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a  b  s  t  r  a  c  t

Plague  is a zoonotic  infectious  disease  present  in great  gerbil  populations  in  Kazakhstan.  Infectious  dis-
ease dynamics  are influenced  by  the  spatial  distribution  of the  carriers  (hosts)  of the disease.  The  great
gerbil,  the  main  host  in  our  study  area,  lives  in  burrows,  which  can  be  recognized  on  high  resolution
satellite  imagery.  In  this  study,  using  earth  observation  data  at various  spatial  scales,  we map  the spatial
distribution  of burrows  in a semi-desert  landscape.

The  study  area  consists  of  various  landscape  types.  To  evaluate  whether  identification  of  burrows  by
classification  is  possible  in these  landscape  types,  the  study  area  was  subdivided  into  eight  landscape
units,  on  the basis  of  Landsat  7  ETM+  derived  Tasselled  Cap  Greenness  and  Brightness,  and  SRTM  derived
standard  deviation  in  elevation.

In the  field,  904 burrows  were  mapped.  Using  two segmented  2.5 m  resolution  SPOT-5  XS satellite
scenes,  reference  object  sets were  created.  Random  Forests  were  built  for both  SPOT  scenes  and  used  to
classify  the  images.  Additionally,  a stratified  classification  was  carried  out,  by  building  separate  Random
Forests  per landscape  unit.

Burrows  were  successfully  classified  in  all landscape  units.  In  the  ‘steppe  on  floodplain’  areas,  classi-
fication  worked  best:  producer’s  and user’s  accuracy  in those  areas  reached  88%  and  100%,  respectively.
In  the  ‘floodplain’  areas  with  a more  heterogeneous  vegetation  cover,  classification  worked  least  well;
there,  accuracies  were  86  and  58% respectively.  Stratified  classification  improved  the  results  in  all  land-
scape units  where  comparison  was  possible  (four),  increasing  kappa  coefficients  by  13,  10,  9 and  1%,

respectively.

In this  study,  an innovative  stratification  method  using  high-  and  medium  resolution  imagery  was
applied  in  order  to map  host  distribution  on  a large  spatial  scale.  The  burrow  maps  we developed  will
help  to  detect  changes  in the  distribution  of  great  gerbil  populations  and,  moreover,  serve  as  a unique
empirical  data  set which  can  be used  as  input  for  epidemiological  plague  models.  This  is  an  important
step  in  understanding  the  dynamics  of  plague.
. Introduction
Plague, a disease mainly spread by rodents, was responsible for
he deaths of nearly one-third of the European human population
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during a pandemic in the Middle Ages (Gage and Kosoy, 2005;
Haensch et al., 2010). Plague is caused by the bacterium Yersinia
pestis and can infect over 200 mammal  species (‘hosts’), such as
prairie dogs in the United States (Collinge et al., 2005), black rats
in Madagascar (Keeling and Gilligan, 2000) and great gerbils in

Open access under CC BY license.
Kazakhstan (Davis et al., 2004). Plague is a vector-borne disease, i.e.
the disease is transferred from host to host by a vector, fleas in the
case of plague. In the last decades, plague, along with several other
vector borne-diseases, has been resurging (Gubler, 1998). It causes
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bout 2000 diagnosed human cases annually, of which the major-
ty occur in Africa (World Health Organization, 2005). The disease
s still considered dangerous; it is one of three diseases for which
otification to the WHO  is obligatory (World Health Organization,
983).

Much of our knowledge of disease dynamics in natural popula-
ions is gained from investigations using epidemiological models
Hudson et al., 2001). For example, population size or density
ften must surpass a certain threshold in order for a disease to
nvade and/or persist (Lloyd-Smith et al., 2005), and higher pop-
lation density typically increases the transmission rate (Begon
t al., 2002). Moreover, the spatial distribution of hosts may  deter-
ine local host connectivity, which when increased enhances

he likelihood of successful disease spread (Keeling, 1999). When
ost distributions are patchy, increasing ‘patchiness’ may  either

ncrease or decrease the chance that an endemic infectious dis-
ase will persist (Hagenaars et al., 2004; Keeling and Gilligan, 2000;
esse and Heesterbeek, 2011; Park et al., 2002). Thus, model stud-
es suggest that the spatial distribution of hosts influences disease
ynamics in different ways, but empirical data on the spatial dis-
ribution of infected and susceptible hosts on a population scale is
carce.

The distribution of animals is increasingly mapped by earth
bservation and remote devices on several spatial scales. On small
cales, GPS-receivers are being used to track the animals. On a larger
cale, remote sensing is used: several examples exist of host-habitat
apping (Bogh et al., 2007; Kalluri et al., 2007; Estrada-Peña, 2003).

uch remote sensing based maps provide useful information on
he characteristics of a focus (i.e. an area where the disease caus-
ng agent and its associated vector and/or host are present). As a
onsequence of rapid technological advancements in recent years,
igh spatial resolution imagery now offers the opportunity to map
ctual animal distributions, provided that a feature associated with
he animal, like a burrow, can be identified on satellite images.

Burrows are constructed and used by certain rodents for sleep-
ng, nesting and food storage. Burrowing rodents may  diminish
egetation cover on and around their burrows such that it becomes
ossible to see them on satellite images, as is the case for wombats
Vombatus ursinus) in Australia (Löffler and Margules, 1980) and
reat gerbils (Rhombomys opimus) in Central Asia (Addink et al.,
010).

Great gerbils, social rodents that are numerous in (semi-)deserts
n Central Asia, are important hosts of zoonotic infectious dis-
ases, such as tularemia, cutaneous leishmaniasis and bubonic
lague (Gage and Kosoy, 2005; Yaghoobi-Ershadi and Javadian,
996; Atshabar et al., 2010). Plague in the great gerbil has been
onitored extensively in Kazakhstan since the 1940s, although

udget cuts since the 1990s have led to a severe decrease in plague
urveillance (Gage and Kosoy, 2005; Ouagrham-Gormley et al.,
008). From this monitoring, we know that plague is endemic in
0 foci in Kazakhstan, the majority being steppe and desert foci
Atshabar et al., 2010). In each of these foci, plague monitoring,
.e. testing of rodents and fleas for plague, has been carried out
nder the supervision of Anti-Plague Stations. The finest spatial
cale on which monitoring is carried out is the so-called sector,
n area, defined by a latitude-longitude grid, of approximately
.3 km × 9.8 km.

The frequent plague epizootics (epidemics in animal popula-
ions) do not result in massive die-offs of great gerbils, because
he great gerbils are – in general – quite resistant to the disease
Gage and Kosoy, 2005; Biggins and Kosoy, 2001). The occurrence
f these epizootics is related to the abundance of both host and vec-

or. A host abundance threshold was first discovered by Davis et al.
2004) where abundance was measured as the percentage of bur-
ows occupied by family groups. The plague threshold model was
ater improved by including the abundance of fleas (Reijniers et al.,
 Observation and Geoinformation 23 (2013) 81–94

2012). In both models burrow (density) maps form an important
starting point for the prediction of plague.

