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Abstract—Three methods-—the eigenvalue. logarithmic least squares. and least squares
methods—used to derive estimates of ratio scales from a positive reciprocal matrix are
analyzed. The criteria for comparison are the measurement of consistency, dual so-
lutions, and rank preservation. It is shown that the eigenvalue procedure. which is
metric-free. leads to a structural index for measuring inconsistency. has two separate
dual interpretations and 1s the only method that guarantees rank preservation under
inconsistency conditions.

1. INTRODUCTION

Given a matrix of data A = (a;;). a;; > 0. a;; = Va;;, where a;;. i.j = 1, ... . nare
estimates of underlying ratios (a,/a;). there are three methods commonly used to derive
best estimates of & = (a,, . ... a,) using A. They are: the eigenvalue method (EM), the

logarithmic least squares method (LLSM), and the least squares method (LSM). Our
purpose in this paper is to compare them. Other methods such as row averaging and
column normalization followed by row averaging will not be considered. All methods
yield the same answer, r;, i = 1, ..., n. when «;; is given in the form of a ratio. i.e..
a;; = rifr;. otherwise the solutions are different but often close. One problem with making
comparisons of such methods is for example that EM and LSM do not lead to a closed
form solution. Numerical methods are required to estimate them. Let us first give a formal
statement of the three methods. Our comparison of the methods relates to the question
of the effect of the consistency of A on rank preservation.

2. THE METHODS

Definition: A matrix A is said to be reciprocal if a,, = «;;'foralli.j =1,2,....n.
Definition: A reciprocal matrix is said to be consistent if ¢;;a;x = au foralli, j, k = 1,
2., 0.

The foregoing condition may be written to show that the coefficients in the jth row of
A are ratios of coefficients in the ith row. Thus «;, = aifu;;.

When A is consistent, all a,;; can be derived from (n — 1) given values which form a
star (as in comparing one element with all others) a chain or, more generally, a spanning
tree. Consistency here i1s a condition for relations among the data. It is not the usual
requirement of convergence in probability of an estimate to its true value. A necessary
and sufficient condition for a positive reciprocal matrix to be consistent is a;; = ri/r;, i,
Jj=1.2,. .., n Thisis precisely the condition under which all these methods coincide.
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Thus. we say that a set of judgments and their corresponding solutions are inconsistent
if the reciprocal matrix of comparisons does not satisfy the definition of consistency.
Obviously. there are different degrees of inconsistency. These can be measured through
a comparison of the inconsistency of A with the inconsistency of a positive reciprocal
matrix with random entries. We shall address this question in greater detail below.

The Eigenvalue Method (EM

An estimate of «; is the vector derived by solving the eigenvalue problem Aw = N
or

n
2 apw; = )\mu\“'h [ = l. R i (1)

J=1

where the priorities w,. i = 1. 2. ... . n are the components of the right-eigenvector
corresponding to the principal eigenvalue (the largest eigenvalue) of A.
Amax 1S Obtained by solving the characteristic polynomial

det(A — N) =0 2)

where [ is the identity matrix.

The eigenvalues of A can all be complex except for one. The exceptional eigenvalue
whose existence is assured by the Perron-Frobenius theorem is denoted by A .. and is
real and positive. In addition, for a reciprocal matrix A, Amax = n. The corresponding
eigenvector solution w is also real and positive, and unique to within a multiplicative
constant. Hence, the general rule for the solvability of our problem for an arbitrary positive
reciprocal marrix A is to determine the characteristic value X such that A = A, Itis
only for this value that the existence of the desired ratio scale w can be affirmed.

The EM solution is obtained iteratively as

A

hm ——— (3)
AR
where e = (1,1, . ... hH7and || A* || = e"A*e. Geometrically A* gives the sums of all

products of k coefficients. In graph theoretic language. it may be interpreted as the cu-
mulative dominance of a vertex over each other vertex along chains of length 4. As a
result, for large values of k. every coefficient in A would contribute to the calculation of
w, for all /.

