; n: (i) the longest chain; (ii)
the shortest chain; (iii) the lexicographic chain; (iv) the counter-lexicographic
chain.
Generally, complexity functions are de7ned as the proportion of the size of a chain

in Pl; n between the state vector v of s and the top element x(l)top to that of a chain

between the top element x(l)top and the bottom element x(l)bot which passes through v.

H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800 791

De�nition 2.2. The global compositional complexity of type I, II, III, and IV of s
are, respectively, de7ned as

G1(s) =
M (v; x(l)top)

M (x(l)bot ; v) +M (v; x(l)top)
;

G2(s) =
m(v; x(l)top)

m(x(l)bot ; v) + m(v; x(l)top)
;

G3(s) =
F(v; x(l)top)

F(x(l)bot ; v) + F(v; x(l)top)
;

G4(s) =
f(v; x(l)top)

f(x(l)bot ; v) + f(v; x(l)top)
;

where M (x; y); m(x; y); F(x; y), and f(x; y) denote the maximum-size, minimum-size,
counter-lexicographic size, and lexicographic size between x and y, respectively.
It is not diQcult to see that when n=4, i.e., for nucleotide sequences, there is a

small diMerence among the values of G1(v); G2(v); G3(v), and G4(v) for v∈Pl;4. G1(v)
is almost identical with G3(v), and G2(v) is almost identical with G4(v) in Pl;4. For ex-
ample, G1(v)=G3(v) ≈ G2(v)=G4(v) for all v∈P8;4. However, for protein sequences
in this case n=20, there is a big diMerence among the values of G1(v); G2(v); G3(v),
and G4(v). Making a comparison among these four types of complexity values, we can
gain diMerent insights into compositional bias of protein sequences [22].

3. Algorithm to compute the maximum length between a comparable pair

We present in this section an eQcient algorithm to 7nd the maximum length of
a comparable pair, which is the key to calculating global compositional complexity
functions de7ned in Section 2.5.

3.1. ND-paths

For x=(x1; x2; : : : ; xn) and y=(y1; y2; : : : ; yn) in Pl; n, the conjugate of an element
x=(x1; x2; : : : ; xn) in Pl; n is the element x∗=(x∗1 ; x

∗
2 ; : : : ; x

∗
n), where x

∗
k denotes the num-

ber of xi that are greater than or equal to the integer k [12,15]. An N -path is a series
of N -shifts, and a D-path is a series of D-shifts [12,14]. In the partition lattice P8;4, for
example, (5; 2; 1; 0)≺ (5; 3; 0; 0)≺ (6; 2; 0; 0) is an N -path, while (5; 1; 1; 1)≺ (5; 2; 1; 0)
is a D-path. (4; 2; 2; 0) is the conjugate of (3; 3; 1; 1) and (4; 2; 1; 1) is the conjugate of
itself.
A chain y= y(0) � y(1) � · · · � y(r−1) � y(r) = x is an ND-path if there exists an inte-

ger k with 06k6r such that y(0) � y(1) � · · · � y(k) is an N -path and y(k) � · · · � y(r)

792 H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800

is a D-path. For example, (5; 1; 1; 1)≺ (5; 2; 1; 0)≺ (5; 3; 0; 0)≺ (6; 2; 0; 0) is an ND-path
in P8;4.

Theorem 3.1. If C = {y= y(0) � y(1) � · · · � y(r−1) � y(r)= x} is a covering chain in
Pl; n, then there exists an ND-path of length ¿r from y to x.

Proof. We use induction on r. First, we consider the chain y(0) � y(1) � y(2). As-
sume that y(0) � y(1) is a pure D-shift, and y(1) � y(2) is a pure N -shift. We write
y(i) = (y(i)

1 ; y(i)
2 ; : : : ; y(i)

n), i=0; 1; : : : ; r. First, we consider the chain y(0) � y(1) � y(2).
Thus, we have y(1) = y(0) − ek + et , where y(1)

k = · · · =y(1)
t , t− k¿1, and y(2) = y(1) −

em + em+1, where y(1)
m − y(1)

m+1¿2.
It is impossible that k6m¡t, since y(2) is decreasing. We must have m¡k or m¿t.

