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We find the entropy of Kehagias–Sfetsos black hole in the deformed Hořava–Lifshitz gravity by using the
first law of thermodynamics. When applying generalized uncertainty principle (GUP) to Schwarzschild
black hole, the entropy S = A/4 + (π/ω) ln(A/4) may be interpreted as the GUP-inspired black hole
entropy. Hence, it implies that the duality in the entropy between the Kehagias–Sfetsos black hole and
GUP-inspired Schwarzschild black hole is present.
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1. Introduction

Recently Hořava has proposed a renormalizable theory of grav-
ity at a Lifshitz point [1,2], which may be regarded as a UV com-
plete candidate for general relativity. At short distances the theory
of Hořava–Lifshitz (HL) gravity describes interacting non-relativistic
gravitons and is supposed to be power counting renormalizable in
(1 + 3) dimensions. Recently, its black hole solutions has been in-
tensively investigated [3–20].

Concerning the spherically symmetric solutions, Lü–Mei–Pope
(LMP) have obtained the black hole solution with dynamical pa-
rameter λ in asymptotically Lifshitz spacetimes [3] and topological
black holes were found in [4]. Its thermodynamics were studied
in [7,8] but there remain unclear issues in defining the ADM mass
and entropy. On the other hand, Kehagias and Sfetsos (KS) have
found the “λ = 1” black hole solution in asymptotically flat space-
times using the deformed HL gravity with parameter ω [10]. Its
thermodynamics was defined in Ref. [11]. Also, Park has obtained
the λ = 1 black hole solution with two parameters ω and ΛW [15].

It seems that the GUP-inspired Schwarzschild black hole was
related to black holes in the deformed HL gravity [11]. We could
not confirm a solid connection between the GUP [21,22] and the
black hole of deformed HL gravity, although partial connections
were established between them. However, it was known that the
GUP provides naturally a UV cutoff to the local quantum field
theory as quantum gravity effects [23,24]. Also, the GUP density
function may be replaced by a cutoff function for the renormal-
ization group study of deformed HL gravity [25]. We have found
GUP-inspired graviton propagators and compared these with UV-
tensor propagators in the deformed HL gravity. Two were similar,
but the p5-term arisen from Cotton tensor was missed in the GUP-
inspired graviton propagator. This shows that a power-counting
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renormalizable theory of the HL gravity is closely related to the
GUP.

In this Letter, we will make a further progress on exploring the
connection between the GUP and black hole of the deformed HL
gravity. We obtain the entropy of KS black hole in the deformed
HL gravity. This entropy may be interpreted as the GUP-inspired
black hole entropy when applying the GUP to Schwarzschild black
hole.

2. HL gravity

Introducing the ADM formalism where the metric is parameter-
ized

ds2
ADM = −N2 dt2 + gij

(
dxi − Ni dt

)(
dx j − N j dt

)
, (1)

the Einstein–Hilbert action can be expressed as

SEH = 1

16πG

∫
d4x

√
gN

[
Kij K i j − K 2 + R − 2Λ

]
, (2)

where G is Newton’s constant and extrinsic curvature Kij takes the
form

Kij = 1

2N
(ġi j − ∇i N j − ∇ j Ni). (3)

Here, a dot denotes a derivative with respect to t . An action of the
non-relativistic renormalizable gravitational theory is given by [1]

SHL =
∫

dt d3x [L K + LV ], (4)

where the kinetic terms are given by

L K = 2

κ2

√
gN Kij G i jkl Kkl = 2

κ2

√
gN

(
Kij K i j − λK 2), (5)

with the DeWitt metric

Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/82316748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:ysmyung@inje.ac.kr
http://dx.doi.org/10.1016/j.physletb.2010.01.014
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Y.S. Myung / Physics Letters B 684 (2010) 158–161 159
G i jkl = 1

2

(
gik g jl − gil g jk) − λgij gkl (6)

and its inverse metric

Gi jkl = 1

2
(gik g jl − gil g jk) − λ

3λ − 1
gij gkl. (7)