The Logarithmic Least Squares Method (LLSM)

An estimate of «; is the vector derived by minimizing

Z <ln d;; — In El) . (4)

ij=1 “f

The solution to this minimization problem is given by

T ( Il a,—_,-u_,-) o i=1,2,....n (5)
1

j=
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Imposing the condition >./_, u; = 1, one obtains

u; = (H a,i,v) ””/ > <H a,-,,-) in i=1,2..... n. (6)
J=1 i=1 \J=1

Unlike EM, in LLSM the coefficients in other rows make no direct contribution to the
calculation of «,;. Thus inconsistent relations among row i and other rows are not reflected
in u;. LLSM is a procedure for implementing the idea that the reciprocal of a function of
a set of variables, any two of which are interchangeable. is equal to that function applied
to the reciprocal of the variables, and thus the geometric mean of a row of A is the
reciprocal of the corresponding column of A. This results in a loss of discrimination of
inconsistency as we shall see later.

The Least Squares Method (LSM)

An estimate of «; is the vector v derived by minimizing

s (a,;,- - z—) . ™

ij=1 Uy

Note that there is neither a closed form solution for this problem, nor a widely used
numerical method of solution.

The general LSM approach goes beyond estimating vectors to estimating matrices by
matrices of lower rank [2, 4, 5]. From

Trace(AAT) = > aj

iJj=1

we have

-

Trace(A — V)(A — V) = ¥ [a” _ 1_"']

ij=1 vy
where V = (vi/v)).

Now, for any positive matrix X, XX7 is symmetric and all its eigenvalues are real. Also
XX7 is positive and has a unique real positive largest eigenvalue. We have

AAT=PAPT, ATA=0AQ7
where A is a diagonal matrix whose entries are the eigenvalues of AA” (or A7A) in de-
scending order of magnitude; the eigenvectors of AA” are the corresponding columns of

P and those of ATA are the corresponding rows of Q7. Hence a least-squares approxi-
mation of A by a matrix of rank r is given by [2]

PrA 1/2 er

where P, and QF are the parts of P and Q" associated with the first » columns of A. Since
the matrix V constructed from the vector v is consistent, it follows that A is approximated



312 TH aas L. Saaty anp Lu-s G, Varaas

by a matrix of unit rank and v have:
V= PAQI

Remark: The most frequently used metric to measure closeness and accuracy in n-
dimensional spaces is the Euclidean metric. This is the metric of LSM. However. the
Euclidean metric does not address the question of inconsistency. J. Fichtner [3]. in a
forthcoming dissertation coached by the first author. recently introduced a metric satis-
fying the usual axioms and having to do with inconsistency. Its minimization yields the
EM solution, i.e.. the EM criterion is linked to minimizing inconsistency.

Let R be the set of all reciprocal matrices and let R C R be the subset of consistent
reciprocal matrices. For A € R and B € R. this metric is given by

1.2
. N 1
B(A. B) = |:E IH':A, - “'(,lh]'} + ' >\1n‘;\u'\ - }\(nl\):\)\ ‘

i=1 2(” - I)

1
+ =1 FAGN + ABL = 21| - Ban

JAY tA) (A (B (BY B) .,
where Au = AN Bu = Nmux ¥ and

s o_|vita-B
A8 7)1 0 otherwise.

We have
}\(A.', - n
B(A. W) = min d(A. B). 3A. W) =
HBER« n— 1
and
w,'“,(A) — ”“.(A).

3. RELATIONSHIPS AMONG w. « AND v

Assume that w. « and v are normalized to unity.
THEOREM 2:  For any n = 2. if A is consistent, then, w, # and v coincide.

Proof: Let A be a consistent matrix. Then a;; = w,/w,, i.j = 1.2.... . n[5|L EM
yields
Wy
Ww = nw. W = <~—>
\l',

(W — nlmw = (_).

or

Since n is the largest eigenvalue of W clearly w = U T T C TE wo) ! is the
desired solution.
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By using (6) LLSM yields

Wi i=1 W,
. : “5
= = R T

= T T/n 7] ) T/n n .
> < I n{,) > ( I w,~) > oy
=1 =1

j=1 i=1

Uu;

For LSM. since A is consistent we can write a;; = ri/r;, i.j = 1.2.. .., n, and take v,
=r.i=1,2.....n.
Consistency is a sufficient condition for w = « = . An example of an inconsistent

matrix A for which w, & and v are nearly the same is

r 17
1 2 =
2
1
A==z 1 2
2
1
2 -1
: 2

The solution is approximately given by (3, %, $)7. The LSM solution is not always unique.