If m¡k − 1 or m¿t, we construct a new element u in Pl; n: z= y(0) − em+ em+1. Then
C′= {y(0) � z} is an N -path and z� y(2) is a D-shift. If m= k − 1, then

y(1)
k−1 − y(1)

k = y(0)
k−1 − (y(0)

k − 1) ¿ 2

since y(1) � y(2) is a pure N -shift. We produce two new elements u and z in Pl; n:
u= y(0) − ek−1 + ek and z= y(0) − ek−1 + ek+1. In addition, y(2) = y(0) − ek−1 + et .
C′= {y(0) � u� z} is an N -path, and z� y(2) is a D-shift. If m= t, then

y(1)
t − y(1)

t+1 = (y(0)
t + 1)− y(0)

t+1 ¿ 2

since y(1) � y(2) is a pure N -shift. We make two new elements v and z in Pl; n: v= y(0)−
et + et+1 and z= y(0)− et−1 + et+1. Moreover, y(2) = y(0)− ek + et+1. C′= {y(0) � v� z}
is an N -path, and z� y(2) is a D-shift. By induction, we can construct an ND-path C′′

of length ¿r − 1 between y and z based on the chain

z � y(2) � · · · � y(r−1) � y(r) = x

of length r− 1. Merging C′ and C′′, we 7nally obtain an ND-path of length ¿r from
x to y based on the chain C. This completes the proof of the theorem.

Throughout this paper, we use the following notation for a set of positive integers and
a subvector de7ned by those integers: [p; q] := {p;p+1; : : : ; q} and v[p; q] := (vp; vp+1;
: : : ; vq) for a vector v=(v1; : : : ; vn), which is called a segment of v. For x=(x1; x2; : : : ; xn)
≺ y=(y1; y2; : : : ; yn) in Pl; n, let

{t | �t(x) = �t(y)} = {t0 = 0 ¡ t1 ¡ t2 ¡ · · · ¡ tm}:

Then [tj−1 + 1; tj] is called a majorizing interval of x and y, (j=1; 2; : : : ; m) [10]. A
segment y[p; q] of y is said to be feasible [15] if yi − yi+161; i=p;p+ 1; : : : ; q− 1.
For example, there are two majorizing intervals of (5, 4, 3, 3, 0, 0) and (4, 4, 4, 1,
1, 1): [1; 3] and [4; 6]. (5; 4; 3; 3; 0; 0)[1; 4]= (5; 4; 3; 3) is a feasible segment of (5, 4,
3, 3, 0, 0).

H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800 793

3.2. N -realizablity and D-realizablity

For x≺ z≺ y in Pl; n, z is N -realizable from y if there exists an N -path from y to
z, and is said to be downmost N -realizable from y if in addition, for any N -realizable
element w from y, w� z. x is D-realizable from z if there exists a D-path from z to
x, and is called to be upmost D-realizable from z if in addition, for any N -realizable
element w from y, w≺ z.

Theorem 3.2. If x=(x1; x2; : : : ; xn)≺ y=(y1; y2; : : : ; yn) in Pl; n, then there exist the
downmost N -realizable element z from y and the upmost D-realizable element w to
x in Pl; n.

Proof. To prove the theorem, we give an algorithm for constructing the downmost
N -realizable element z from y toward x in Pl; n. Roughly, we start from 7nding the
leftmost N -shift between y and x and construct a new element y(1) in Pl; n based on
this N -shift, then 7nd the leftmost N -shift between y(1) and x and use this N -shift to
make a new element y(2) in Pl; n, continue toward x by the leftmost N -shifts until no
further N -shifts are available.

Algorithm 3.1. Given two elements x=(x1; x2; : : : ; xn)≺ y=(y1; y2; : : : ; yn) in Pl; n, con-
struct the downmost N -realizable element z from y in Pl; n.
Step 1: Find the 7rst positive diMerence yk−xk for k in [1; n] and the smallest index

t for which yt − yt+1¿2 with t¿k.
Step 2: Check if [k; t] is not a majorizing interval of x and y. If not, we construct

a new element in Pl; n as follows: y(1) = y − et + et+1. If so, go to Step 1 to look for
new k using [t + 1; n] instead of [1; n], and then 7nd new t with t¿k.
Step 3: Check if k = n− 1. If so, stop and output z= y(1). Otherwise, go to Step 1

substituting z for y.