In a pilot study by Addink et al. (2010),  great gerbil burrows were
successfully identified in an area of 6 km × 10 km using a Quickbird
image with a spatial resolution of 2.4 m.  Although this study offered
a convincing proof-of-concept, burrows were only mapped in one
landscape type. As the distribution of great gerbils is related to the
landscape by food availability, local climate and competition with
other species, the challenge is to map  the great gerbil abundance
across different landscapes. Moreover, the area investigated in the
pilot study was smaller than the area of smallest scale plague mon-
itoring by the Anti-Plague stations. Therefore, the relation between
plague dynamics on the one hand and host abundance and structure
on the other cannot be studied using these data. Mapping the great
gerbil burrows over large areas, covering several plague monitoring
units, and across several landscape types, will offer the opportunity
to study the relation between landscape, great gerbil distribution
and plague occurrence.

This paper focuses therefore on classifying burrows in two areas,
of 60 km × 60 km and 60 km × 85 km,  covering landscape types of
fluvial and aeolian origin. The objectives are:

(1) To identify great gerbil burrows by semi-automated classifi-
cation on high resolution SPOT-5 XS images across different
landscape types and evaluate the accuracy.

(2) To construct a map  of landscape units representing the variabil-
ity and spatial structure of the landscape in this plague focus.

(3) To stratify the SPOT-5 XS images on the basis of these landscape
units, and subsequently classify burrows per landscape unit,
using local training data.

The methodology used to map  the spatial distribution of bur-
rows was  as follows: landscape units were created on the basis of
Landsat 7 ETM+ and SRTM data, using object-based analysis ($4.1).
Then, the SPOT images were segmented and the burrows were clas-
sified, based on unstratified and stratified Random Forests ($4.2).
Finally, the accuracy for both approaches was calculated ($4.3).

2. Study area

The study area is a plague focus located in Eastern Kazakhstan,
south of Lake Balkhash (Fig. 1), composed of fluvial and aeolian
deposits. The area measures approximately 250 km × 200 km and
encompasses a delta system developed by the Ili River. As the
course of the Ili River has shifted over time from NNW to NW,
several abandoned river branches can still be recognized in the
landscape (Fig. 1). Large dune fields have formed along and on top
of the abandoned floodplain. The irrigated agricultural area north
of the town Bakanas was masked out.

Soils are sandy, with variable clay and low organic matter con-
tent: in the abandoned river beds gravel to sandy material is found,
while further from the river branches, soils are more clay-rich or
have dunes formed on top. In some areas soils are highly saline.
The climate in the study area is strongly continental. Mean tem-
peratures fluctuate dramatically, daily and within seasons, ranging
between −40 ◦C in winter to +40 ◦C in summer (Suslov, 1961). Pre-
cipitation is less than 200 mm per year and falls primarily in winter
(as snow) and spring (Suslov, 1961; Propastin, 2008). In spring snow
melts quickly and forms small lakes (called takirs) in topographic
depressions (Laity, 2008). Once dried up, these takirs are recognized
easily because of their high albedo. Vegetation cover is variable, but

shows, as well as a relation to soil moisture content, a declining
trend in the direction of Lake Balkhash and with distance from the
Ili River, with vegetation gradually changing from larger shrubs and
reed grass thickets to lower shrubs and ephemeral grasses. Close
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in clay-rich soil they are more compact and deeper. Deeper bur-
rows will lead to a more stable temperature inside the burrow and
hence increase survival of the gerbils. Depending on the stability of
the soil, a burrow can extend to 3 m deep (Naumov and Lobachev,
ig. 1. The study area in Kazakhstan south of Lake Balkhash (left), showing the Ili riv
ing  maps, 2011.

o large abandoned river branches, vegetation cover is higher, most
ikely due to subsurface flow. In several areas, the soil is covered by

 layer of lichen and moss. Overall, plant diversity and cover is low
ue to the yearly water deficit and extreme temperatures.

.1. Great gerbils and their burrows

In this sandy (semi-)desert in the Balkhash basin, the great ger-
il is the primary reservoir host for plague (Atshabar et al., 2010).
reat gerbils are diurnal, mainly folivorous rodents that are well
dapted to the climate. They live in family groups usually con-
isting of one male, one or more females and their offspring, and
ccupy one burrow per family (Randall et al., 2005). The rodents
ave a territorial nature and spend 90% of their activity within the
oundaries of their own burrow (Rogovin et al., 2003), although
isits to other burrows do occur (Rothshild, 1978). Because the
umbers of gerbils fluctuate greatly, both inter- and intra-annually,
urrows are not always occupied continuously: the percentage of
ccupied burrows is referred to as ‘occupancy’. During winter, occu-
ancy usually drops because great gerbil mortality increases due
o the harsh meteorological conditions. Also, because great gerbil

ovements are restricted, no new burrows are created during this
eriod.

The burrows of the great gerbil (Fig. 2) are omnipresent in the

andscape and can be considered as relatively permanent, static
eatures (Naumov and Lobachev, 1975). Burrows have multiple
ntrances that lead to a network of subterranean tunnels and
hambers. They vary in size and shape in different landscapes
ta, the location of the SPOT satellite scenes and the research sectors (right). Source:

(Naumov and Lobachev, 1975). Along dunes, burrows tend to be
more elongated; on flat sandy substrates, burrows are circular, and
Fig. 2. Burrow in alluvial material with a crusted soil. Multiple entrances, belonging
to  the same burrow, are visible. Black saxaul trees (Haloxylon ammodendron), visible
in  the background, form an important food source for the great gerbil.
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Fig. 3. Flowchart of the sequential processing steps of the construc

975). All burrows have an ‘ecological centre’, i.e. the location of
ost intense activity which can be recognized by a high density of

ntrances. On the surface of a burrow, no or relatively little veg-
tation is present. This leads to an increase in albedo and hence
nables the recognition of burrows on satellite images.

. Data preparation

.1. Field data

Data on burrow and non-burrow area locations were collected
uring field campaigns in September 2010 and April 2011, in seven
ectors (Fig. 1). In these sectors 54 squares of 200 m were laid out as
eference areas. Per sector, two or three locations were randomly
elected (as far as accessibility allowed, because roads are scarce),
o that variability within the sector would be covered. At each
ocation, two or three squares were laid out, always a minimum
istance of 200 m apart from each other.

The squares were then systematically checked for burrows of
he great gerbil. Burrows, 904 in total, were numbered and marked.

ith a GPS navigation device, the burrows were mapped by recor-
ing the coordinates at the ecological centre. In addition, burrow
iameters were measured.

.2. Satellite images

Three pan-sharpened 2.5 m resolution orthorectified SPOT-
 images containing green, red and NIR spectral bands were
cquired for October 2010 (Astrium, 2012). They cover two areas
f 60 km × 85 km in the east (SPOT East) and 60 km × 60 km in the
est (SPOT West) and overlap the seven research sectors (Fig. 1).

POT West was acquired on 14 October and the two  images com-
osing SPOT East were acquired on the 9 October.