The potential terms is determined by the detailed balance con-
dition as

LV = −κ2

2

√
gN Eij Gi jkl E

kl

= √
gN

{
κ2μ2

8(1 − 3λ)

(
1 − 4λ

4
R2 + ΛW R − 3Λ2

W

)

− κ2

2w4

(
Cij − μw2

2
Rij

)(
C ij − μw2

2
Rij

)}
. (8)

Here the E tensor is defined by

Eij = 1

w2
C ij − μ

2

(
Rij − R

2
gij + ΛW gij

)
(9)

with the Cotton tensor Cij

C i j = ε ik�

√
g

∇k

(
R j

� − 1

4
Rδ

j
�

)
. (10)

Explicitly, Eij could be derived from the Euclidean topologically
massive gravity

Eij = 1√
g

δWTMG

δgij
(11)

with

WTMG = 1

w2

∫
d3xε ikl

(
Γ m

il ∂ jΓ
l

km + 2

3
Γ n

il Γ
l
jmΓ m

kn

)

− μ

∫
d3x

√
g(R − 2ΛW ), (12)

where ε ikl is a tensor density with ε123 = 1.
In the IR limit, comparing L0 with Eq. (2) of general relativity,

the speed of light, Newton’s constant and the cosmological con-
stant are given by

c = κ2μ

4

√
ΛW

1 − 3λ
, G = κ2

32πc
, Λcc = 3

2
ΛW . (13)

The equations of motion were derived in [26] and [3]. We would
like to mention that the IR vacuum of this theory is Lifshitz space-
times [7]. Hence, it is interesting to take a limit of the theory,
which may lead to a Minkowski vacuum in the IR sector. To this
end, one may deform the theory by introducing a soft violation
term of “μ4 R” (L̃V = LV +√

gNμ4 R) and then, take the ΛW → 0
limit [10]. We call this as the “deformed HL gravity”. This theory
does not alter the UV properties of the HL gravity, while it changes
the IR properties. That is, there exists a Minkowski vacuum, instead
of Lifshitz vacuum. In the IR limit, the speed of light and Newton’s
constant are given by

c2 = κ2μ4

2
, G = κ2

32πc
, λ = 1. (14)
3. Entropy of KS black hole

A spherically symmetric solution to the deformed HL gravity
was obtained by considering the line element

ds2 = −N(r)2 dt2 + dr2

f (r)
+ r2(dθ2 + sin2 θ dφ2). (15)

In this case, we have Kij = 0 and Cij = 0. Hence, it is empha-
sized that we have relaxed both the projectability restriction and
detailed balance condition [1,27] since the lapse function N de-
pends on the spatial coordinate r as well as a soft violation term
of μ4 R is included. Substituting the metric ansatz (15) into L̃V

with L K = 0, one has the reduced Lagrangian

L̃V = μ4N√
f

[
λ − 1

2ωλ

f ′2 − 2λ( f − 1)

ωλr
f ′

+ (2λ − 1)( f − 1)2

ωλr2
− 2

(
1 − f − r f ′)] (16)

where a parameter ωλ = 8μ2(3λ − 1)/κ2 specifies the deformed
HL gravity.

For λ = 1, the KS solution is given by [10]

fKS = N2
KS = 1 + ωr2

(
1 −

√
1 + 4M

ωr3

)
(17)

with ω(= ωλ=1) = 16μ2/κ2. In the limit of ω → ∞ (equivalently,
κ2 → 0), it reduces to the Schwarzschild metric function

fSch(r) = 1 − 2M

r
. (18)

From the condition of fKS(r±) = 0, the outer (inner) horizons are
given by

r± = M

[
1 ±

√
1 − 1

2ωM2

]
. (19)

In order to have a black hole solution, it requires that

M2 � 1

2ω
. (20)

Furthermore, the extremal black hole is obtained from the condi-
tion of degenerate horizon ( fKS(re) = 0, f ′

KS(re) = 0) as

re = Me = 1√
2ω

(21)

with f ′′
KS(re) = 4ω/3.