THEOREM 3: w and u coincide for an arbitrary positive-reciprocal matrix A for n =
2, 3.

Proof: A 2 x 2 matrix is consistent and hence Theorem 2 applies. Let A = (w/w;
€;;) be a reciprocal matrix. A = W o E where "0’ denotes the elementwise product of
W and E with W = (w;/w;), and E = (e;;), €, = €;',i,j = 1,2, ..., n. Since W is
consistent by construction, its principal right eigenvector coincides with that of A. (3. 3.
)7 is the principal right eigenvector of E and A (A) = Amax(E).

The matrix E can be uniquely characterized in terms of a single parameter €. Thus we
have

- -
1 e-l-
€
1
E =|- 1 €
€
1
€ - 1
L € o

This can be shown by solving the system of equations

l + €12 + €13 = )\mux

+ 1+ €33 = )\mux

in three unknowns.
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Using (6) we have:

1

n R 1o ;oo R
W

II — €, W l_[ €;;

i=1 W, ) j=1

i, = = 121.2.3

n ; lin " N

2 (H 26,‘]) Z “‘/\( H EA,)

L1 \J=1 Wy / ko= =1

Since I17_, €;; = 1. on normalization (i.e.. >.0_, w, = 1), we have w, = 1, i = [. 2.
3.

4. MEASUREMENT OF CONSISTENCY

EM has provided a useful structural criterion for the measurement of violations of the
consistency criterion «,;d;x = d,. Presumably because of inconsistency the usefulness
of the data in the matrix A may be questionable and new data may be needed.

The inconsistency of the data is measured as follows. A consistent reciprocal matrix
A has unit rank and hence all but one of its eignevalues are zero [6. 7]. From n = trace(A)

= D' Nnwehave Apuw — 71 = — %o Nand (Apax — 2Mn — 1) = =27 3 N,/
(n — 1) where Ay = A,... By definition the average inconsistency is given by
( ) _ )\m;l\ — h ] i )\ (8)
H) = = - i
K n— 1 n— 1

i=2

By abuse of language w(n) is called the consistency index of A. By writing «;; = w,/w;
€. €;>0ande,; = 1 + 8,,.8;, > —1, 1t is easy to show that wu(n) is a measure of the
variance of 9;; [7].

As an illustration of how to perform a test of inconsistency a particular scale of absolute
numbers employed in making pairwise comparisons to quantify qualitative judgments in
the analytic hierarchy process |7} was used. Here 500 reciprocal matrices of sizes n =
3.4, ... .13 were randomly generated using the scale values 4. %, 5. 1, 2. ..., 8. 9.
Each time their largest eigenvalue was computed. The average was then taken. The results
of this simulation are given in Table I. Table 2 gives estimates of the mean consistency
and the standard deviation. In [7]. An. was tested for normality. Table 3 gives 95%
confidence interval bounds on consistency using the information of Table 2. For example.
if the consistency index of a 3 x 3 reciprocal matrix is w(3) = .1087, then the ratio of
this index and its corresponding value .6090 for n = 3 (.1087/.6090 = .1785) obtained for
randomly generated matrices (Table 3) is a measure of the closeness of the pairwise

Table 1

_ Samact 1)

Amux(n) Sample standard
n Interval of variation Sample mean deviation
3 ( 3.0000. 9.7691) 4.0762 1.3605
4  4.1013. 11.3006) 6.6496 1.8380
s ( S.3855, 15.3237) 9.4178 2.1032
6 ( 7.1376. 17.2361) 12.3129 2.1007
7 (10.0610. 20.3545) 15.0001 2.0305
i (12.4807. 23.5383) 17.9518 1.9045
9 (14,9457, 25.3345) 20.5652 1.8240
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Table 2
Matrix size Mean consistency Standard deviation of the

(n) Hin) mean consistency

3 0.5381 0.0433

4 0.8832 (.0475

s 11045 0.0470

6 1.2528 0.0420

7 1.3334 0.0371

8 1.4217 0.0322

9 1.4457 0.0288

comparison judgments to random judgments. A reciprocal matrix is then said to be near
consistency if this ratio is 10% or less [7, 9].

A proposal has been put forth in [1] to measure inconsistency by means of the cor-
relation coefficient

n |

n> x|
R — i=1

E b%f
i

where x; = 1/n X b;;, and b;; = In a,;. But this is not a good measure as can be seen
from the following example.