Landsat 7 ETM+ images (28.5 m resolution) from 2000 and 2001
ere used for the landscape stratification together with a 90 m
esolution Digital Elevation Model (DEM) acquired by the Shuttle
adar Topography Mission (SRTM). Both Landsat and SPOT images
ere converted to top-of-atmosphere reflectance (Chander et al.,

009).
f the landscape units (top) and the burrow classification (bottom).

4. Methods

An overview of the processing steps is given in Fig. 3.

4.1. Defining landscape units

In order to construct landscape units in the Balkhash basin,
first the most important variables that determine the variability
of landscapes in this area were listed. These variables are soil type,
vegetation cover and local topography. These landscape variables
also determine to a large extent the physical habitat suitability for
the great gerbil. Soil type influences the possibilities of quality bur-
row construction, as the cohesion of the soil determines whether it
is possible to construct a deep and stable burrow. Vegetation cover
reflects the presence of food resources. Local topography influences
soil depth, as depositional and erosional processes are influenced
by topography. Also, along with vegetation cover, it has influence
on the ability to hide from predators, like birds of prey. A combi-
nation of these three variables will represent different local great
gerbil habitats and in addition will likely influence the ability to
detect the burrows in satellite images.

The landscape units were defined in three steps (see also Fig. 3):

(1) Landscape representative layers were calculated using Landsat
7 ETM+ scenes and the SRTM-DEM. To represent the varia-
tion in soil types, a soil Brightness layer was derived from
the Landsat images using the Tasselled Cap Brightness (TC-
Brightness) (Crist and Cicone, 1984). TC-Brightness is a measure
of overall reflectance and makes it possible to differentiate
light soils from darks soils. The variation in vegetation cover
in the area was  extracted from the Tasselled Cap Greenness
(TC-Greenness) (Crist and Cicone, 1984). TC-Greenness displays
the contrast between the near-infrared reflectance and the vis-
ible reflectance and is a measure of the presence and density of
green vegetation. The local variation in topography was com-
puted using the SRTM-DEM, specifically the standard deviation

of the SRTM-DEM, calculated using a window size of 3 by 3
pixels. The pixels of the local SRTM-DEM standard deviation
(DEM-SD) were then matched to 28.5 m pixels using nearest
neighbour resampling.
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2) Multi-resolution segmentation was applied to these three lay-
ers (giving each layer an equal weight), using eCognition®

Developer Software (Trimble, 2011). Segmentation is the
process of grouping neighbouring pixels on the basis of a homo-
geneity criterion (Blaschke and Strobl, 2001). This homogeneity
criterion (i.e. the scale parameter) was chosen such that the
objects were large enough to meaningfully represent a land-
scape type, but small enough to avoid grouping of different
landscape types into one object. This resulted in a median object
size of 6.9 km2.

3) These objects were then classified into different landscape
units. Classification of the objects was essential, because objects
with a similar landscape type do not necessarily border each
other, which means they would not have been grouped together
during segmentation. To classify each object inside the two
SPOT areas, its mean values of TC-Greenness, TC-Brightness,
and DEM-SD were obtained, to form three object attribute lay-
ers. The median value of each layer was then used to separate it
into high and low classes (above and below the median). These
high and low classes for the three variables were then combined
(2 × 2 × 2) to form eight landscape units with either a high or a
low value for TC-Brightness, TC-Greenness, and DEM-SD, which
we denote by a capital and lower case letters for a high and
low values, respectively (B, b, G, g and D, d). Finally, landscape
units were given a geomorphological and landscape-ecological
interpretation and description, using field observations and lit-
erature on the area (Suslov, 1961; Laity, 2008).

.2. Burrow classification

.2.1. Creating a reference object data set: combining field and
atellite data

First, SPOT images were subjected to an edge-preserving
moothing filter (Nagao and Matsuyama, 1979) in order to improve
bject stability (Addink, 2012). They were then segmented using
iling and stitching, to keep the segmentation process fast and effi-
ient. The three bands were given equal weights and the shape
arameter was  set to 0, which means that pixels are grouped based
n their reflectance values only (and not on the shape of the result-
ng object) (Baatz and Schäpe, 2000). Segmentation was  carried out
n such a scale that object size coincided with the size of burrows,
esulting in a mean object size of 23.8 m2. In total, in the west-
rn and eastern 9,659,972 and 12,868,017 objects were created
espectively.

The objects resulting from the segmentation have associated
ttributes that were calculated using eCognition®. These attributes

 also called independent variables – give information on the
pectral-, texture-, shape-, size- and neighbour-properties of the
bjects. For example, the variable Mean NIR gives the mean reflec-
ion in the NIR band for an object and the variable Number of darker
bjects gives the number of darker objects surrounding the specific
bject. In total, 67 independent variables were calculated, of which
2% consisted of spectral- and texture-, 31% of neighbour- and 27%
f shape- and size variables.

The objects and associated independent variables were used to
reate reference object sets (one for each SPOT scene), contain-
ng burrow and non-burrow area objects. Using the method from
ddink et al. (2010), objects representing burrows were selected in

wo steps. First, all objects within the estimated position error of a
urrow field location, as given by the GPS, were marked as poten-
ial burrow objects. Second, from those potential burrow objects,

or each field observation, the brightest object was selected. This
s calculated by taking the average of all pixel values in an object
so-called Brightness - not to be confused with the TC-Brightness

entioned in $4.1). Non-burrow area objects were defined as the
 Observation and Geoinformation 23 (2013) 81–94 85

objects that were not marked as a potential burrow object and
were located completely within the 200 m research squares. The
non-burrow area objects include therefore a range of local land-
scape features, such as a patch of shrubs or grass, a (part of a) dune,
a takir or a road.

The reference object data set for SPOT West then consisted of
315 burrow objects and 787 non-burrow area objects, and for SPOT
East these numbers were 589 and 2311, respectively.

4.2.2. Building Random Forests
Random Forest is a robust statistical classifier that makes a pre-

diction of a test set based on observations from a training set, using
multiple decision trees (Breiman, 2001). Using the values of the
independent variables, each tree consists of nodes where the train-
ing set is split into homogenous subsets of burrow and non-burrow
areas until the tree is fully grown, i.e. until the whole training
set is subdivided into those classes. The Random Forests used in
this study were created with the randomForest package (Liaw and
Wiener, 2002) implemented in the R statistical programming envi-
ronment (R Development Core Team, 2011).

Every tree was  constructed using a 2/3 bootstrap (default value)
of the training set. The 1/3 bootstrap not used to calibrate the
tree, the so-called “Out-Of-Bag” (OOB) data, are, by running these
samples through the Random Forest, used to derive an error esti-
mate (“OOB-error”). The average value of the OOB-errors for all the
trees gives a good indication of how well classes can be separated
(Rodriguez-Galiano et al., 2012b).