Proof of Theorem 3.2 (continued). We 7rst prove that z≺ y(1). By de7nition, there
exists an N -path y� z(1) � · · · � z(p) � z from y to z. Since x[1; k − 1]= y[1; k − 1],
we must have that x[1; k − 1]= z[1; k − 1]= y[1; k − 1]. Note that y[k; t] is a feasible
segment of y. There does not exist any N -shift among the components of y[k; t]. Thus,
x[1; t] = z[1; t] = y[1; t]. Since yt−yt+1¿2, y(1) is decreasing. We distinguish two cases.

Case 1: [k; t] is not a majorizing interval of x and y. It is easy to verify in this case
that x≺ y(1) ≺ y. Because t is the smallest index of components in y from which we
can do an N -shift, we should have that z(1) ≺ y(1). Thus, z≺ y(1).

Case 2: [k; t] is a majorizing interval of x and y. We can continue to search new
k in [t + 1; n] and then 7nd new t with t¿k. It can be dealt with as did in Case 1.
Clearly, we can construct y(1) in at most n− 1 stages.
It is not diQcult to see that y(1) is completely determined by both x and y. If z �= y(1),

we can use an N -shift to construct in a similar fashion a vector y(2) from y(1) such
that z≺ y(2). Like y(1), y(2) is uniquely decided by x and y. If z �= y(2), repeating such
a construction step, we obtain, in a 7nite number of steps, say s (s¡n), an N -path:

y � y(1) � y(2) � · · · � y(s) = z;

794 H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800

where all of y(1); y(2); : : : ; y(s) are totally determined by x and y. This shows the unique-
ness of the downmost N -realizable element from y toward x, which can be constructed
by using Algorithm 3.1.

In a similar way, we can prove the following:

Theorem 3.3. If z is N -realizable from y and z≺w is an N -shift where w≺ y, then
w is also N -realizable from y. Dually, if z is D-realizable from x and z�w is an
D-shift where w� x, then w is also D-realizable to x.

We denote by y
x
the downmost N -realizable element in the interval x≺ y of Pl; n.

y
x
is called the “turning point”. The following theorem will play crucial roles in the

proof of our main result.

Theorem 3.4. Let y�w� x in Pl; n where w is D-realizable to x and is N -realizable
from y. If w is not downmost N -realizable from y, then there exists a D-realizable
element v to x with w� v� x such that w� v is an ND-shift.

Proof. It follows from D-realizability of w to x that there exists a D-path from w to x:
w=w(0) �w(1) � · · · �w(t) = x. Since w is not downmost N -realizable from y, there
is an element v with w� v� x such that w� v is an N -shift: v=w− ek + ek+1. Thus,

�k(x)6 �k(v) = �k(w)− 1: (3)

Note that each w(i) �w(i+1) is a D-shift. If w� v is not an ND-shift, then there should be
no D-shifts between the segments w[1; k] and w[k+1; n]. Consequently, we must have
that �k(w)= �k(w(t−1))= · · · = �k(w(1))= �k(x), which contradicts inequality (3). This
means that w� v is an ND-shift. By Theorem 3.3 and D-realizability of w to x, v is
D-realizable from x. This completes the proof.

3.3. The maximum length function

Now we state and prove our main result in this section, which gives a characterization
of the maximum length function M (x; y) in Pl; n. We start with two de7nitions. By
Proposition 3:1, a cover y� x in Pl; n is an N -shift if and only if �(x)− �(y) is a unit
vector, which is equivalent to the following:

n∑
i=1

(�i(x)− �i(y)) =
n∑
i=1

(i − 1)(xi − yi) = 1:

For convenience, we de7ne the N -function fN (x) of an element x in Pl; n as

fN (x) =
n∑
i=1

(i − 1)xi:

Obviously, a cover y� x in Pl; n is an N -shift if and only if fN (x)−fN (y)= 1. Thus,
all N -paths between y and x (if one or more exist) in Pl; n have the same length:
M (x; y)=fN (x)− fN (y).

