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Let A be an elliptic operator without time dependence, let 7 > 0 be fixed, 
and consider the parabolic equation with time delay 

u’(t) = Au(t) +f(t, u(t - 7)). 

To render (1) well posed, one must specify boundary conditions and the initial 
value of u for --7 < t < 0; such matters are considered in [8-121. The concern 
here is not with questions of existence, uniqueness, and continuous dependence, 
but rather with the detectability of the term f in (1) for large t. That is, we ask 
under what restrictions on A and f will it be impossible to distinguish between 
bounded solutions of (1) and bounded solutions of 

w’(t) = Ao(t) 

for sufficiently large time. Specifically, we seek conditions on f which will 
guarantee that for any bounded solution u(t) of (1) there exists for large time a 
solution w(t) of (2) such that 

k? II u(t) - w(t)11 = 0 

for some suitable space-variable norm I/ * 11 , and conversely. Such questions for 
ordinary differential equations have been considered in [l, 31 among others; 
for systems of ordinary differential equations with delays see the recent paper 
of Cooke [2] and references therein. 

Instead of dealing directly with (1) and (2), where A is a member of a certain 
class of elliptic differential operators, we prefer to deal with an abstract problem 
on a Banach space; we shall also consider a more general time delay than that 
discussed above. Let then % be a Banach space with norm 11 . I/ and let 7 > 0; 
with no loss of generality we may conveniently consider the time scale so chosen 
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ASYMPTOTIC EQUIVALENCE 39 

that 7 < 1. Let @ be the Banach space of continuous maps from the interval 
[ -7, 0] into 3 with the norm of $ E V given by 

If t, 3 0 is a real number and x a continuous function from [t,, - 7, co) into 
.Z, then for each t E [t, , co) we define the element xt E % by 

q(s) = s(t + s) (-T,<s,(o). 

Let A: 2” 3 g(A) ---f X be closed with dense domain. We shall assume that A 
generates an analytic semigroup T,(t) (t > 0). This implies that, for all x E X, 
TA(t) x is differentiable for t > 0 and 

(d/dt) TA(t) x = AT,(t) s, 

and that there is a constant K such that [5-71 

II T&)ll < K /I AT,(t)lI < K/t. 

With R, = {t 1 t > 0}, let f: R, x V+ S” and b: R, + X. Then our 
problem can be formulated as: under what conditions on f and b is the equation 

u’(t) = Au(t) + b(t) + f (6 Ut) (3) 

asymptotically equivalent to the equation 

v’(t) = Au(t) + b(t), (4) 

in the sense that for any bounded solution of (3) there exists a bounded solution 
of (4) such that 

!+;I1 u(t) - $)li = 0, 

and conversely. Here by a solution of (3) on (0, T] we mean a function 
U: [0, T] + % such that u is strongly continuous on [0, T], strongly continuously 
differentiable on (0, T], u(t) Ed for t E (0, t], and u(t) satisfies (3). A similar 
definition applies to (4). 

THE ABSTRACT THEOREM 

The following technical lemma is well known [5, 71. 

LEMMA. Let A be a closed operator in 3. Let b < CO, let c(t) be continuous on 
[a, b) to X with c(t) E 9(A) and AC(t) continuous on [a, 6). If the improper integrals 

f 

b 

s 

b 

c(t) 4 AC(t) dt 
” a 

409/62/1-4 



40 L. E. BOBISUD 

exist, then si c(t) dt E 9(A) and 

A j-” c(t) dt = 1” AC(t) dt. 
a a 

The following, our basic result on the asymptotic equivalence of (3) and (4) 
is an extension of a classical result for ordinary differential equations [l, 31. 
Concrete applications to parabolic equations will be given in the last section of 
the paper. 

THEOREM 1. Let A generate the analytic semigroup T,(t), and let P: X -+ X 
be a bounded projection with range in the null space of A and which commutes with 
T,(t) for t > 0 (P = 0 is allowed). Let b(t) be uniformly Holder continuous, and 
let f (t, +) satisfy the following conditions: 

(a) f is continuous on R, x 9. 

(b) lb,, II f (4 0)ll = 0 and jr llf(t, 0)ll dt < 03. 

(c) For each N > 0 there exists y(s, IV) E y(s) such that fw Ij dl 11 < N, 

II A II < N we have llf (s, #Y> - f(~, hAlI < ~(4 II A - A Ilo , where 

s 
m fliI y(t) = 0 and y(t) dt < 00. 