:
]

win)/[Random w(n)] = [(3.5 — 3)/2)/.6090 = .43 which is very poor. and the corresponding
value of R is R = 0 which is also very poor. If we replace a,x = 4 and ¢3; = 2 by a3
= g and a3, = 9. then p(n)/|[Random w(n)] = [(4.60 —3)/2] = 1.38 which is much worse.
yvet R = .5104 which is much better.

19 19
1D i

(S

5. DUAL SOLUTIONS

Let A be a positive reciprocal matrix and consider A”. The corresponding EM. LLSM
and LSM estimates of a derived by using A” and denoted by w*, «*, and v*, respectively.
are called the dual solutions of w, 1. and . The problem here is to determine the rela-

Table 3
Matrix size Critical point
(n) (a = 570
3 6090
4 9610
hJ 1.1820
6 1.3220
7 1.3940
8 1.4750
9 1.4930
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tionship between a solution and its dual. w and w* are principal right and left cigenvectors.
respectively, of A.

THEOREM 4:  For an arbitrary positive reciprocal consistent matrix A. the normalized
componentwise rectprocal of w* is equal to w.

Proof:  Since A is consistent any normalized row of A yields w*. On the other hand.
w is any normalized column of A. By construction. the normalized components of any
column of A are the reciprocals of the normalized components of any row of A. and the
theorem follows.

THEOREM 5: For n = 3. the normalized solutions w and w* are reciprocals.

Proof: Forn = 3.w = 1 and we have from (6)

n Ln ” Fon in
(ﬂ u,-»,-) /E (ﬂ a,~_,> i
g1 i=1 \J=1 ;
C N 1/n " ;o 1in
( I1 a»,-,-) / > (H a_,-,> i
J=1 ) i=1 r=1

Normalization of the reciprocals of w¥. i = 1. ..., n. yields w.

w and w* are the right- and left-eigenvector of A. respectively. In general. w and »w*
need not be reciprocals. When A is consistent, the conversion from left- to right-eigen-
vector prescnts no problem. for then the entire set of reciprocal comparisons and their
relations can be inferred trom the comparisons themselves. When A is inconsistent this
is no longer true except for 1 = 3 (see Theorem 5) where the structure of the matrix again
dictates the mathematical relations between the comparisons and their reciprocals. Now
there is a significant distinction to be made between left and right-cigenvectors. The right-
eigenvector arises from answering the following kind of question: How much more does
one element dominate another with respect to a given criterion? The left-eigenvector arises
from answering the question: How much more is the smaller element dominated by the
larger one with respect to the criterion? Our ability to answer these two questions is not
the same. The second one is much more difficuit. To answer the first question. the smaller
element is used as a unit for making the comparison. The answer to the second question
requires that the first element serve as a unit to be divided into parts, each roughly equal
to the second element which now is used as the unit. It is much easier for one to take
multiples of a smaller unit than to divide a larger one into fractions. In fact there is doubt
as to our ability to do the latter without inverting the comparison to the first kind. If
people were forced to make the second type of comparisons they would be less certain

of the correctness of their judgment and larger errors would result.
The scale one seeks from dominance comparisons is obtained through the right-eigen-

vector. Here. the elements listed on the left of the matrix are compared with those listed
at the top. Were one to compute the right-eigenvector of the transpose of the matrix, the
new right-eigenvector would not represent dominance comparisons and. because of the
difficulties mentioned above, it would not be a meaningful scale. Thus, even though left
and right-eigenvectors are related through the structure of the matrix, only the right-
eigenvector gives a meaningful scale derived from A.

I
il
t2

and

—

I
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ThHEOREM 6:  The LLSM solutions # and «* are reciprocals.
Proof: ldentical to that of Theorem 5 for all n.
TueoreM 7:  The LSM solutions v and «* are reciprocals.

Proof: v is obtained by minimizing

n 2
Uy , ~ ; ~
F 2 ((l,‘_,‘ - "') = 2 (a,—_,- — l',‘/I'_,‘)’ + ((1»,', - I’»,‘/I’,‘)'.
2 i<

)
ij=1 vy

Let B = A”. v* is obtained from minimizing
”" I’,* 2 ‘ o ) .
G= 2> (b"./’ - _*> = 2 (b — PP+ by — )
ij=1 vy i<lj

Since b,'.,‘ = da;;, = (1,‘_7'. we have

02 w2
G = > (a;; — vy + (a,; — vHof)r.

i<

1,2,....#1, in G we have

it

Substituting % = /v, i

G 2 (aj,‘ - 1{,‘/1’[)2 + ((I,'_, - I’,’/I'.,')z = F

i<y

and the result follows.