H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800 795

Similarly, we de7ne the D-function fD(x) as

fD(x) =
n∑

k=1
(k − 1)x∗k ;

where x∗=(x∗1 ; x
∗
2 ; : : : ; x

∗
n) is the conjugate of x. A cover y� x in Pl; n is a D-shift if

and only if fD(y)−fD(x)= 1. All D-paths between y and x (if one or more exist) in
Pl; n have the same length: M (x; y)=fD(y)− fD(x).

Theorem 3.5. If x≺ y in Pl; n, then all ND-paths from y to x have the maximum
length:

M (x; y) = fN (yx)− fN (y) + fD(yx)− fD(x) (4)

Proof. By Theorem 3.1, there exists an ND-path which is a maximum-length chain
between x and y. Let C = {y= y(0) � y(1) � · · · � y(r−1) � y(r) = x} be such an ND-
path, where y(0) � y(1) � · · · � y(t) is an N -path and y(t) � · · · � y(r) is a D-path. By the
de7nition of y

x
, we must have y

x
≺ y(t). By Theorem 3.4, if y(t) �= y

x
, then there exists

a D-realizable element w(1) to x such that y(t) �w(1) � x, and y(t) �w(1) is an ND-shift.
By induction on M (y

x
; y(t)), we con construct a chain: y(t) �w(1) � · · · �w(p−1) �w(p)

= y
x
, which is both a D-path and an N -path. Hence,

p = fD(y(t))− fD(yx) = fN (yx)− fN (y(t)):

Noting that any two D-paths from y(t) to x have the same length, we obtain

fD(y(t))− fD(x) =p+ (fD(yx)− fD(x))

=fN (yx)− fN (y(t)) + fD(yx)− fD(x):

Thus, the length of C is

M (x; y) =fN (y(t))− fN (y) + fD(y(t))− fD(x)

=fN (yx)− fN (y) + fD(yx)− fD(x):

This completes the proof.

3.4. Algorithm design

Based on Theorem 3.5, we have the following incremental algorithm for constructing
a maximum-length chain between x≺ y in Pl; n.

Algorithm 3.2. Given two elements x=(x1; x2; : : : ; xn)≺ y=(y1; y2; : : : ; yn) in Pl; n, con-
struct an ND-path between y and x, and calculate the maximum length M (x; y).
Step 1: Begin from y and continue toward x by leftmost N -shifts, according to Al-

gorithm 3.1, until no further N -shifts are available. This appears whenever the “turning
point” y

x
is reached. We obtain an N -path:

y = y(0) � y(1) � · · · � y(t) = y
x
:

796 H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800

Step 2: Continue from y
x
to x by leftmost D-shifts. We get a D-path:

y
x
= y(t) � y(t+1) � · · · � y(r) = x;

and thus we obtain an ND-path from y to x:

y = y(0) � y(1) � · · · � y
x
· · · � y(r−1) � y(r) = x:

Step 3: Compute the value of M (x; y) by the formula (4).

For example, to construct an ND-path between (4; 3; 0; 0) and (2; 2; 2; 1) and to cal-
culate the maximum length M ((2; 2; 2; 1); (4; 3; 0; 0)) in the partition lattice P8;4, we
7rstly produce an N -path starting from (4; 3; 0; 0):

(4; 3; 0; 0) � (4; 2; 1; 0) � (3; 3; 1; 0) � (3; 2; 2; 0) � (3; 2; 1; 1);

where (3; 2; 1; 1) is the downmost N -realizable element (turning point) from (4; 3; 0; 0).
Then, we make a D-path starting from (3; 2; 1; 1):

(3; 2; 1; 1) � (2; 2; 2; 1):

Finally, we obtain an ND-path from (4; 3; 0; 0) to (2; 2; 2; 1):

(4; 3; 0; 0) � (4; 2; 1; 0) � (3; 3; 1; 0) � (3; 2; 2; 0) � (3; 2; 1; 1) � (2; 2; 2; 1);

and calculate the maximum length:

M ((2; 2; 2; 1); (4; 3; 0; 0)) = 5:

