Asymptotic Equivalence of Abstract Parabolic Equations with Delays

L. E. Bobisud
Department of Mathematics, University of Idaho, Moscow, Idaho 83843

Submitted by K. L. Cooke

Let A be an elliptic operator without time dependence, let $\tau>0$ be fixed, and consider the parabolic equation with time delay

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+f(t, u(t-\tau)) \tag{1}
\end{equation*}
$$

To render (1) well posed, one must specify boundary conditions and the initial value of u for $-\tau \leqslant t \leqslant 0$; such matters are considered in [8-12]. The concern here is not with questions of existence, uniqueness, and continuous dependence, but rather with the detectability of the term f in (1) for large t. That is, we ask under what restrictions on A and f will it be impossible to distinguish between bounded solutions of (1) and bounded solutions of

$$
\begin{equation*}
v^{\prime}(t)=A v(t) \tag{2}
\end{equation*}
$$

for sufficiently large time. Specifically, we seek conditions on f which will guarantee that for any bounded solution $u(t)$ of (1) there exists for large time a solution $v(t)$ of (2) such that

$$
\lim _{t \rightarrow \infty}\|u(t)-v(t)\|=0
$$

for some suitable space-variable norm $\|\cdot\|$, and conversely. Such questions for ordinary differential equations have been considered in $[1,3]$ among others; for systems of ordinary differential equations with delays see the recent paper of Cooke [2] and references therein.

Instead of dealing directly with (1) and (2), where A is a member of a certain class of elliptic differential operators, we prefer to deal with an abstract problem on a Banach space; we shall also consider a more general time delay than that discussed above. Let then \mathscr{X} be a Banach space with norm $\|\cdot\|$ and let $\tau>0$; with no loss of generality we may conveniently consider the time scale so chosen
that $\tau<1$. Let \mathscr{C} be the Banach space of continuous maps from the interval $[-\tau, 0]$ into \mathscr{X} with the norm of $\phi \in \mathscr{C}$ given by

$$
\|\phi\|_{0}=\max _{-\tau \leqslant t \leqslant 0}\|\phi(t)\| .
$$

If $t_{0} \geqslant 0$ is a real number and x a continuous function from $\left[t_{0}-\tau, \infty\right)$ into \mathscr{X}, then for each $t \in\left[t_{0}, \infty\right)$ we define the element $x_{t} \in \mathscr{C}$ by

$$
x_{t}(s)=x(t \mid s) \quad(\quad \tau \leqslant s \leqslant 0)
$$

Let $A: \mathscr{X} \supset \mathscr{D}(A) \rightarrow \mathscr{X}$ be closed with dense domain. We shall assume that A generates an analytic semigroup $T_{A}(t)(t \geqslant 0)$. This implies that, for all $x \in \mathscr{X}$, $T_{A}(t) x$ is differentiable for $t>0$ and

$$
(d / d t) T_{A}(t) x=A T_{A}(t) x
$$

and that there is a constant K such that [5-7]

$$
\left\|T_{A}(t)\right\| \leqslant K, \quad\left\|A T_{A}(t)\right\| \leqslant K / t
$$

With $R_{+}=\{t \mid t \geqslant 0\}$, let $f: R_{+} \times \mathscr{C} \rightarrow \mathscr{X}$ and $b: R_{+} \rightarrow \mathscr{X}$. Then our problem can be formulated as: under what conditions on f and b is the equation

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+b(t)+f\left(t, u_{t}\right) \tag{3}
\end{equation*}
$$

asymptotically equivalent to the equation

$$
\begin{equation*}
v^{\prime}(t)=A v(t)+b(t) \tag{4}
\end{equation*}
$$

in the sense that for any bounded solution of (3) there exists a bounded solution of (4) such that

$$
\lim _{t \rightarrow \infty}\|u(t)-v(t)\|=0
$$

and conversely. Here by a solution of (3) on ($0, T$] we mean a function $u:[0, T] \rightarrow \mathscr{X}$ such that u is strongly continuous on $[0, T]$, strongly continuously differentiable on $(0, T], u(t) \in \mathscr{D}(A)$ for $t \in(0, t]$, and $u(t)$ satisfies (3). A similar definition applies to (4).