A Random Forest chooses for each node on a tree the best pre-
dictive variable from a random subset (with the size of the square
root of the total number of independent variables) of the predic-
tor variables. This means that if there are many variables with
little predictive power, the Random Forest might be sub-optimal.
Therefore, it is useful to select the most predictive variables in
advance of building the final Random Forest (Rodriguez-Galiano
et al., 2012a).  The Random Forest classifier itself contains a novel
method to estimate variable importance (Verikas et al., 2011; Cutler
et al., 2007), which can be used to exclude the least predictive vari-
ables in advance. By running the Random Forest iteratively and
excluding the least predictive variables at every run, the most parsi-
monious solution can be found that has the least variables amongst
those within the sampling error from the solution with the absolute
smallest OOB-error (Diaz-Uriarte, 2007).

The Random Forests built in this study used 10,000 trees, which
is a sufficient amount of trees to ensure the OOB-error is stable;
for other Random Forest settings the default values were used. All
Random Forests were optimized by removing the least predictive
variables using the VarSelRF R package (Diaz-Uriarte, 2007).

4.2.3. Unstratified classification
Classification using Random Forest is done by running all obser-

vations, in this case objects with associated variables, along each
tree, so that each object gets multiple, votes (in this case 10,000).
The majority of all the votes decide whether burrow or non-burrow
area is assigned to a specific object (Liaw and Wiener, 2002). This
is then repeated for all the objects.

One Random Forest was  constructed per SPOT scene to clas-
sify the burrows. Constructing one Random Forest for both SPOT
West and East was  not desirable, because the SPOT images were
acquired on different dates with slightly different atmospheric con-
ditions. The Random Forests were trained with training sets that
contained equal numbers of burrow and non-burrow area objects,
since imbalanced training sets considerably influence the outcome

of the Random Forest classification (Stumpf and Kerle, 2011). 80%
of the burrows were used for training, 20% was used for validation.
For example, in the eastern Image 470 burrows (=80% of 587) were
selected by drawing a random sample. Then, in the same manner,



86 L.I. Wilschut et al. / International Journal of Applied Earth Observation and Geoinformation 23 (2013) 81–94

Table 1
Landscape units in the Balkhash basin and the associated field data. The names of the units are built up out of three letters, representing a high (capital letter) or low value
(lower  case letter) of TC-Brightness (B/b), TC-Greenness (G/g) or DEM-SD (D/d). RF denotes Random Forest.

Landscape unit Location field data Number of squares
available for RF analysis

Number of burrows
available for RF analysis

Stratified RF

bgd East 6 124 RF bgd-East
Bgd East and West 24 452 RF Bgd-West and RF Bgd East
bGd  East 16 172 RF bGd East
BGd  – 0* 0* (Only unstratified RF)
BgD  East and West 6 141 RF BgD West and RF BgD East
bgD – 0* 0* (Only unstratified RF)
bGD East 2 15* (Only unstratified RF)
BGD –  0* 0* (Only unstratified RF)
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Total  East and West 54 

* No research squares, or too few burrows are located in this landscape unit, so th
POT  scene.

70 non-burrow area objects were selected. Together they formed
he unstratified training set for the eastern SPOT image.

.2.4. Stratified classification: classification per landscape unit
Stratification is the process of using ancillary information to

ivide the investigated area spatially into units (strata), so that
hey can be analyzed separately (Vintrou et al., 2012; Hornstra
t al., 2000). Stratification prior to classification allows an optimal
lassification procedure for specific conditions in different areas.
n our research, stratification was used because of the hypothesis
hat the ability to identify burrows would be differentially affected
y relationship between a burrow and its surroundings in different

andscapes. For example, in the sparsely vegetated, inactive flood-
lains in the study area, burrows are better recognizable because
he “background”, i.e. non-burrow area, is relatively homogenous.
n the areas closer to (abandoned) river beds, where water avail-
bility leads to more variation in vegetation cover and type, the
urrows are less distinct against their background.

To stratify the SPOT scenes, the obtained landscape units define
he borders of the strata, i.e. instead of building one Random For-
st per SPOT scene, Random Forests are built per landscape unit.
tratified Random Forests can only be built when sufficient field
bservations are available, which is the case for four landscape
nits (Table 1), namely bgd (East), Bgd (West and East), bGd (East)
nd BgD (West and East). For each of these six units stratified Ran-
om Forests were built (Table 1). The stratified Random Forests
ere–like the unstratified Random Forests–trained with balanced

raining sets, using burrows and non-burrow areas located in the
orresponding landscape unit.

.2.5. Refining the Random Forest classification
Due to the territorial nature of great gerbil families, burrows

re always at a certain minimum distance from each other, i.e. they
ave an inhibited pattern. This information was used to improve
he classification following the procedure of Addink et al. (2010):  if

 burrow was adjacent to other classified burrow objects it would
emain classified as a burrow when the Brightness of adjacent bur-
ow objects was  lower, otherwise it would be reclassified into a
on-burrow area. This ensured that large burrows consisting of two
bjects would only be counted as one burrow.

.3. Validation

Random Forests were created using 80% of the burrow field data
nd the remaining 20% was used for validation. For validation it is
mportant to have a representative validation data set (Congalton,
991). The 20% validation set was constructed in such a way  that

he ratio of burrows to non-burrow areas equalled the ratio found
n the field.

Validation was done by calculating the producer’s, user’s and
verall accuracy (Lillesand et al., 2004) based on counts for every
904

uilt to classify this area is unstratified, i.e. based on all the squares in the respective

landscape unit, using the burrow locations buffered with their
diameter. Although landscape units Bgd and BgD are present in
both SPOT scenes, validation of landscape units Bgd and BgD was
done in the same manner. The kappa coefficient, a measure of
overall accuracy based on the classification error matrix, was also
calculated for each unit (Congalton, 1991). To compare the clas-
sification accuracies for different landscape units, the values of
the producer’s, user’s and overall accuracy, as well as the kappa
coefficient were compared. To evaluate the difference between the
unstratified and stratified method, additionally, significance was
tested at the 95% confidence level using the Kappa Analysis Test of
Significance (Congalton et al., 1983; Congalton, 1991).

Moreover, based on the field data, the densities of burrows
in the research squares were calculated, by dividing the number
of burrows inside the respective squares by the area covered by
the squares. Then, the ratio between the density predicted by the
classification and the density observed in the field was calculated,
to get an estimate of the accuracy of the density of the created
burrow maps.

5. Results

5.1. Landscape units

Eight landscape units were distinguished in the Balkhash
basin resulting from the landscape stratification using the layers
TC-Brightness, TC-Greenness and DEM-SD (Table 2 and Fig. 4). Four
units describe the floodplain deposits: steppe on inactive flood-
plain (bgd), steppe on inactive floodplain with salt flats (Bgd), active
floodplain with shrub dominated vegetation (bGd) and floodplain
with developing vegetation (BGd). The other four units describe the
dunes: dynamic dunes (BgD), stabilized dunes with inactive vege-
tation (bgD), stabilized dunes, with active vegetation on moist soil
(bGD) and stabilized dunes with active vegetation (BGD).