We now turn to computational complexity analysis of Algorithms 3.1 and 3.2. Note
that for a given alphabet A, n is 7xed (usually, n=4 or 20) in biological applications.
Step 1 and 2 in Algorithm 3.2 for 7nding the leftmost N -shift require O(1) time and
space. To analyze Step 3 and the loop in Algorithm 3.2, we consider the worst case
which occurs when y=X (l)

max and x=X (l)
min. Let X denote the turning point (downmost

N -realizable element) in the interval X (l)
min≺X (l)

max. Step 3 and the loop in Algorithm
3.2 for constructing X requires fN (X) stages. We will 7nd a simple expression for
fN (X). To this end, we write

l = pn+
q(q+ 1)

2
+ t;

where p; q, and t are nonnegative integers, and 06t6q¡n. Then

X = (p;p; : : : ; p) + (q; q− 1; : : : ; t; t; t − 1; : : : ; 2; 1; 0; : : : ; 0):

For example, the turning point in P7;4 is (3; 2; 2; 1) and we have p=1, q=2, and t=1
in this case.
By an elementary calculation, we have

fN (X) = 1
2pn(n− 1)− 1

2 (q− t)(q− t + 1)− 1
3q(q− 1)(q− 2) ¡ 1

2nl:

Therefore, we obtain the following:

H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800 797

Theorem 3.6. Algorithm 3:2 requires O(l) time and space to calculate the maximum
length between a comparable pair in Pl; n.

Similarly, we have the following theorem:

Theorem 3.7. Algorithm 3:2 requires O(l) time and space to construct a maximum-
length chain between a comparable pair in Pl; n.

Recall that the determination of the state vector of a sequence S in Al requires O(l)
time and space. Thus, Algorithm 3.2 is fully eQcient in the sense that the computation
of the maximum length is of the same order of computational complexity O(l) as the
determination of the state vector.

4. Sizes of covering chains

As mentioned in Section 2.5, there are four typical chains between a comparable pair
in the partition lattice Pl; n: the longest chain, the shortest chain, the lexicographic chain,
and the counter-lexicographic chain. We have developed an algorithm for calculating
the size of the longest chain in Section 3. In this section, we will present eQcient
algorithms for computing the sizes of other three types of chains.

4.1. Maximum-size chain and minimum-size chain

For x≺ y∈Pl; n, using the leftmost pure N -shift 7rst search, Algorithm 3.2 can be
compactly rewritten as the following two-step algorithm to 7nd the maximum size from
y to x.

Algorithm 4.1. Given two elements x≺ y= y(1) in Pl; n, calculate the maximum size
M (x; y).
Step 1: Check if there exists an N -shift in Lx(y(1)). If so, 7nd the leftmost N -shift in

Lx(y(1)) and construct a new element y(2) in Lx(y(1)) based on this N -shift. Otherwise,
7nd the leftmost D-shift in Lx(y(1)) and construct a new element y(2) in Lx(y(1)) based
on this D-shift.
Step 2: Check if y(2) = x. If so, stop and output M (x; y)= 2. Otherwise, go to Step 1

and continue toward x by Step 1 until y(r)= x. Then, stop and output M (x; y)= r.
Similarly, using the rightmost pure D-shift 7rst search, we can devise an algorithm

to 7nd the minimum size of a comparable pair in Pl; n.

Algorithm 4.2. Given two elements x≺ y= y(1) in Pl; n, calculate the minimum size
m(x; y).
Step 1: Check if there exists a pure D-shift in Lx(y(1)). If so, 7nd the rightmost pure

D-shift in Lx(y) and construct a new element y(2) in Lx(y(1)) based on this D-shift.
Otherwise, 7nd the rightmost N -shift in Lx(y) and construct a new element y(2) in
Lx(y(1)) based on this N -shift.

798 H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800

Step 2: Check if y(2) = x. If so, stop and output m(x; y)= 2. Otherwise, go to Step 1
and continue toward x by Step 1 until y(r) = x. Then, stop and output m(x; y)= r.

We have showed in the previous section that there is a “turning point” in any longest
chain between x and y generated by Algorithm 3.2 or Algorithm 4.1. However, there
does not exist in general an intermediate point, similar to the “turning point”, in the
shortest chain between x and y generated by Algorithm 4.2.