0 

(4 Ilf (s, $1 -f (6 $>I1 < p(t, II 4 II,) I s - t lB, where 0 < P < 1, t + 1 > 
s > t > 0, and p is increasing in the second argument and continuous in thefirst. 
Then there is a one-to-one correspondence between bounded solutions of (3) and 
bounded solutions of (4). Moreover, if lim,,, II TA(t) (1 - P) x I/ = 0 for each 
Jixed x E X and if u(t) is a bounded solution of (3) and v(t) the corresponding 
solution of (4), then 

t+: /I u(t) - v(t)11 = 0. 

Proof. Let 

ul,=max ( 1, sup (V + 7) ln(v + 7) - v In v - 7 In 7 
O<v<l V” 

11 . 

straightforward application of 1’Hopital’s rule shows that Y, < co for 0 < 01 < 1. 
Let y(t): [tz - 7, co) -+X for some t, 3 7 satisfy (i) yt E V for t > t, , 

(ii) S~PM, II yt II0 = ~uwt,-~ II y(t)ll d P, 
(iii) suht>tz.~s-t~<l II ys - Yt Iloll s - t 111 = 44 -c ~0 for SOme a9 

O<ol<l. 

Condition (iii) states that y satisfies a sort of local Holder continuity of exponent 
01 with Holder coefficient M. We have assumed that there is a K (3 1) such that 
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ji TA(t)ii < K for t 3 0. Choose t, 3 t, so large that the following estimates are 
valid for y(t) :I: y(t, 3~): 

Let yI be the set of all functions X: [tl - 7, co) + .d’ such that 

(i) X, E ?? for t > f, , 

(ii) ; .2//l z- Supt>i’l (1 Xi (10 = SUpt;fl-T /I x(t)11 < 3p, 

(iii) sup ,sbf>t,,,y-t<l /I x, - xt M s - t ia < 2M. 
Then Afti is a closed subset of the Banach space of continuous functions from 
[tl - T, co) to .P’ with norm 11’ .iil To see this, it is necessary only to show that 
the uniform limit of functions satisfying a local Holder condition with a fixed 
bound on the Holder coefficient is also locally Holder continuous with the same 
bound on the Holder coefficient. Let then jij X, - x 18: --, 0, and let E > 0, S, and 
t (0 4: ! s - t / < 1) be given. Choose n so large that /I x,,(t) - x(t)ii < E ~ s - t Ia, 
I! X,(S) - x(s)11 < E I s - t Ia. Then 

i/ 4s) - @>ii G Ii $4 - hSsY ~__ 
1 s - t I* Is- tl” 

c> ’ 2~ + 2M, 

where E > 0 is arbitrary. It follows that 

whence 

and the closedness of YU follows. 
For x E cYa , we now define the operators 5 and 9’ by 

v-4 (t) = y(t) + (Y4 (t) 

= y(t) + Jtt T,(t - s) (1 - P)f(s, x,) ds - j-m Pf(s, x,) ds 
1 t 

= y(t) - I; JWs, 4 ds (tl - 7 < t < t1). 
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Our hypotheses guarantee the existence of the integrals. It follows easily that 
TX is continuous for t > t, - r and that for t > tl 

II ~4t)ll G II rP)ll + K jt W) II X8 II0 + Ilfh W) A 
h 

<p + 3P@ + P <3p; 

the final estimate is easily seen to be valid also for t, 3 t > t, - 7. Thus 

Ill ~xlll < 3P. 
We must also show that TX is locally Hijlder continuous with exponent 01 and 

coefficient 2M. Suppose first that t + 1 > s > t > t, + 7; then 

Iv-4s - (TX), II0 

= -“7yp<o II F’x(s + 0) - Fx(t + 8)ll . 

IIS 
s+B 

GlIYs-YYtllo + sup Pf(u, 4 da ’ 
--TSeSO t+e !I 

II! 

t+e 
+ sup [TA(s + 0 - 0) - T& + 0 - 4 (1 - p)f(u, xc,) da 

-7teto tl II 

For J1 we have, of course, J1 < M I s - t Ia. For J2 , 

J2 < I s - t I ;;[ IIfbT %)ll / 

G I s - t I [Ill x Ill sup A4 + 0”s: II”% WI 
ox, / 

< +M I s - t I < $M I s - t la 
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since K, p, Ya >, 1. For Js we have 

< I s - t I F III x I// ;;[ Ad + K ;;[ lIf(u, WI 

< +M I s - t Ia. 

J, can be estimated as follows. 