The steppe on inactive floodplain (bgd) is a unit where a
homogenous low vegetation cover formed on a very fine sandy-
silty soil (Fig. 5a). The steppe on inactive floodplain with salt flats
(Bgd) also has a low vegetation cover on mostly silt to clay-rich
soils. Abundant takirs have formed in small depressions in the
landscape (Fig. 5b). Unit bGd, the active floodplain with shrub dom-
inated vegetation, covers most of the current Ili delta and part of
the abandoned Ili river branch. In this unit vegetation cover is more
abundant and consists mostly of 2–3 m high shrubs (Fig. 5c). The
floodplain with developing vegetation (BGd) is not prominently
present in the study area. It consists of chlorophyll rich and active
vegetation such as reed grasses formed in small depressions close to

the Ili River. The dynamic dunes (BgD) are low dunes (<10 m)  with
a low cover of grasses (Fig. 5d). The stabilized dunes with inactive
vegetation (bgD) covers only a small area of the study area and is
typified by a low and inactive vegetation cover. The stabilized dunes
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Table  2
Landscape units in the research area.

Landscape unit [TC-Brightness (B/b)
TC-Greenness (G/g) DEM-SD (D/d)]

Description Area cover (%) on
the SPOT scenes

Field data Picture

bgd Steppe on inactive floodplain 3.4 Yes Fig. 5a
Bgd Steppe on inactive floodplain with salt flats 47.5 Yes Fig. 5b
bGd  Active floodplain with shrub dominated vegetation 22.5 Yes Fig. 5c
BGd  Floodplain with developing vegetation 1.5 No –
BgD  Dynamic dunes 11.8 Yes Fig. 5d
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bgD  Stabilized dunes, with inactive v
bGD Stabilized dunes, with active veg
BGD Stabilized dunes, with active veg

ith active vegetation on moist soil (bGD) is present in the south
nd close to the Ili River. These dunes are higher compared to the
ynamic dunes and have vegetation that consists of both grasses
nd low shrubs (Fig. 5e). The stabilized dunes with active vegeta-
ion (BGD) is comparable to the previous unit (bGD) but occurs in
he north where less water is available, which results in a higher
alue in TC-Brightness.

In general, TC-Brightness, a measure of overall reflectance in the
andsat bands, shows an increase from south to north, and is lowest

n areas with a high water content, such as in the active floodplain

ith shrub-dominated vegetation (bGd). TC-Greenness shows an
pposite pattern and decreases towards Lake Balkhash, while it is
ighest in the Ili River delta.

ig. 4. Landscape units identified in the Balkhash basin based on high and low values of T
escription of the units is given in Table 2.
tion 0.0 No –
n on moist soil 12.7 Yes Fig. 5e
n 0.6 No –

All the eight landscape units are present in the SPOT satellite
scenes (Table 2), although the stabilized dunes with inactive veg-
etation unit (bgD) only covers an area of about 4 km2. The steppe
unit on inactive floodplain with salt flats (Bgd) is most abundant
and represents 47.5% of the surface area in SPOT West and East.
Interestingly, the floodplain with developing vegetation unit (BGd)
also appears north of SPOT East while there is not an active river
present; this is presumably because of subsurface flow towards
Lake Balkhash through the abandoned river branch, which enables

more growth of vegetation.

In five out of the seven units located in the area covered by the
SPOT scenes, field work data are available (Table 2). Diameters of
each burrow were measured in the field (Fig. 6). Burrow diameters

C-Brightness (B/b), TC-Greenness (G/b) and local variation in topography (D/d). The
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Fig. 5. Photographs of the different landscape units. (a) Unit bgd, steppe on inactive floodplain. In the front a burrow is measured. The area is flat, formed by fluvial deposits
and  has little vegetation. (b) Unit Bgd, steppe on inactive floodplain with salt flats. In t
floodplain with shrub dominated vegetation. (d) Unit BgD, dynamic dunes (BgD), with an
on  moist soil. Here vegetation consists of grasses rather than shrubs.

Fig. 6. Burrow diameters per landscape unit (colours correspond with colours in
Fig.  4). The widths of the boxes are proportional to the sample size in each landscape
unit. The colours of the asterisks (*) indicate with which landscape unit there is a
significant difference in the mean (a = 0.05). The codes of the landscape units can be
found in Table 2.
he background a lake formed by the snow melt is displayed. (c) Unit bGd, active
 occupied burrow in the front. (e) Unit bGD, stabilized dunes with active vegetation

range from a mean of 21 m (minimum 4 m)  in the clay-rich soils in
the active floodplain (bGd) to a mean of 37 m (maximum 62 m)  in
the stabilized dunes in the southeast (bGD) (Fig. 6). Burrow diam-
eters smaller than 10 m often correspond to old and abandoned
burrows. The largest diameters are found in the dunes, where the
burrows are elongated and situated in line with the dunes.

The variance of burrow diameters is largest in unit bGd and dif-
fers significantly from the variances in the other units (F-test of the
equality of variances using the natural logarithm of the diameters,
at ˛ = 0.05). The high diameter-burrows in this unit (see outliers
in unit bGd, Fig. 6) are almost all found in two  squares, which are
located on the border with unit bGD. This explains the relatively
high variance in this unit. When these squares are removed from
the analysis, the variance of unit bGd is only significantly differ-
ent from the variance in unit BgD, but equal to the other units. The
variance in burrow diameters is lowest in the steppe on inactive
floodplain unit (bgd), which reflects the landscape homogeneity in
this unit.

The mean diameters of the burrow diameters per landscape unit
differ significantly from each other, except for bgd-bGd, Bgd-bGd
and BgD-bGD (Fig. 6), which was  tested pair-wise using t-tests with

Bonferroni adjustment, at  ̨ = 0.05, on the natural logarithm of the
diameters.

Burrows located in fluvial deposits are on average smaller than
burrows in aeolian deposits. This result is not surprising, as in
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Fig. 7. Maps showing examples of classification results in different landscape units. The results are located in (a) unit bgd; (b) unit Bgd; (c) unit bGd; (d) unit BgD and (e)
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GD.  The codes can be found in Table 2; the location of the landscape units in the a
POT  East; the BgD square displayed is located in SPOT West.

lay-rich fluvial soils burrows tend to be more compact and deep,
hereas in sandy aeolian soils burrows are larger, but less deep

Naumov and Lobachev, 1975).

.2. Unstratified classification

In this section we describe the results of the unstratified clas-
ification of burrows, which we evaluate per landscape unit. In
ig. 7 examples are given of classification results in the five land-
cape units where burrow reference data are available. These maps
how that burrow classification is successful across different land-
cape units, in both SPOT images, although with varying accuracies.
or example, in unit bgd (Fig. 7a), 22 of 23 burrows are cor-
ectly identified. In unit bGd (Fig. 7c) it can be seen that small
akirs are often misclassified as burrow. In the displayed squares
f the dunes (Fig. 7d and e), 22 out of 27 burrows are recog-
ized. Burrows located in the shadow side of a dune are often
ot recognized and especially in bGD there is an overestimation
f burrows.