4.2. L-chain and CL-chain

It is easy to 7nd the relationship among the L-chain, the CL-chain, and shifts. In
fact, the rightmost shift in y toward x produces the the largest child of y, while the
leftmost shift in y toward x always makes the the smallest child of y. Thus, using the
rightmost shift-7rst search and the leftmost shift-7rst search, we have two algorithms
for computing the lexicographic size and the counter-lexicographic size between a
comparable pair in the partition lattice, respectively.

Algorithm 4.3. Given two elements x≺ y= y(1) in Pl; n, calculate the lexicographic size
F(x; y).
Step 1: Find the rightmost shift (N -shift or D-shift) in Lx(y(1)) and construct a new

element y(2) in Lx(y(1)) based on such shift.
Step 2: Check if y(2) = x. If so, stop and output f(x; y)= 2. Otherwise, go to Step 1

and continue toward x by Step 1 until y(r) = x. Then, stop and output f(x; y)= r.

Algorithm 4.4. Given two elements x≺ y= y(1) in Pl; n, calculate the counter-lexico-
graphic size f(x; y).

Step 1: Find the leftmost shift (N -shift or D-shift) in Lx(y(1)) and construct a new
element y(2) in Lx(y(1)) based on such shift.
Step 2: Check if y(2) = x. If so, stop and output F(x; y)= 2. Otherwise, go to Step 1

and continue toward x by Step 1 until y(r)= x. Then, stop and output F(x; y)= r.

4.3. Computational complexity analysis

For a comparable pair x≺ y in Pl; n, we have

m(x; y)6 f(x; y)6 F(x; y)6 M (x; y):

Obviously, there exists a unique L-chain and a unique CL-chain between x and y.
There may be many maximum-size chains and many minimum-size chains between x
and y, particularly for larger n and l.
We now turn to computational complexity analysis of Algorithms 4:1–4:4. In a

similar way as in the proof of linearity of Algorithm 3.2 in the previous section, we
can prove the following theorem:

Theorem 4.1. Algorithms 4:1–4:4 run in O(l) time and space for a ?xed n.

Algorithms 4:1–4:4 are very eQcient, and the best possible algorithms in the sense
that O(l) is a lower bound for any algorithm which solves these problems. Note that

H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800 799

the order digram of Pl; n is a circle-free and triangle-free directed graph whose vertex
number is pn(l). Little information is know about 7nding the longest path between
two vertices in a general directed graph. Traditionally the shortest path problem has
received most attention. In fact, many algorithms have been proposed that compute the
shortest path information probabilistically fast, over a large class of directed graphs.
The best computational complexity bound so far is O(v2 log v) expected time, due to
MoMat and Takaoka, where v is the number of vertices of the given directed graph. If
we directly apply MoMat and Takaoka’s graph algorithm to calculating the minimum-
size of a comparable pair in Pl; n, it runs in time O(p2

n(l) log(pn(l))). According to
the asymptotic estimate formula (3), MoMat and Takaoka’s shortest path algorithm in
this case requires O((l+ n)2(n−1) log(l+ n)) time, whose computational complexity is
much higher than that of our Algorithm 4.2.

Acknowledgements

This work was supported by the grant A9710660 from National Research Council.

References

[1] S.F. Altschul, M.S. Boguski, W. Gish, J.C. Wootton, Issues in searching molecular sequence databases,
Natur. Genet. 6 (1994) 119–129.

[2] G. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol. 2,
Addison-Wesley, Reading, MA, 1976.

[3] G.I. Bell, Evolution of simple sequence repeats, Comput. Chem. 20 (1996) 41–48.
[4] J.B. Bryngelson, P.G. Wolynes, Spin glasses and the statistical mechanics of protein folding, Proc. Natl.