The Abstract Theorem

The following technical lemma is well known [5, 7].
Lemma. Let A be a closed operator in \mathscr{X}. Let $b \leqslant \infty$, let $c(t)$ be continuous on $[a, b)$ to \mathscr{X} with $c(t) \in \mathscr{D}(A)$ and $A c(t)$ continuous on $[a, b)$. If the improper integrals

$$
\int_{a}^{b} c(t) d t, \quad \int_{a}^{b} A c(t) d t
$$

exist, then $\int_{a}^{b} c(t) d t \in \mathscr{D}(A)$ and

$$
A \int_{a}^{b} c(t) d t=\int_{a}^{b} A c(t) d t
$$

The following, our basic result on the asymptotic equivalence of (3) and (4), is an extension of a classical result for ordinary differential equations [1,3]. Concrete applications to parabolic equations will be given in the last section of the paper.

Theorem 1. Let A generate the analytic semigroup $T_{A}(t)$, and let $P: X \rightarrow X$ be a bounded projection with range in the null space of A and which commutes with $T_{A}(t)$ for $t \geqslant 0(P \equiv 0$ is allowed $)$. Let $b(t)$ be uniformly Hölder continuous, and let $f(t, \phi)$ satisfy the following conditions:
(a) fis continuous on $R_{+} \times \mathscr{C}$.
(b) $\lim _{t \rightarrow \infty}\|f(t, 0)\|=0$ and $\int_{0}^{\infty}\|f(t, 0)\| d t<\infty$.
(c) For each $N>0$ there exists $\gamma(s, N) \equiv \gamma(s)$ such that for $\left\|\phi_{1}\right\| \leqslant N$, $\left\|\phi_{2}\right\| \leqslant N$ we have $\left\|f\left(s, \phi_{1}\right)-f\left(s, \phi_{2}\right)\right\| \leqslant \gamma(s)\left\|\phi_{1}-\phi_{2}\right\|_{0}$, where

$$
\lim _{t \rightarrow \infty} \gamma(t)=0 \quad \text { and } \quad \int_{0}^{\infty} \gamma(t) d t<\infty
$$

(d) $\|f(s, \phi)-f(t, \phi)\| \leqslant \mu\left(t,\|\phi\|_{0}\right)|s-t|^{\beta}$, where $0<\beta \leqslant 1, t+1>$ $s>t>0$, and μ is increasing in the second argument and continuous in the first. Then there is a one-to-one correspondence between bounded solutions of (3) and bounded solutions of (4). Moreover, if $\lim _{t \rightarrow \infty}\left\|T_{A}(t)(1-P) x\right\|=0$ for each fixed $x \in \mathscr{X}$ and if $u(t)$ is a bounded solution of (3) and $v(t)$ the corresponding solution of (4), then

$$
\lim _{t \rightarrow \infty}\|u(t)-v(t)\|=0
$$

Proof. Let

$$
\Psi_{\alpha}=\max \left(1, \sup _{0<\nu<1} \frac{(\nu+\tau) \ln (\nu+\tau)-\nu \ln \nu-\tau \ln \tau}{\nu^{\alpha}}\right) ;
$$

straightforward application of l'Hôpital's rule shows that $\Psi_{\alpha}<\infty$ for $0<\alpha<1$. Let $y(t):\left[t_{2}-\tau, \infty\right) \rightarrow \mathscr{X}$ for some $t_{2} \geqslant \tau$ satisfy (i) $y_{t} \in \mathscr{C}$ for $t \geqslant t_{2}$,
(ii) $\sup _{t \geqslant t_{2}}\left\|y_{t}\right\|_{0}=\sup _{t \geqslant t_{2}-\tau}\|y(t)\| \leqslant \rho$,
(iii) $\sup _{s>t>t_{2},|s-t|<1}\left\|y_{s}-y_{t}\right\|_{0} /|s-t|^{\alpha} \equiv M<\infty \quad$ for \quad some $\quad \alpha$, $0<\alpha<1$.