For each landscape unit the producer’s, user’s and overall accu-
acies were calculated, as well as kappa coefficients of agreement
nd the accuracy of the predicted burrow density (Table 3). Accu-
acies and kappa coefficients are in general high but nonetheless
ary considerably between landscape units. Classification of bur-
ows works extremely well in the steppe on inactive floodplain
bgd), where producer’s and user’s accuracies reach 88% and 92%

espectively. Classification works least well in the active floodplain
ith shrub dominated vegetation (bGd), where the user’s accuracy

s only 48%. In most squares in this unit burrows are overesti-
ated, but there is a considerable variation in accuracy between the
n be found in Fig. 4. Of the squares displayed, bgd, Bgd, bGd and bGD are located in

squares. Classification in the dynamic dunes (BgD) works remark-
ably well: producer’s and user’s accuracies amount 84% and 77%.
In the stabilized dunes with active vegetation on moist soil (bGD)
classification accuracies are also quite high (producer’s and user’s
accuracy of 100 and 60% respectively) and indicate classification
of burrows is also possible in this more complex landscape unit. It
should however be noted that only few validation data were avail-
able in this unit (Table 1) and therefore the producer’s accuracy for
this unit is likely to be overestimated.

The ratio of predicted burrow density to observed burrow den-
sity shows how well burrow density can be predicted: values range
from 0.86 to 1.75. In areas with high TC-Greenness (G) burrows are
overestimated. In unit bGd the overestimation is largest. This is
partly due to the occurrence of a large number of takirs in certain
field squares, as takirs are easily misclassified as burrows. When
three squares with a large number of takirs are removed from the
density calculation for this unit, the ratio predicted to observed
decreases to 1.5. For the total area, i.e. including the data of all
landscape units, the ratio between predicted and observed burrow
density is 1.16.

The unstratified Random Forests created to classify the SPOT
scenes use a selection of the 67 independent spectral, shape and
neighbour variables included in the initial reference object sets.
Both the Random Forest algorithms used for the unstratified classi-
fication, i.e. one for the western and one for the eastern scene, used
mostly neighbour values (78% West and 53% East) such as Mean

difference to neighbours and Relative border to brighter neighbours.
Spectral and textural variables amounted 22% in the Western Ran-
dom Forest and 35% in the Eastern. Least selected were variables
indicating the shape of objects.
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Table 3
Classification accuracies of the unstratified (US) and stratified (S) classification per landscape unit. Landscape units BGd, bgD and BGD do not have squares for validation and
are  therefore excluded from this table.

Landscape unit Producer’s accuracy (%) User’s accuracy (%) Overall accuracy (%) Kappa coefficient
(*significant difference
between US and S at
˛  = 0.05)

Ratio predicted burrow
density: observed burrow
density

US S US S US S US S US S

bgd 88 88 92 100 91 95 0.81 0.89* 0.95 (U) 0.99 (U)
Bgd  77 75 81 81 85 87 0.69 0.70* 1.06 (O) 0.99 (U)
bGd  86 86 48 58 87 91 0.54 0.64* 1.75 (O) 2.04 (O)
BgD  84 93 77 87 86 91 0.72 0.80* 0.94 (U) 0.86 U)
bGD 100 – 60 – 86 – 0.66 – 1.58 (O) –
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than in the floodplain units. On the floodplain, areas with high TC-
Greenness (G) have lower burrow densities compared to areas with
low TC-Greenness, whereas in the dunes, the opposite is true.
Total  area 82 – 73 – 

.3. Stratified classification

For four landscape units, i.e. units bgd, Bgd, bGd and BgD, strati-
ed Random Forests were created, to evaluate whether this would

mprove classification accuracies (bgD was left out because too few
eld data were available). The kappa coefficients and their vari-
nces (Congalton et al., 1983; Foody, 2004) for the unstratified and
tratified classification were used to compare the performance of
he unstratified and stratified approach (two-sided test of kappa
oefficients, at  ̨ = 0.05).

Stratified classification results in significantly higher kappa
oefficients in all four landscapes units (Table 3). The improvement
ue to stratification is clearest in unit bgd, where four out of five
etrics improve and one remains the same when stratified classifi-

ation is used. For unit BgD the improvement is visible in four out of
ve metrics; only the density is slightly less well predicted. In bGd
owever, only three metrics improve when using stratified clas-
ification; the producer’s accuracy remains similar, while the ratio
redicted to observed density shows there is an increased overesti-
ation of burrows. This overestimation occurred in squares with a

arge number of takirs. When three squares with a large number
f takirs are removed from the calculation, the predicted accu-
acy improves to 1.35, i.e. then stratification does improve also the
redicted accuracy. In Bgd stratification improved the kappa coeffi-
ient slightly. The predicted density in this unit using the stratified
andom Forest is however almost completely accurate (0.99).

The stratified Random Forests each used a subset of variables
hat resulted in the lowest OOB-error. Between 3 and 27 of the
ndependent 67 variables were selected for the six stratified Ran-
om Forests (Table 5). Of the 67 variables, 32 variables were never
elected. These variables consisted of eighteen (56%) spectral vari-
bles, thirteen (40%) shape and one (3%) neighbour variable.

The majority of the variables selected in the Random Forests,
ike in the unstratified Random Forests, are neighbour variables;
ariables least selected are shape and size variables. Most selected
ariables are Mean difference to neighbour Red and Relative bor-
er to brighter objects NIR (Trimble, 2011); they were selected by
ve out of six stratified Random Forests. In total 25 variables were
elected by two or more Random Forests; in other words, there
as a considerable overlap in selected variables. No remarkable dif-

erences in selected variables, or in distribution between spectral,
eighbour and shape variables, were found that could be related
irectly to characteristics of the specific landscape unit.

The variables selected by the stratified Random Forests were
ompared with the selected variables in the unstratified Random
orests. For five out of six stratified Random Forests, fewer vari-

bles were selected compared to the unstratified Random Forests,
nly Bgd (West) selected two variables more compared to the
nstratified Western Random Forest. The variables selected by the
nstratified and stratified Random Forest resembled considerably,
 – 0.67 – 1.16 (O) –

for example, 26 out of 27 variables selected by the stratified Ran-
dom Forest bgd (East) were also selected by the unstratified Eastern
Random Forest and all 14 variables selected by stratified Random
Forest bGd (East) were also selected by the unstratified Eastern
Random Forest. In BgD (East) there was  a difference; here, the rel-
ative contribution of shape variables increased compared to the
unstratified Eastern Random Forest.