Thermodynamic quantities of mass, temperature, and heat ca-
pacity for the KS black hole are defined as [11]

M(r±) = 1 + 2ωr2±
4ωr±

, T = 2ωr2+ − 1

8πr+(ωr2+ + 1)
,

C = −2π

ω

(ωr2+ + 1)2(2ωr2+ − 1)

2ω2r4+ − 5ωr2+ − 1
. (22)

In the limit of ω → ∞, these reduce to corresponding quantities
of Schwarzschild black hole as

M → r+
2

, T → 1

4πr+
, C → −2πr2+. (23)

Now we wish to derive the entropy by considering that the first
law of thermodynamics holds for black hole in the deformed HL
gravity:
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dM = T dS. (24)

Then, the entropy is calculated as

S =
∫

dr+
[

1

T

∂M

∂r+

]
+ S0, (25)

which leads to [18]

S = π

[
r2+ + 1

ω
ln

(
r2+

)] + S0. (26)

If one chooses

S0 = π

ω
lnπ, (27)

then we have a compact expression of the entropy

S = A

4
+ π

ω
ln

[
A

4

]
(28)

with A/4 = πr2+ and G = 1. We note that in the limit of
ω → ∞, Eq. (28) reduces to the Bekenstein–Hawking entropy of
Schwarzschild black hole as

SBH = A

4
. (29)

It is clear that the logarithmic term represents the feature of KS
black hole in the deformed HL gravity. Accordingly, we have to
interpret this logarithmic term to understand why the entropy of
KS black hole takes the form (28).

4. GUP-inspired Schwarzschild black hole

A meaningful prediction of various theories of quantum grav-
ity (string theory and loop quantum gravity) and black holes is the
presence of a minimum measurable length or a maximum observ-
able momentum. This has provided the GUP which modifies com-
mutation relations between position coordinates and momenta.
Also the black hole solution of deformed HL gravity reminds us
the Schwarzschild black hole modified with the GUP [11]. Hence,
it is very interesting to develop a close connection between GUP
and HL gravity. A generalized commutation relation1 of

[xi, p j] = ih̄δi j
(
1 + βp2) (31)

leads to the generalized uncertainty relation

�x�p � h̄

[
1 + α2l2p

(�p)2

h̄2

]
(32)

1 We note that the GUP is in the heart of the quantum gravity phenomenology.
Certain effects of quantum gravity are universal and thus, influence almost any sys-
tem with a well-defined Hamiltonian [28]. In general, the GUP satisfies the modified
Heisenberg algebra [23,24]

[xi , p j] = ih̄
(
δi j + βp2δi j + β ′ pi p j

)
,

[xi , x j] = ih̄
(2β − β ′) + (2β + β ′)βp2

1 + βp2
(pi x j − p j xi),

[pi , p j] = 0, (30)

where pi is considered as the momentum at high energies and thus, (30) can be
interpreted to be the UV-commutation relations. In order to achieve the commuta-
tivity, we have to choose β ′ = 2β . In this case, the minimal length which follows
from the modified Heisenberg algebra is given by (�x)min = h̄

√
5β . We emphasize

that the presence of the minimal length represents a feature of the GUP. In order to see
the GUP-inspired black holes, it is sufficient to consider βp2 because this term de-
termines the minimal size of the black hole.
with lp = √
Gh̄/c3 the Planck length. Here a parameter α = h̄

√
β/lp

is introduced to take into account the GUP effect. The Planck mass
is given by mp = √

h̄c/G . The above implies a lower bound on the
length scale

�x � (�x)min ≈ 2h̄
√

β = 2αlp, (33)

which means that the Planck length plays the role of a fundamen-
tal scale. On the other hand, Eq. (32) implies the upper bound on
the momentum as

�p � (�p)max ≈ 2√
β

= 2mpc

α
. (34)

Furthermore, the GUP may be used to derive temperature for the
modified Schwarzschild black hole by identifying �p with the en-
ergy (temperature) of radiated photons [29]. The momentum un-
certainty for radiated photons can be found to be

�x

2α2l2p

[
1 −

√
1 − 4α2l2p

(�x)2

]
� �p

h̄
� �x

2α2l2p

[
1 +

√
1 − 4α2l2p

(�x)2

]
.