Condition (iii) states that y satisfies a sort of local Hölder continuity of exponent α with Hölder coefficient M. We have assumed that there is a $K(\geqslant 1)$ such that
\| $T_{A}(t) \| \leqslant K$ for $t \geqslant 0$. Choose $t_{1} \geqslant t_{2}$ so large that the following estimates are valid for $\gamma(t)=\gamma(t, 3 \rho)$:

$$
\begin{array}{lr}
\Theta=K \int_{t_{1}}^{\alpha} \gamma(t) d t<\min \left(\frac{1}{3}, \frac{M \tau}{72 \rho}\right), & \sup _{t \geqslant t_{1}-\tau} \gamma(t) \leqslant \frac{M}{72 K \rho \Psi_{a}}, \\
K \int_{t_{1}}^{\alpha} \mid f(s, 0) \| d s<\min \left(\rho, \frac{M \tau}{24}\right), & \sup _{t \geqslant t_{1}-\tau}\|f(s, 0)\|<\frac{M}{24 K \Psi_{x}} .
\end{array}
$$

Let \mathscr{F}_{a} be the set of all functions $x:\left[t_{1}-\tau, \infty\right) \rightarrow x$ such that
(i) $x_{t} \in \mathscr{C}$ for $t \geqslant t_{1}$,
(ii) $|x|\} \equiv \sup _{t \geq t_{1}}\left\|x_{t}\right\|_{0}=\sup _{t \geqslant t_{1}-\sigma}\|x(t)\| \leqslant 3 \rho$,
(iii) $\sup _{s>t>t_{1}, s-t<1}\left\|x_{s}-x_{t}\right\|_{0} /|s-t|^{\alpha} \leqslant 2 M$.

Then \mathscr{S}_{α} is a closed subset of the Banach space of continuous functions from $\left[t_{1}-\tau, \infty\right)$ to \mathscr{X} with norm $\| \cdot l:$. To see this, it is necessary only to show that the uniform limit of functions satisfying a local Hölder condition with a fixed bound on the Hölder coefficient is also locally Hölder continuous with the same bound on the Hölder coefficient. Let then $\left\|x_{n}-x\right\| \rightarrow 0$, and let $\epsilon>0, s$, and $t(0<|s-t|<1)$ be given. Choose n so large that $\left\|x_{n}(t)-x(t)\right\|<\epsilon \mid s-t^{\prime \alpha}$, $\left\|x_{n}(s)-x(s)\right\|<\epsilon|s-t|^{\alpha}$. Then

$$
\begin{aligned}
\frac{\|x(s)-x(t)\|}{|s-t|^{\alpha}} & \leqslant \frac{\| x(s)-x_{n}(s)}{|s-t|^{\alpha}}+\frac{\| x_{n}(s)-x_{n}(t)}{|s-t|^{\alpha}}-\frac{\left\|x_{n}(t)-x(t)\right\|}{|s-t|^{\alpha}} \\
& \leqslant 2 \epsilon+2 M,
\end{aligned}
$$

where $\epsilon>0$ is arbitrary. It follows that

$$
\frac{\|x(s)-x(t)\|}{|s-t|^{\alpha}} \leqslant 2 M
$$

whence

$$
\frac{\left\|x_{s}-x_{t}\right\|_{0}}{|s-t|^{\alpha}}=\sup _{-\tau \leqslant \theta<0} \frac{\| x(s+\theta)-x(t+\theta)}{|s-t|^{\alpha}} \leqslant 2 M
$$

and the closedness of \mathscr{S}_{α} follows.
For $x \in \mathscr{S}_{x}$, we now define the operators \mathscr{T} and \mathscr{P} by

$$
\begin{aligned}
(\mathscr{T} x)(t) & =y(t)+(\mathscr{F} x)(t) \\
& =y(t)+\int_{t_{1}}^{t} T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s-\int_{t}^{\infty} P f\left(s, x_{s}\right) d s \\
& =y(t)-\int_{t_{1}}^{\infty} P f\left(s, x_{s}\right) d s \quad\left(t_{1}-\tau \leqslant t<t_{1}\right) .
\end{aligned}
$$