5.4. Burrow densities in the landscape units

Using the results from unstratified classification for units BGd,
bgD, bGD and BGD and the stratified classification for units bgd, Bgd,
bGd and BgD the final burrow maps (West and East) were created.
Mean burrow densities were calculated per landscape unit (Fig. 8),
based on the entire units for the smaller units (bgd, BGd, bgD and
BGD) and on a minimum area of 96 km2 for the larger units (Bgd,
bGd, BgD and bGD). The mean burrow densities per landscape unit
range from 2.9 burrows/ha in the active floodplain with shrub dom-
inated vegetation (bGd) to 3.9 burrows/ha in the steppe on inactive
floodplain unit (bgd). These burrow density results correspond to
the range of burrow density estimates collected by the Anti-Plague
stations which vary from 0.89 to 4.8 burrows/ha (Davis et al., 2008).
On average, burrow densities are lower in the four aeolian units
Fig. 8. Burrow density per landscape unit (colours match with the units on the map
in  Fig. 4), calculated based on the burrow maps.
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ig. 9. (a) The location of sector 10521. (b) Sector 10521 with its burrow densities 

At a smaller scale, burrow density is more variable, as demon-
trated by the variable numbers of field observations of burrows
etected in the research squares: the lowest density of burrows
as found in the vegetated floodplain and delta (bGd); the mini-
um  was 0 burrows/ha. A maximum density of 6.25 burrows/ha
as found in a research square located in the sparsely vegetated
oodplain (Bgd).

.5. Burrow maps for epidemiological modelling

An example of a density map  of a sector is shown in Fig. 9.
he densities are shown in squares of ∼1.8 km × 2 km (Fig. 9b). The
ean density in this sector is 3.7 burrows/ha and varies between

.1 and 4.4 burrows/ha. The Anti-Plague station estimated the den-
ity in this sector at 3.0 burrows/ha. Individual mapped burrows are
hown in Fig. 9c.

The producer’s accuracy was evaluated for occupied and empty
urrows separately. Producer’s accuracy was found to be 85% for
ccupied burrows and 74% for empty burrows. In other words,
ccupied burrows are more easily recognized than empty ones.

. Discussion

.1. Accuracy of the burrow maps

Remote sensing is increasingly used in epidemiological research
n infectious and vector-borne diseases (Hay, 1997; Atkinson and
raham, 2006; Beck et al., 2000; Neerinckx et al., 2008). Commonly,

emotely sensed derived variables are used to map  habitat suitable
or vectors (Tran et al., 2008; Kalluri et al., 2007; Hay and Lennon,
999). In this study, remote sensing was used not only to map  habi-
at suitable for hosts, but to map  the exact distribution of the host’s
esidences over various landscape types.

The great gerbil burrow maps were created by using a Ran-
om Forest classification algorithm on burrow and non-burrow
rea objects with associated variables created from high-resolution

atellite imagery. This resulted in burrow maps with median pro-
ucer’s and user’s accuracies of 86% (77–100%) and 81% (58–100%).
he classification accuracies found in this study are, compared to
he pilot study carried out by Addink et al. (2010),  higher and
ted for 25 cells. (c) Zoom of sector 10521. Individual mapped burrows are shown.

more balanced. Producer’s and user’s accuracies for the present
study, calculated for the study area of Addink et al., are 90% and
95% respectively. Producer’s and user’s accuracies found by Addink
et al. are 85% and 62%, while their training set had more train-
ing data available. The higher classification accuracy found in this
study is likely caused by two  factors. Firstly, the Random Forest
classifier is a more advanced and robust classification algorithm
(Rodriguez-Galiano et al., 2012b; Duro et al., 2012) than the deci-
sion tree classifier which was used by Addink et al. (2010).  Secondly,
in this study, the non-burrow area selection was unbiased, which
was possible because of the burrow field sampling in squares,
whereas Addink et al. selected non-burrow areas in the field which
is more prone to bias. The classification accuracies found in the cur-
rent study are comparable to other object-based high-resolution
studies that map  relatively small landscape features in natural envi-
ronments, such as the mapping of downed logs (Blanchard et al.,
2011).

6.2. Validity of the burrow maps

The burrow maps are based on SPOT-5 images acquired in
October 2010. The temporal validity of the maps is currently
unknown, because detailed information on the lifetime and
renewal rate of burrows is lacking. The lifetime of a burrow depends
on various factors (Naumov and Lobachev, 1975). It is likely influ-
enced by the occupancy time and on the time it takes to become
re-occupied in case the burrow is abandoned. According to Naumov
and Lobachev (1975),  the lifetime of burrows can reach hundreds of
years, but this may  well depend on the type of soil in which they are
constructed. As mentioned previously, burrows in more clay-rich
material tend to be more solid and deep, whereas the burrows in
sandy soil such as in the dunes are more shallow and elongated. As
observed in the field, the time of disappearance of burrows, i.e. the
time that elapses from the moment a burrow is abandoned until
the burrow can be neither recognized nor re-colonized, seems to
be affected by landscape type, although no detailed field data are

yet available. As a result of the lower cohesion of the soil, the time
of disappearance is likely to be shorter in the sandy soils in the
dunes compared to the clay-rich soils in the floodplain. For the
burrows maps created, it means that the period of validity for a
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ap  will be longer for the floodplain areas (landscape unit bgd,
gd and bGd) than for areas with mostly sandy material (BgD, bGD
nd BGD). The question of the lifetime of burrows could be investi-
ated by mapping the burrows using the method presented in this
aper in subsequent years, and apply change-detection to analyse
he differences and dynamics.

.3. Classification per landscape unit versus unstratified
lassification

In advance of classification per landscape unit, landscape units
ere created based on TC-Brightness and TC-Greenness of Landsat

cenes in combination with the SRTM-DEM derived local topo-
raphic variability (DEM-SD). This resulted in a map  with a clear and
ealistic spatial pattern, corresponding with field observations. The
se of Landsat imagery with its spatial resolution of 28.5 m offered
he opportunity to map  the landscape over large areas. Although
he spatial resolution of the SRTM-DEM is lower than the resolu-
ion of Landsat, the SRTM-DEM still adds useful information for the
andscape mapping. Using high resolution spatial imagery, such
s SPOT-5 XS, for landscape mapping would not be as successful
ecause the small pixel size would result in a too high variance
o be able to map  landscape units accurately. The combination of
igh and medium resolution imagery for burrow mapping across

andscapes thus offers an effective method.
The classification per landscape unit resulted in considerably

igher classification accuracies in three landscape units and in
lightly higher accuracies in one landscape unit. Generally, strat-
fication in combination with a Random Forest classifier might
mprove classification results because (1) the variable selection is
tted to the specific area, (2) the object training set used to train
he Random Forest is selected from the specific area and hence the
hreshold values used in the tree to separate burrows from non-
urrow areas are more likely to fit the objects in the specific area.

In the case of the Balkhash area, burrow diameters showed that
ignificant differences per landscape unit exist in burrow size. Non-
urrow areas also obviously differ per landscape unit, which was
hown by the differences in values in TC-Brightness, TC-Greenness
nd SRTM DEM-SD.

In the three landscape units where stratification improved
esults considerably, fewer variables were selected compared to
he unstratified classification. Also, the range for an often selected
ariable such as Mean difference to neighbours NIR is smaller
or stratified training sets than for the unstratified training sets
Fig. 10), which might be an additional explanation for the suc-
ess of the stratification. In unit Bgd stratification did not improve
esults much, but it did not decrease classification accuracies either.

 possible explanation for this is that the variables associated with
he burrow and non-burrow areas in the Bgd training set cover a
nearly) similarly large range as the unstratified training set (see for
xample Fig. 10),  which means that stratification has less influence.