(35)

The left inequality implies small corrections to the Heisenberg’s
uncertainty principle for �x � αlp as �p � h̄/�x+ h̄α2l2p/(�x)3 +
· · · [30]. On the other hand, the right inequality means that �p
cannot be arbitrarily large in order that the GUP in (32) makes
sense. For simplicity, we use the Planck units of c = h̄ = G = kB = 1
which imply that lp = mp = 1 and β = α2. Considering the GUP
effect on the near-horizon and �x = 2r+ = 4M , the relation (35)
reduces to

M

[
1 −

√
1 − β

4M2

]
� β�p

2
� M

[
1 +

√
1 − β

4M2

]
. (36)

Replacing β with 2/ω, the above leads to a relation

r− � �p

ω
� r+. (37)

Here we wish to mention that a replacement of β → 2/ω was
performed because both sides of Eq. (36) have mathematically the
same form as Eq. (19). It seems that Eq. (37) indicates a connec-
tion between quantum and classical properties of KS black holes
in the deformed HL gravity.

Importantly, it was shown that based on the GUP [31], quantum
correction to the Bekenstein–Hawking entropy SBH of Schwarz-
schild black hole is given by [32,33]

SGUP = SBH + πα2 ln[SBH] − π2α4 1

2SBH
+ · · · . (38)

Considering the replacement of α2 = β → 2/ω, the above expres-
sion leads to

SGUP = SBH + 2π

ω
ln[SBH] − 4π2

ω2

1

2SBH
+ · · · (39)

with SBH = πr2+ = A/4.
Promisingly, for α2 = β → 1/ω, Eq. (38) recovers Eq. (28) up to

the logarithmic term as

SGUP 	 A

4
+ π

ω
ln

[
A

4

]
. (40)
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5. Discussions

We have found the entropy of Kehagias–Sfetsos black hole in
the deformed HL gravity by using the first law of thermodynamics.
The presence of logarithmic term ln[A/4] seems to be universal
for the HL gravity because it appeared in topological black hole
solutions [4] and LMP solution [8].

We would like to mention that the GUP seems to be a powerful
tool to study quantum gravity effects. The GUP with the relation
�x = 2r+ = 4M of the Schwarzschild radius r+ and its ADM mass
M make sense because quantum gravity effects of GUP is universal.
Thus, the Schwarzschild black hole was modified if one assumes
the GUP. It seems that the GUP explains a part of quantum gravity
effects but not whole of these. A relevant relationship of the black
hole entropy-area based on string theory and loop quantum gravity
is given by [34]

SLQG = A

4
+ ρ ln

[
A

4

]
+ O

(
1

A

)
, (41)

where ρ is a model-dependent parameter. Therefore, the GUP was
widely used to obtain quantum correction (41) to the Bekenstein–
Hawking entropy of Schwarzschild black hole [31–33].

In this work, we have attempted to explain the logarithmic
term (π/ω) ln[A/4] for the entropy of black hole in the de-
formed HL gravity by considering the GUP-inspired entropy to
Schwarzschild black hole. The corresponding quantities may be β

in the generalized commutation relation (31) and 1/ω of parame-
ter in the deformed HL gravity (16). In the limit of β → 0, we re-
cover the Heisenberg uncertainty relation without quantum gravity
effects, while in the limit of ω → ∞, the entropy of Schwarzschild
black hole is recovered without the logarithmic term. This may im-
ply a close connection between GUP and HL gravity.

However, we recognize that the entropy of KS black holes (stan-
dard black hole thermodynamics) was being compared with that
of the GUP-inspired Schwarzschild black hole (non-standard black
hole thermodynamics). This implies that there exists a sort of cor-
respondence (duality) between two systems, but not that the GUP
is a fundamental property of Hořava–Lifshitz gravity. Especially, we
realize that logarithmic terms in black hole entropy appeared in
many different models. At this stage, thus, the logarithmic term in
the KS black hole entropy does not represent a definite signal that
the GUP is an underlying principle of Hořava construction.

Consequently, we have shown that the duality in the entropy
between the KS black hole from the HL gravity and GUP-inspired
Schwarzschild black hole is present.
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