Our hypotheses guarantee the existence of the integrals. It follows easily that $\mathscr{T} x$ is continuous for $t \geqslant t_{1}-\tau$ and that for $t \geqslant t_{1}$

$$
\begin{aligned}
\|\mathscr{T} x(t)\| \leqslant & \|y(t)\|+K \int_{t_{1}}^{t}\left(\gamma(s)\left\|x_{s}\right\|_{0}+\|f(s, 0)\|\right) d s \\
& +\int_{t}^{\infty}\left(\gamma(s)\left\|x_{s}\right\|_{0}+\|f(s, 0)\|\right) d s \\
\leqslant & \rho+K \sup _{t \geqslant t_{1}-\tau}\|x(t)\| \int_{t_{1}}^{\infty} \gamma(s) d s+K \int_{t_{1}}^{\infty}\|f(s, 0)\| d s \\
\leqslant & \rho+3 \rho \Theta+\rho<3 \rho
\end{aligned}
$$

the final estimate is easily seen to be valid also for $t_{1} \geqslant t \geqslant t_{1}-\tau$. Thus $|||\mathscr{T} x||| \leqslant 3 \rho$.

We must also show that $\mathscr{T} x$ is locally Hölder continuous with exponent α and coefficient $2 M$. Suppose first that $t+1>s>t \geqslant t_{1}+\tau$; then
$\left\|(\mathscr{T} x)_{s}-(\mathscr{T} x)_{t}\right\|_{0}$
$-\sup _{-\tau \leqslant \theta \leqslant 0}\|\mathscr{T} x(s+\theta)-\mathscr{T} x(t+\theta)\|$
$\leqslant\left\|y_{s}-y_{t}\right\|_{0}+\sup _{-\tau \leqslant \theta \leqslant 0}\left\|\int_{t+\theta}^{s+\theta} P f\left(\sigma, x_{\sigma}\right) d \sigma\right\|$
†. $\sup _{-T \leqslant \theta \leqslant 0}\left\|\int_{t+\theta}^{s+\theta} T_{A}(s+\theta-\sigma)(1-P) f\left(\sigma, x_{\sigma}\right) d \sigma\right\|$
$+\sup _{-\tau \leqslant \theta \leqslant 0}\left\|\int_{t_{1}}^{t+\theta}\left[T_{A}(s+\theta-\sigma)-T_{A}(t+0-\sigma)\right](1-P) f\left(\tau, x_{\sigma}\right) d v\right\|$
$=J_{1}+J_{2}+J_{3}+J_{4}$.
For J_{1} we have, of course, $J_{1} \leqslant M|s-t|^{\alpha}$. For J_{2},

$$
\begin{aligned}
J_{2} & \leqslant|s-t| \sup _{\sigma \geqslant t_{1}}\left\|f\left(\sigma, x_{\sigma}\right)\right\| \\
& \leqslant|s-t|\left[\| \| x\left\|\sup _{\sigma \geqslant t_{1}} \gamma(\sigma)+\sup _{\sigma \geqslant t_{1}}\right\| f(\sigma, 0) \mid\right] \\
& <\frac{1}{3} M|s-t| \leqslant \frac{1}{3} M|s-t|^{\alpha}
\end{aligned}
$$

since $K, \rho, \Psi_{\alpha} \geqslant 1$. For J_{3} we have

$$
\begin{aligned}
J_{3} & \leqslant K \sup _{-\tau \leqslant \theta \leqslant 0} \int_{t+\theta}^{s+\theta}\left(\gamma(\sigma)\left\|x_{\sigma}\right\|_{0}+\|f(\sigma, 0)\|\right) d \sigma \\
& \leqslant|s-t|\left[K\|x \mid\| \sup _{\sigma \geqslant t_{1}} \gamma(\sigma)+K \sup _{\sigma \geqslant t_{1}}\|f(\sigma, 0)\|\right] \\
& \leqslant \frac{1}{3} M|s-t|^{\alpha} .
\end{aligned}
$$