The underlying reason for classification results only improving
lightly in Bgd is thus that the Bgd unit itself is more heteroge-
eous than the other units. This could be improved by splitting
his area into two sub-units, for example based on TC-Brightness.
owever, stratified classification might perform less well if there

s a lack of field data per landscape unit. On the other hand, when
tratification creates only few landscape units, the units may  be too
eterogeneous, and consequently the training set will be less rep-
esentative. Generally, for stratification it is therefore important to
nd a balance between the homogeneity of a landscape unit and
he amount of field data for classification per unit. To achieve this,

andscape stratification can be carried out in advance of the cre-
tion of a sampling scheme. After this, a thorough look at the ranges
f variables might give an indication of whether stratification will
mprove results.
Fig. 10. Boxplots of Mean difference to neighbours NIR in each landscape unit for
burrow objects. The range differs per landscape unit.

Because burrows vary in appearance and heterogeneity over
different landscapes, the use of multiple scale parameters might
further improve classification accuracy, because across landscape
units, slightly different heterogeneity thresholds might be opti-
mal  (Anders et al., 2011). This could be of use for unit bGd, where
both unstratified and stratified classification resulted in relatively
low classification accuracy. In this unit, objects are often large
compared to the burrow size, which means that training of the Ran-
dom Forest, but also the classification itself performs less well. To
improve the accuracies in this unit, the unit could be split into four
subunits based on TC-Brightness and TC-Greenness, then separate
scale parameters could be used in combination with more intensive
ground truth collection.

6.4. Burrow density in the landscape units

The ratio of predicted and observed densities for the land-
scape units has shown that density can be predicted moderately
to very accurately. In units with a high TC-Greenness (bGd and
bGD) burrows are systematically overestimated, which can likely
be attributed to two  reasons. Firstly, the vegetation cover in units
with a high TC-Greenness is often relatively heterogeneous, which
means that areas with a lower vegetation cover are often incorrectly
classified as burrow, because their difference to their neighbours
resembles the difference between burrows and their neighbours.
Secondly, in the areas with higher TC-Greenness vegetation often
consists of shrubs, which are not always removed by the great
gerbils from the surface of burrows. These burrows therefore do
not have such a distinct signal. In areas with low TC-Greenness
(bgd, Bgd and BgD) vegetation cover is much more homoge-
neous (compare for example Fig. 7b with c). Additionally, in some
areas, especially in units bgd and Bgd, vegetation also consists of
lichen, but is removed from the surface of burrows and therefore
enhances the contrast between burrows and their surroundings.
The difference in accuracy between units bgd and Bgd is related

to the number of takirs, which leads to a lower accuracy. In unit
BgD, the vegetation on the dunes is not yet well developed and
easily removed by the gerbils, which leads to very well recognizable
burrows.
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Mean burrow densities vary between landscape units. The dif-
erences are probably even higher in reality, because there is very
ikely an overestimation of burrows in the units with high TC-
reenness values. Highest burrow density is found in the steppe
n inactive floodplain unit (bgd). A possible explanation for this
ould be the suitable structure of the soil. The lower burrow den-
ity in the Bgd floodplain unit is likely due to the higher amount
f salt flats, where burrows can hardly be constructed because
f the crusted soil. Lower burrow densities in units bGd and BGd
ight be explained by competition with other rodents if the higher

C-Greenness implies a greater variety of food types and hence
pportunities for other species. Interestingly, in the dunes, burrow
ensities increase with higher TC-Greenness. It might be that in the
unes, the limiting factor is food availability.

The varying burrow densities may  imply that also plague
ynamics are different across different landscape types, although

t is not clear yet how burrow density exactly influences plague
ynamics. This is not clear yet, because the question remains
hether and how great gerbil movements are related to burrow
ensity, i.e. whether great gerbils move “set” distances or will move
o the closest neighbouring burrow, which is of importance for
he spread and persistence of plague. Also, burrow density is not
ecessarily linearly related with great gerbil abundance, since also
reat gerbil abundance varies per burrow and may  also differ per
andscape unit.

At the scale of the 200 m research squares, burrow density varies
ore than between the landscape units. This raises the question at
hat scale burrow density will vary most and whether this can be

elated to specific landscape-ecological factors. This topic is part of
ngoing research.

.5. Using the created burrow maps for monitoring and the study
f plague

The new classification method proposed here is a suitable and
elpful tool for the monitoring of the main plague host in the
alkhash area, for example by detecting whether burrows are
resent in a certain area and where there has been an expansion
r reduction of the great gerbils’ territory. Also, the burrow den-
ity maps could be combined with field data on burrow occupancy
nd flea burden, which have been shown to be key elements in
redicting outbreaks (Reijniers et al., 2012). This would allow bet-
er prediction of where and when outbreaks of plague will occur
n great gerbils than currently is possible, certainly if more insight
as been obtained in spatial variability of occupancy.

Determining the burrow occupancy from space is an ambitious
ext objective. The present study found that occupied burrows
re easier recognized in images than empty ones. This matches
ntuitive expectation, since empty burrows will usually have more
egetation growing on the surface of the burrows. Future studies
sing the current burrow maps to map  occupancy, should account
or this effect.

The burrow maps can also be used to indicate the risk of trans-
ission of plague to humans, since this risk increases when the

nimals’ territory encroaches towns and villages. Our maps show
or example, that the burrows of the great gerbil are located within

 km of the main town (Bakanas). In 2010, plague was isolated
rom great gerbils in an area connected to and less than 5 km away
rom the Bakanas area, which confirms the necessity for monitoring
lague in this area.
. Conclusions

This study presents a new method using object-based image
nalysis and Random Forests to map  burrows across varying
 Observation and Geoinformation 23 (2013) 81–94 93

landscape types. Classification accuracies are high with producer’s
and user’s accuracies ranging from 88% and 100% in the steppe on
inactive floodplain to 86% and 58% in the active floodplain with
shrub dominated vegetation. The predicted burrow density for
the two images also shows our method performs well: the ratio
between predicted and observed burrow density for the whole area
is 1.16. Our results are unique: as far as we  know, a map of popula-
tions of hosts has never been made on such a detailed and extensive
spatial scale. The burrow maps are valuable for the monitoring of
plague, because they provide a complete overview of the spatial dis-
tribution of burrows and allow for the detection of burrows close to
human settlements. Moreover, the maps can contribute to epidemi-
ological models and landscape-ecological analysis. Epidemiological
modelling could provide more information on whether high den-
sity areas provide a higher risk, for example for plague persistence
or transmission to humans; the burrow maps are then very useful to
identify these high density areas. Our classification method is also
suitable for mapping burrows of other rodents, such as marmots
and prairie dogs, which are both hosts of plague in other foci.

The object-based stratification method using both high- and
medium resolution imagery resulted in improved classification
accuracies, especially in the more homogeneous areas. Such a strat-
ified method could well be extrapolated to other studies in complex
landscapes.
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