6. RANK PRESERVATION

By rank order we mean the order relationship between v; and x,. where x = w, u. or
. How should this relationship be interpreted in terms of what we know about A?

We indicated earlier that the values and hence also the order of w,. i = 1,2, ... .n
1s the result of complex calculations having to do with chains of arbitrary length to keep
track of consistency relations. This turns out to be important for capturing inconsistencies
to preserve rank order. However. all three methods behave similarly with respect to rank
under certain conditions. For example, we noted earlier that with consistency these meth-
ods yield the same solution and hence ranking is the same.

Now let use assume that A is inconsistent and hence its columns may vyield different
rankings. Generally on observing that a;; = 1 one might expect x; = x; to hold. But this
cannot always be the case. Another interesting observation is that if row i/ dominates row
J- then the methods should preserve rank. This turns out to be true. Still other intuitive
guesses have to do with taking the arithmetic mean or the geometric mean (LLSM) of
the rows. Rank preservation can be easily shown to break down under these assumptions.

Definition: A method of solution is said to preserve rank weakly if a;; = 1 implies x;
= y; where x = w, yorv

THeoOREM 8 (Intuitive Expectation): If A is consistent then EM, LLSM and LSM
preserve rank weakly.
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Proof: 1f A is consistent t.cn a,; = x,/x; from which the proof follows.
Note that with consistency v; = x; implies «;; = 1.
Definirion: A method of solution is said to preserve rank strongly if a;, = «,, tor all

h implies x; = x,.

The next theorem shows the sufficiency of row dominance without requiring consist-
ency.

THEOREM 9 (Row Dominance): For EM and LLSM, given i and j. ¢ = ;. for all &,
implies x; = x;.

Proof: For EM we have

124 "
Amax Wi = E apwy = 2 €Wy = }\mu\"'/
k=1 k=1

which yields w; = w;.

For LLSM we have

‘on Iin n /n
u; = ( I1 a,»k> = < I1 (1‘,-;\) = u;, and wu; = u;.

(=1 k=1

For LSM, this theorem has been proven in [8].

Corollary 1: ay = a;y for all &, implies a,;; = 1.

Proof: Put k = jobtaining a;; = «a;;.

Corollary 2: Leta,; = 1. Waula;; = a;u. k= 1.2, ..., n, then x; = ;.
Corollary 3: W ua;; = 1 and a;y = aula;; for all &, then x; = x;.

The following is a generalization of Theorem 9 to products.

THEOREM 10 w; = w; it and only if 11}y an = [1{_ ajy.

THEOREM 11:  Letn = 3. For an arbitrary positive reciprocal matrix A, w, = w, it and
only it W an = 17y au.
Proof: Follows from (6) and Theorem 3.
Definition: A positive reciprocal matrix A is ordinally transitive if for each i = 1. 2,
H,di; =z ay for some jand k. implies a;, = 1.

Hence. a positive reciprocal matrix A is ordinally intransitive if «;; = «a, imphes a;,
= | for some {, j and 4.
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THEOREM 12:  In an ordinally transitive reciprocal matrix A. given i and (. either a,,
= ayy, forall i, or ay, = a;y, for all h.

Proof: Consider rows i and /' and let /i be the subset of column indices for which «,,
= a;, and let ' be the remaining subset of indices for which «; < a; .

Because A is ordinally transitive, we have «,; = ay,; implies that «,, = | and «,, =
a,- implies that a; = 1 or a;; = 1 which is absurd.

The following relates ordinal transitivity to rank preservation.

Corollarv: If A is ordinally transitive then EM, LLSM and LSM preserve rank
strongly.

Now assume that for some i and j. neither «,, = u;,, nor a;, = «,, for all 1. Thus A is
inconsistent. It follows that a;; = 1(= «a;;) need not imply x; = x,. However. it turns out
that a{’ = af’ does, where a!}' is the (i, j) entry of A*.