14 G -;vo /I Jtt+‘--I [ TA s ( + 0 - u) - TA(t + 0 - u)] (1 - P)f(u, x,) da /I 

+ sup 
-7SOSO 

I/ s,;-, IT& + 0 - 4 - TA@ + 0 - 41 (1 - Of(u, x,> da 11 

= I+ I I 2. 

Since A generates an analytic semigroup, we have 11 AT,(t)11 < K/t and 
(d/dt) TA(t) x = AT,(t) x; it follows that for s > t > 0 

IV”&) - TN1 x II = !I its AT,(o)sdolI~~ls--tj~lrl~. 

For I, we thus get the estimate 

I1 :< sup 
I‘ 

‘+‘-‘F I s - t 1 llf(a, x,)11 da 
-4eso tl 

< I s - t I t [3p j-, y(o) da + s, llf(u, O)!! da] G AM I s - t I . 

For I, we have 

t+e 
f I 

S+8--0 
I, < sup II ATAGN 4 IIf(u, 4 da 

-T&SO t+e--7 t+bo 

< K sup (3py(4 + IIji, 0)lI) {(s - t -I- 7) 14s - t + 7) 
ax-s 

- (s - t) ln(s - t) - 7 In T} 

< KYX, I s - t Ia (3~ sup y(o) + sup IIf(u, O)!l> < (M/12) I s - t la. 
o>Q-r 0$-T 
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We conclude that, for t + 1 > s > t > f, + 7, 

By similar arguments, we can dispose of the easier cases where t + 1 > s > 
t > t, - 7 but where s > t > t, + 7 does not hold, to conclude that 3-x 
satisfies the Holder condition with coefficient 2M if x does. It follows that Y 
maps YO into itself. 

Note. We have made no use in the above argument of the assumption that x 
itself is Holder-continuous. Thus 7 actually maps functions satisfying (i), (ii) 
into Y= . 

It is easily seen that 7 is contracting on Yx . Indeed, let x, f E :VE; then for 

t 2 t, , 

w-4 (4 - v-4 Wll G K jt: lif( s, 4 - f(s, Qll ds + j- llf(~t 4 -fb Gil k t 

For t, - T < t < t, , 

ll(W (4 - (W Q>ll < $ IIf(SY 4 -m 4ll ds 

< jm Y(S) II xx - 4, /lo ds G l/l x - 2 Ill 1; ~(4 ds 
t1 

= (O/K) (/I x - 3 I// < 0 I// x - f /I/ . 

Thus I// 9-x - 9-Z /I\ < 0 111 x - 2 II/ . 
Now let y be a bounded solution of (4) defined for t 3 t, . Then for t > tr 

y(t) = T,dt - td y(td + j t TA(t - 4 4s) ds 
t1 

is differentiable and 

y’(t) = 4T,(t - tl) y(tl) + b(t) + j’ AT,(t - s) b(s) ds 
t1 
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173. Let t 3 t, A- T and let the Holder condition for b have the form 
iI b(t) - b(s)// < M t - s 1”. Then 

‘1 y’(t)li :< K (1 y(t# + (I b@)(j $ .r,: & /I 6(s) - b(f)l! ds 
T 

q iZT,(t - s) b(t) ds 11 
‘I 

< F // y(tl)l\ $ (2 + K) il b(t)11 + Sf/IK .i,: (t - S)v-l cis, 

since 

- 1 t ilT,(t - s) 6(t) ds = T.4(0) b(t) - TA(t -- t,) b(t). 
t1 

Thus ‘1 y’(t)l~ is bounded uniformly on compact subsets of [tl i T, CO). From 

it follows that y is locally Holder continuous for t > t, + 7 for any exponent CY, 
O<a,<l. 

Define x as the fixed point of 7; then x E Sp, . We show now that x EB(A) 
for t 3 t, . Since y E %,A) and the range of P is in the null space of A, it is 
enough to show that 

1 ’ T.4(t - s) (1 - P)f(s, x,) ds E 9(A), 
I +I 

and by the lemma it suffices to show that the improper integral 

i 
’ AT,(t - s) (1 - P)f(s, 4 ds 

fl 

converges. Since the only difficulty occurs at s = t, it is enough to show that 

L(c) = LT iZT,(t - s) (1 - P)f(s, x,J ds 

converges as E --f OC. To that end we write 

L(E) 1 t-f =2T,(t - s) (1 - P) [f(s, x,J - .f(s> +)I ds -t--i 

-t 1 t--E -4TT,(t - s) (1 - P) [f(S, xt) --- .f(t, r,)] ds 
*t-7 

t 1 t-e AT,@ - s) (1 - P)f(t, A+) ds L,(c) A L,(e) 4 z&(E) 
‘t-7 
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for arbitrary E > 0. For L, we have 

the right-hand side converges as E + 0+ because of the Holder continuity of x. 
Similarly 

which also converges as E + O+. Finally, 

L&) = - /t~-$T,(t - s) (1 - p)f(t, xt)> ds 

= TA(T) (1 - P)f(t, XJ - TA(E) (1 - P)f(t, Xt), 

which certainly converges as E -+ 0. We have thus shown that 9-x E 9(A) and 
that 

