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Molecular transmembrane asymmetry plays a major role in
such diverse cellular aspects as morphology, adhesion, and
signaling. In general, surface receptor proteins have a dif-
ferent molecular architecture on their cytoplasmic and ex-
tracellular side corresponding to the respective function.
Likewise, lipid asymmetry between the two monolayers of
eukaryotic plasma membranes and membranes from or-
ganelles, bacteria, and viruses is well established (Devaux,
1991; Dolis et al., 1997).

As a morphological response to a transbilayer asymmetry
in lipid species and/or different aqueous environments, a
cellular membrane generally adopts a curved equilibrium
configuration. During the last decade, an elegant description
of the morphology of membranes and in particular of free
vesicle shapes has emerged from a general theory of bend-
ing elasticity (Seifert, 1997). Within the area-difference
elasticity model, asymmetry is quantified via both the area
difference between the two monolayers of a vesicle and the
spontaneous curvature of the membrane. These quantities
may be combined into an effective differential area (Mui et
al., 1995; Döbereiner et al., 1999).

In an excellent paper published in this volume, Heinrich
et al. apply the area-difference elasticity model or the gen-
eralized bilayer-couple model, as the authors call it, to the
analysis of vesicle deformations by an axial load. The
authors describe in amazing detail the morphological
changes of a vesicle as it is strained axially with micropi-
pettes. It is well known that a sufficiently large point force
acting on a fluid membrane leads to the formation of a long
tubular appendix. The authors’ main finding is that the
precise morphological scenario with which such a tether is
pulled out of a vesicle in fact depends quite delicately on
membrane asymmetry. It is therefore possible to measure
membrane asymmetry with this technique. Tether-pulling
experiments are complementary to morphological measure-
ments on fluctuating vesicles (Döbereiner et al., 1999). Both
techniques allow quantitative determination of the tendency
of a membrane to bend. Due to the relatively high forces
involved in tether-pulling, the regime of strong membrane

asymmetry, which is not easily accessible by monitoring
freely fluctuating vesicles, may be studied.

Heinrich et al. provide a profound theoretical basis for the
analysis of such tether-pulling experiments, which in the
past have relied on a number of ad hoc assumptions and
approximations. The authors have developed a numerical
technique that allows computation of complex membrane
morphologies characterized by strongly varying curvature
(e.g., a sphere with a thin tether) with very high precision.
The calculation of such shapes has not been possible before
now. Tether-pulling experiments yield important mechani-
cal characteristics of membranes, like bending moduli, in
addition to the effective differential area encoding mem-
brane asymmetry. Further, it is possible using this technique
to acquire information on dynamic features, e.g., driven
lipid flip-flop and intermonolayer friction. This versatile
usage of tether-pulling is nicely summarized in the rather
complete historical account the authors give in their Intro-
duction. The elastic interactions of the plasma membrane
with cytoskeletal proteins may be studied more quantita-
tively than has been possible so far using the theoretical
analysis of Heinrich et al. For instance, it is now feasible to
perform a comprehensive analysis of the buckling instabil-
ity of microtubules pushing against membranes (Kuchnir
Fygenson et al., 1997). In summary, the results of Heinrich
et al. open far-reaching possibilities for further quantitative
work on tether-pulling. This technique will continue to play
a major role in the quest to understand the behavior of
biomembranes.

In particular, the determination of membrane asymmetry
by tether-pulling and observations of fluctuating vesicles
will deepen our knowledge about cellular processes. One
may speculate about a cross-coupling of the morphology of
a membrane with its signaling function via molecular asym-
metry. One example of such a relationship may be the
inositol phospholipid pathway or another biochemical cas-
cade involving lipid-derived second messengers (Ghosh et
al., 1997). In the former pathway, the phospholipase C
cleaves off the head group of inositol phospholipids to
produce inositol triphosphate and diacylglycerol. The latter
lipid has quite a small head group and, thus, membrane
asymmetry clearly changes during this process. The varia-
tion in membrane asymmetry could, in turn, trigger mor-
phological transformations of the bilayer. It may also be
used to couple distinct biochemical reactions. An asymme-
try-induced change in the mechanical stress profile of the
bilayer membrane could alter the activity of enzymes or ion
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channels that are some distance apart (Keller et al., 1993). It
remains to be seen whether these effects are in fact widely
employed by nature.
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