Acad. Sci. USA 84 (1987) 7524–7528.
[5] A.V. Finkelstein, Implications of the random characteristics of protein sequences for their

three-dimensional structure, Curr. Opin. Struct. Biol. 4 (1994) 422–428.
[6] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University Press, London, New York,

1952.
[7] S. Karlin, V. Brendel, Chance and statistical signi7cance in protein and DNA sequence analysis, Science

257 (1992) 39–49.
[8] O.B. Ptitsyn, Protein as an ‘edited’ statistical copolymer?, in: R. Srinivasan, R.M. Sarma (Eds.),

Conformation in Biology, Academic Press, New York, 1983, pp. 49–58.
[9] E.I. Shakhnovitch, A.M. Gutin, Formation of unique structure in polypeptide chains: theoretical

investigation with the aid of a replica approach, Biophys. Chem. 34 (1989) 187–199.
[10] H. Wan, Structure and cardinality of the class A(R; S) of (0; 1)-matrices, J. Math. Res. Exposition

4 (1984) 87–93.
[11] H. Wan, (0; 1)-matrices class with prescribed row and column sums and integral partition lattices,

Master’s Thesis, Huazhong, Central China, University of Science and Technology, 1984.
[12] H. Wan, Cardinal function of the class A(R; S) of (0; 1)-matrices and its nonzero-point set, J. Math.

Res. Exposition 5 (1985) 117–120.
[13] H. Wan, Combinatorial and Computing Theory of Nonnegative Integral Matrices, Dalian University of

Technology Press, Dalian, 1986.
[14] H. Wan, On the structure and enumeration of (0; 1)-matrices, Acta Math. Sinica 30 (1987) 289–302.
[15] H. Wan, On nearly self-conjugate partition of a 7nite set, Discrete Math. 175 (1997) 239–247.
[16] H. Wan, Q. Li, On the number of tournaments with prescribed score vector, Discrete Math. 61 (1986)

213–219.

800 H. Wan, J.C. Wootton / Theoretical Computer Science 289 (2002) 783–800

[17] H. Wan, E. Song, Quasi-periods in biological sequences, Theoret. Comput. Sci., submitted for
publication.

[18] H. Wan, J.C. Wootton, Sequence complexities and symmetries deduced from partition lattices and
self-diMerence matrices, manuscript, 1997.

[19] H. Wan, J.C. Wootton, Axiomatic foundations of complexity functions of biological sequences, Ann.
Combin. 3 (1999) 105–127.

[20] H. Wan, J.C. Wootton, A global compositional complexity measure for biological sequences: AT-rich
and GC-rich genomes encode less complex proteins, Comput. Chem. 24 (2000) 67–88.

[21] H. Wan, J.C. Wootton, Graph-theoretic approaches to biological sequences, manuscript, 1997.
[22] H. Wan, J.C. Wootton, The points of contact between globular and non-globular domains in protein

sequences, in preparation.
[23] H. Wan, H. Liu, J.C. Wootton, Compositional complexity functions of biological sequences in integral

partition lattices, SIAM J. Appl. Math., submitted for publication.
[24] J.C. Wootton, Non-globular domains in protein sequences: automated segmentation using complexity

measures, Comput. Chem. 18 (1994) 269–285.
[25] J.C. Wootton, Sequences with ‘unusual’ amino acid compositions, Curr. Opin. Struct. Biol. 4 (1994)

413–421.
[26] J.C. Wootton, Simple sequences of protein and DNA, in: M.J. Bishop, C.J. Rawlings (Eds.), DNA and

Protein Sequence Analysis, Oxford University Press, Oxford, 1996, pp. 169–183.
[27] J.C. Wootton, S. Federhen, Statistics of local complexity in amino acid sequences and sequence

databases, Comput. Chem. 17 (1993) 149–163.
[28] J.C. Wootton, S. Federhen, Taxonomy of simple amino acid sequences, in: H.A. Lim, C.R. Cantor

(Eds.), Bioinformatics and Genome Research, World Scienti7c Publishing, Singapore, 1995, pp. 159–
172.

[29] J.C. Wootton, S. Federhen, Analysis of compositionally biased regions in sequence databases, Methods
Enzymol. 266 (1996) 554–571.

	Algorithms for computing lengths of chainsin integral partition lattices
	Introduction
	State vectors and integral partition lattices
	State vectors
	Majorization and integral partition lattices
	Order diagram
	Covering chains and shifts
	Measures based on sizes of chains

	Algorithm to compute the maximum length between a comparable pair
	ND-paths
	N-realizablity and D-realizablity
	The maximum length function
	Algorithm design

	Sizes of covering chains
	Maximum-size chain and minimum-size chain
	L-chain and CL-chain
	Computational complexity analysis

	Acknowledgements
	References