(AF2) (t) = Ay(q + jtI AT,@ - 4 (1 - P)f(s, 4 ds 

for t > t, . 
We show now that x is differentiable and satisfies the differential equation (3) 

for t > t, . It suffices to show that 9’~ is differentiable for t > t, . Consider 
first 

which converges to Pf(t, xt) as h -+ 0. Also, 

1 
5 

I[:‘” T,& + h - s) (1 - P)f(s, x,) ds - j-1 TA(r - 4 (1 - P)f(s, 4 ds) 

1 
1, 

t+h 
=- 

h t 
T,-& + h - 4 (1 - P)f(s, x,) ds 

+ j-1 [T.& + h - 4 - T,& - 41 (1 - Of@, 4 dsl. 
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For the second of these integrals we have 

1 t J-J [T,4(t + h - s) - T,4(1 - 41 (1 -- P)f(s, .?J A 
t1 

= + [T,(h) - I] jt T,dt - s) (1 -- P)f(s, 4 ds 
fl 

+ A 
I 

t TA(t - s) (1 - P)f(,, x,) ds 
f 1 

= 
I 
t: AT,@ - s) (1 - P)f(s, x,) ds, 

as shown above. We show now that the first integral converges to 

(1 - P)f(t, xt) = $ lt+* (1 - P)f(t, xt) ds. 

To prove this, we show that the difference, which can be written as 

1 
1 

t+h 

h., 
TA(~ + h - 4 (1 - P> MS, 4 - fb, 41 ds 

+ $ Jy+h TAG + h - 4 (1 - f’) Lfb, xt) - .fk 41 ds 

+ $ s,I-” [T,& + h - s) - I] (1 - P)f(t, xt) ds 

-~K,+&+K,, 

converges to zero as h -+ 0. For the norm of Kr , we have the estimate 

;/ K, /! < + Jtt+h 
2MK eh 

y(s) I’ x, - xt II,, ds < h j- y(s) (s - t)” ds, 
t 

which tends to zero as h + 0. Similarly, for K, we have the bound 

II K, II < ; s,‘+” ~(4 3~) I s - t I8 ds, 

which again tends to zero with h. Finally, with the change of variable 
z = t + h - s, KS can be written as 

I h 
‘7; 1 [TA@) - 11(1 - f’J.0~ 4 dz, 0 

which is well-known to converge to [T,JO) - I] (1 - P)f(t, x1) = 0. 
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Putting the results of these computations together, we have shown that 
x = y + Yx is differentiable and that 

for t > t, , as required. 
To show that the map y -+ x defined above is one-to-one and onto, let x(t) be 

a bounded solution of (3) and define y by y = x - 9’~. Using the above analysis 
it is easy to show that y is a bounded solution of (4). 

Suppose now that TA(t) (1 - P) x- 0 as t -+ co for any x ES?“. We must 
show that 

s t TA(t - s) (1 - P)f(s, x,J ds -+ 0 as t+ co. 
h 

For any T > t, we have 

j-r TA(t - s) (I - P)f(s, x,) ds = T& - T) (1 - P) [I TA(T - s) f(s, %) ds, 

which converges to zero as t -+ co; we have here used the commutativity of TA 
and P. Finally, 

/is,” T.& - 4 (1 - P)f(s, x,) ds /I < K/t llfh x,)ll ds 
T 

< K i : {y(s) l/i x I!! + llf(s, 0)/l> ds, 

which can be made arbitrarily small by choosing T sufficiently large. This 
completes the proof of the theorem. 