We now develop a necessary and sufficient condition for rank preservation in terms
of the row dominance of the powers of A. For emphasis, recall that an element «!*' of
A* gives the cumulative dominance of the ith element over the jth element along all
chains of length 4. That is precisely how one measures the consistency relation between
that row and each column. In fact when A is consistent we have from A* = n* " 'A that
the entries of A* and those of A differ by a constant thus maintaining consistency.

In general. consider A* = (a!f’) where
n

n H
af’,;\') = E Z 2 iy iyin "7 iy

=1t ix=1 h-a=1

THEOREM 13: For a positive reciprocal matrix A

(h) tA)
ain [

hm —— = lim -—— ., h.s = 1.2.....n
f—sx Jan,
2: (A 25 A
aih) (l:'_\)
i=1 i=1

Proof: Let B = NAN ™' be the Jordan canonical form of A given by

Ay
B>

. 5

where Ny = Apax, and B,, p = 2,3, ..., ris the m, x m, Jordan block defined by

A, 0 0 0 0
1 A, O 0 0
B, =10 1 A, 0 0
0 0 0 - 1 A,
where \,. p = 2, ... . r are distinct eigenvalues with multiplicities m-. ., m, re-

spectively, and 2, _>m, = n — 1. We have A = N 'BN and A* = N 'B*N where
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B* is given by

A0 0
Bt = 0 B 0
0 0 B

Letus denote N '=D = (d;;)) and N = (n;;). We have

’1||d||)\/i + e II[:(IH)\,]\ +oee L II|,,(/||)\’] -
AI‘ _ DB,\}V _ H]|d:|)\/|\ I ’l|3(l:])\/i e e ll],,tl:;)\li - e
I_”lldnl/\/i + o ”Ildnl}\ll\ +oe Ll ”Irldul}\/i - J
Lete = (1. 1..... 0" =ayw; + -+ + a,w,. where w,, is the principal right eigenvector

corresponding to A,. We have

"

" N
(’IAA = (l|)\,iH"|I + -+ (l,.}\/f)\',( = (H]] 2 d,‘]}\/]\ + oL LMy, S L[,])\’i -+ ) .

i—1 =1

Given two columns of A%, /7 and s we have

k k k IS
ai,’ mipdia Ay + aly’  nmdahy o+
n - ”n and n - n .
k k Ak A
E ai‘}z) Nip 2 dinht + - 2 at:\-) Mg E daNy =
i=1 i=1 =1 i=1
Since both numerators and denominators are polynomials in Ay, p = 1.2, ... .r. and
At = Amax > | A, |. p # 1. we have for the i entries of two arbitrary columns /2 and s
. aip’ aw di
lim - = lim = -5

2] .
A= O () h—r= (k)
}, (4] 2 [ E (1,‘]

i=1 =1 [ |
Definition: A positive matrix A is said to be k-dominant if there is a &, such that for
k = ko either a8’ = a'¥) or a'f’ = a'¥) for all h and for any pair / and i’
Corollarv: A positive matrix is A-dominant.

Proof:  We have from Theorem 13 that the normalized columns of A* arce the same
in the limit. Since the elements in each row are identical. the result follows by choosing
ko to be the maximum of its values for each pair of rows.

We now show that for an inconsistent matrix A rank is determined in terms of the
powers of A. To do this we demonstrate that there is a method of estimating « which
coincides with the normalized limiting columns of A. This method is precisely EM.

THEOREM 14:
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Proof:

From lims_. A%e/| A* || = w. we have w, = limy_. U] A*| D 0-, aif'. Multiplving

and dividing ¢!’ by 2/_, a!f' we have on distributing the limit with respect to the finite

sum

H "

3 (A
! alp 2 i ! aiy En o
. i) i=1 . il . i=
w, = > lim ” A"" j e = X | lim —— Allm m
_ 1 A—> _ A—r= — |
=1 < z am) h=1 z (l(,'f,)

=1 i=1
By Theorem 13,

. U
lim -

A—
(k)
2 din

i=1

is the same constant for all /1, hence we have

”n

(AY n E (li‘//\,)
. ain . i=1
w; = lim —— > | lim ———
A ot | A== AR
Z din

i=1

Since || A* | = X D%oy a'f’. the proof is complete.