J_{4} can be estimated as follows.

$$
\begin{aligned}
J_{4} \leqslant & \sup _{-\tau \leqslant \theta \leqslant 0}\left\|\int_{t}^{t+\theta-\tau}\left[T_{A}(s+\theta-\sigma)-T_{A}(t+\theta-\sigma)\right](1-P) f\left(\sigma, x_{\sigma}\right) d \sigma\right\| \\
& +\sup _{-\tau \leqslant \theta \leqslant 0}\left\|\int_{t+\theta-\tau}^{t+\theta}\left[T_{A}(s+\theta-\sigma)-T_{A}(t+\theta-\sigma)\right](1-P) f\left(\sigma, x_{\sigma}\right) d \sigma\right\| \\
\equiv & I_{1}+I_{2} .
\end{aligned}
$$

Since A generates an analytic semigroup, we have $\left\|A T_{A}(t)\right\| \leqslant K / t$ and $(d / d t) T_{A}(t) x=A T_{A}(t) x$; it follows that for $s>t>0$

$$
\left\|\left[T_{A}(s)-T_{A}(t)\right] x\right\|=\left\|\int_{t}^{s} A T_{A}(\sigma) x d \sigma\right\| \leqslant \frac{K}{t}|s-t|\|x\|
$$

For I_{1} we thus get the estimate

$$
\begin{aligned}
I_{1} & \leqslant \sup _{-\tau \leqslant \theta \leqslant 0} \int_{t_{1}}^{t+\theta-\tau} \frac{K}{\tau}|s-t|\left\|f\left(\sigma, x_{\sigma}\right)\right\| d \sigma \\
& \leqslant|s-t| \frac{K}{\tau}\left[3 \rho \int_{t_{1}}^{\infty} \gamma(\sigma) d \sigma+\int_{t_{1}}^{\infty}\|f(\sigma, 0)\| d \sigma\right] \leqslant \frac{1}{12} M|s-t|
\end{aligned}
$$

For I_{2} we have

$$
\begin{aligned}
I_{2} \leqslant & \sup _{-\tau \leqslant \theta \leqslant 0} \int_{t+\theta-\tau}^{t+\theta} \int_{t+\theta-\sigma}^{s+\theta-\sigma}\left\|A T_{A}(\mu)\right\| d \mu\left\|f\left(\sigma, x_{\sigma}\right)\right\| d \sigma \\
& \leqslant K \sup _{\sigma \geqslant t_{1}-\tau}\left\{\gamma(\sigma)\left\|x_{\sigma}\right\|_{0}+\|f(\sigma, 0)\|\right\} \sup _{-\tau \leqslant \theta \leqslant 0} \int_{t+\theta-\tau}^{t+\theta} \int_{t+\theta-\sigma}^{s+\theta-\sigma} \frac{1}{\mu} d \mu d \sigma \\
\leqslant & K \sup _{\sigma \geqslant t_{1}-\tau}\{3 \rho \gamma(\sigma)+\|f(\sigma, 0)\|\}\{(s-t+\tau) \ln (s-t+\tau) \\
& -(s-t) \ln (s-t)-\tau \ln \tau\} \\
\leqslant & K \Psi_{\alpha}|s-t|^{\alpha}\left\{3 \rho \sup _{\sigma \geqslant t_{1}-\tau} \gamma(\sigma)+\sup _{\sigma \geqslant t_{1}-\tau}\|f(\sigma, 0)\|\right\} \leqslant(M / 12)|s-t|^{\alpha} .
\end{aligned}
$$