Remarks. The hypotheses of the theorem become simpler if f(t, 4) can be 
factored as g(t) h(4). Three sorts of factoring are possible: g scalar-valued and 
h: V + X; g: [0, co) -+ X and h scalar-valued; or if % is a Banach algebra, both 
g and h taking values in 3”. In any of these cases the following hypotheses imply 
(a)-(d) of Theorem 1: 

(a) g, h, are continuous, 

(b) g(t) -+ 0 as t + co and Jr I g(t)1 dt < co, 

(c) for any N > 0 and 4, , +a E V satisfying 11 +i Ij ,( N, // & i/ < N, we 
have 
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(d) for 1 s - t / < 1 we have 1 g(s) - g(t)1 < p(t) ~ s - t 8 for p defined 
and continuous on [0, a) and 0 < fi < 1. 
Here 1 . 1 denotes either // . // or 1 , as appropriate. Only (d) of the theorem 
perhaps requires demonstration; we have 

‘f’(h a, .- f‘(tt +)I~ < I d.9 - dt)l [I &#J) -~ WI - I w9ll 
,< p(t) [const. // 4 $ + 1 h(O)I] 1 s -- t 3. 

Also, a sum of terms each a product satisfying (a)-(d) above satisfies the 
hypotheses of Theorem 1. 

We also observe that the last hypothesis of Theorem I is satisfied if ,1 has a 
bounded inverse. Indeed, in this case we have 

i T.*(t) (I - P) x 11 = ‘/ TA(t) .3 1 = :/ T,(t) A4A-‘S : 

< 11 AT,(t)11 /j A-lx I! < (K/t) ! 4 -l 1 ) 

using the fact that A and P commute with TA(t). 

APPLICATIONS 

Here we shall give some applications of Theorem I, without striving for 
maximum generality. 

I. Let Q be a bounded domain of W with smooth boundary, let X be the 
Hilbert space Z2(sZ), and take P = 0. Let for .r: E Q the linear differential 
operator B(.z, D) be defined by 

where c ;:? 0; we suppose that B is formally self-adjoint, uniformly strongly 
elliptic, and has smooth coefficients. Define the operator =1 by 

=lu := B(x, D) u 

for u E k(A) = H2(Q) n H,‘(Q) ( t s an ar notation). Then --/I is a self-adjoint d d 
and nonnegative operator, and so generates an analytic semigroup T,(t) [6]. 
Moreover, by Theorem 1 of [4, Chap. 61, 

as t+co. 
The condition u E H,,i(Q) is a generalized form of the boundary condition 
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u Ian = 0; cf. [5]. Since we allow nonhomogeneous equations, there is no loss of 
generality in assuming homogeneous boundary conditions. 

Let b(t, X) be in Zz(Q) for each t 3 0 and be uniformly Holder continuous 
in t. Letf(t, X, 4) E Z2(Q) f or each t 2 0 and 4 E V, and letf satisfy hypotheses 
(a)-(d) of Theorem 1. We conclude the following. For every (generalized) 
solution of 

which has bounded Z2(G) norm there exists for all sufficiently large t a 
(generalized) solution u(t, x) of 

such that 11 u - v llz2cQ) -+ 0 as t -+ co, and vice versa. 

2. The projection P plays a nontrivial role when A is an elliptic partial 
differential operator without constant term and 3 contains constant functions; 
for example, the heat equation on a bounded region 52 in [w” with boundary 
conditions au/& las, = 0, where a/& d enotes the derivative along the normal 
to the boundary of a. Here we give a simpler example of a nontrivial P: the 
Cauchy problem for the one-dimensional heat equation. 

Let X1 be the set of functions h defined and continuous on (-CO, co) and 
satisfying lim~,~,, h(x) = 0. Let C d enote the constant functions on (-03, a), 
and let % = %i + C with the sup norm. Then 55 is a Banach space. Let 
A = a2/ax2 on 9(A) = {h E 9”: h” ES}. Let P denote projection onto C, the 
null space of A. It is well known that A generates the analytic semigroup T,,, 
given by 

[TA(t) h] (x) = &F 1: e-(r-s)2/(4nt)h(s) ds. 

An elementary integration shows that T,(t) 1 = 1, hence h E C implies that 
TA(t) h E C, i.e., P commutes with TA . Let now h be in the range of I - P, 
that is, h •3~ . Let E > 0 be given, and choose M so large that s 3 M 
or s < -M implies I h(s)1 < l /4. Then 

I &die- (z-s)‘/(4nt)h(s) ds 1 , ( & 11,” e-(z-s)‘/(4nt)h(s) ds 1 < $ . 
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It follows that for all t > 0 

51 

which can be made less than E by choosing t sufficiently large. We have thus 
shown that 11 TA(t) (1 - P)g I/ + 0 as t + co for any g E X. Theorem 1 can 
now be applied for any suitable f and b. 
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