The foregoing also clarifies why one can take a matrix and obtain a rank order. then
augment the matrix by a row and its reciprocal column and discover that the new ranking
involves a reversal of the old ranking. This must happen becausec of the inconsistency
relations among the old and the new rows of the matrix.

For n = 3, we have shown earlier that the inconsistencies of A can be characterized
in terms of a single parameter and hence the normalized row products of A coincide with
the normalized principal eigenvector. The following is an example for # = 3 in which the
LSM solution yields a different ranking than EM and LLSM where of course w and «
are identical.

EM LLSM LSM

1 2 7 559 559 412
;3 19 .383 .383 .529
I 058 058 059
Here w(n) = .05, w(n)/{[Random w(n)] = .086 which is good. w; > w> > wa, uy > uy >

sz but v> > Uy > Us.

For n = 4 unlike EM, whether A is consistent or not LLSM makes no use of coefficients
in other rows in the calculation of «. Consequently except for n = 3 where « coincides
with w, LLSM would tend to produce a ranking that is insensitive to inconsistencies in
the matrix.
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7. EXAMPLES AND COUNTEREXAMPLES

The following is an example with good consistency where the ranking by EM differs
from the other two.

EM LLSM LSM

1§ 4 & 5 081 073 055
6 1 2 1 8 346 358 .363
A=[3 4 1 % 5 180 187 201
&8 1 2 15 355 346 .332
58+ b .038 .036 049

45.168 46.080 24.654 = SSE'™
Here p(n) = .089 and pin)/{Random w(n)] = .079. The rankings are

Wy 2> Wo 2> Wy 2> Wy > W
Ur 2> Ug > U > U > Us

Vo 2> Ug > U3 > U > 1

Here A* with &k = 4 gives the same ranking as w. We have with rounding off

182.560 34.205 65.020 37.846 391.042
769.9 146.810 277.933 164.45  1652.25
Af = A% = | 401.35 76.380 144.667 85.435 861.375
789.983 150.875 285.45 169.435 1682.083
84.083 16.175 30.588 18.135 185.602

Here is an example with moderately poor consistency for which the three methods
yield different rankings

EM LLSM LSM

1
58}
W
J

1 4313 4 321 316 LI8S
P17 03 L 139 139 216
A=14 101 41 035035 .37
S T T B 129125150
LSS 113 237 236 215
L1 6 3 11 139 4R 197

89.847 85.279 60.049 = SSE

and p(n) = .284, and p(n)[Random p(n)] = .229.
An example with very poor consistency in which all three methods coincide in value
and therefore also in ranking is:

(*) SSE = Sum of Squares of Errors.
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EM LLSM LSM

1 2 4 333 333 333
A=13 12 333 333 333
2 41 333 333 333

3.75 3.75 3.7 = SSE

w(n) = .25, w(n)/[Random w(n})] = .431.
Finally an example with very poor consistency in which the three methods yield three
different rankings is

EM LLSM LSM

214 193 I8
.245 184 175
242 319 298
299 304 408
40.987 37.787 30.538 = SSE

b= 9 — fa
—_—he N Ui

b

i
A B bl
P = Lo ta—

win = .806, w(n)/[Random ptn)] = .896

HWag = Wa 2> Wi 2> Wy
Uy > Hg > U > U>

R S I AR U O
Here we have

195132463.2 205257530 91373282.57  164496038.1
222651232.1 231069167.1 104356525 191688460.3
221646689.6  230654337.7 103670215.5 1861993339
275564324.4 280849364.2 128581383.3  229448679.1

AH —

in which the fourth row dominates the second row which dominates the third row which
dominates the first row coinciding with the ranking induced by EM.

8. CONCLUSION

The purpose of deriving a ratio scale estimate of « is to obtain a unidimensional scale
which **best’" fits the data represented by A. An important criterion which must be con-
sidered by all the methods is the criterion of consistency. When consistency obtains EM,
LLSM and LSM produce identical solutions. Consideration of consistency gives rise to
two properties, the existence of reciprocal dual solutions and the preservation of rank.
When there is inconsistency in the data for whatever reason. that inconsistency must be
dealt with as a fact. either accepted or reduced by improving the quality of the information.
EM is a useful method for addressing the problem of inconsistency both with respect to
dual solutions and to preservation of rank. In fact it is the only method that should be
used when the data are not entirely consistent in order to make the best choice of alter-
native.
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