We conclude that, for $t+1>s>t \geqslant t_{1}+\tau$,

$$
\left\|(\mathscr{T} x)_{s}-(\mathscr{T} x)_{t}\right\|_{0} \leqslant 2 M|s-t|^{\alpha}
$$

By similar arguments, we can dispose of the easier cases where $t+1>s>$ $t>t_{1}-\tau$ but where $s>t>t_{1}+\tau$ does not hold, to conclude that $\mathscr{T} x$ satisfies the Hölder condition with coefficient $2 M$ if x does. It follows that \mathscr{T} maps \mathscr{S}_{a} into itself.

Note. We have made no use in the above argument of the assumption that x itself is Hölder-continuous. Thus \mathscr{T} actually maps functions satisfying (i), (ii) into \mathscr{S}_{α}.

It is easily seen that \mathscr{T} is contracting on \mathscr{S}_{α}. Indeed, let $x, \hat{x} \in \mathscr{S}_{\alpha}$; then for $t \geqslant t_{1}$,
$\|(\mathscr{T} x)(t)-(\mathscr{T} \hat{x})(t)\| \leqslant K \int_{t_{1}}^{t}\left\|f\left(s, x_{s}\right)-f\left(s, \hat{x}_{s}\right)\right\| d s+\int_{t}^{\infty}\left\|f\left(s, x_{s}\right)-f\left(s, \hat{x}_{s}\right)\right\| d s$

$$
\leqslant K \int_{t_{1}}^{\infty} \gamma(s)\left\|x_{s}-\hat{x}_{s}\right\| d s \leqslant \Theta\|x-\hat{x}\| \|
$$

For $t_{1}-\tau \leqslant t \leqslant t_{1}$,

$$
\begin{aligned}
\|(T x)(t)-(T \hat{x})(t)\| & <\int_{t_{1}}^{\infty}\left\|f\left(s, x_{s}\right)-f\left(s, \hat{x}_{s}\right)\right\| d s \\
& \leqslant \int_{t_{1}}^{\infty} \gamma(s)\left\|x_{s}-\hat{x}_{s}\right\|_{0} d s \leqslant\|x-\hat{x}\| \int_{t_{1}}^{\infty} \gamma(s) d s \\
& =(\Theta \mid K)\|x-\hat{x}\| \leqslant \Theta\|x-\hat{x}\|
\end{aligned}
$$

Thus $\|\mid \mathscr{T} x-\mathscr{T} \hat{x}\|\|\leqslant\| x-\hat{x}\| \|$.
Now let y be a bounded solution of (4) defined for $t \geqslant t_{1}$. Then for $t>t_{1}$

$$
y(t)=T_{A}\left(t-t_{1}\right) y\left(t_{1}\right)+\int_{t_{1}}^{t} T_{A}(t-s) b(s) d s
$$

is differentiable and

$$
y^{\prime}(t)-A T_{A}\left(t-t_{1}\right) y\left(t_{1}\right)+b(t)+\int_{t_{1}}^{t} A T_{A}(t-s) b(s) d s
$$

[7]. Let $t \geqslant t_{1}+\tau$ and let the Hölder condition for b have the form $\|b(t)-b(s)\| \leqslant \bar{M}|t-s|_{\nu}$. Then

$$
\begin{aligned}
\left\|y^{\prime}(t)\right\| & \frac{K}{\tau}\left\|y\left(t_{1}\right)\right\|+\|b(t)\|+\int_{t_{1}}^{t} \frac{K}{t-s}\|b(s)-b(t)\| d s \\
& +\| \int_{t_{1}}^{t} A T_{A}(t-s) b(t) d s \\
\leqslant & \frac{K}{\tau}\left\|y\left(t_{1}\right)\right\|+(2+K)\|b(t)\|+M K \int_{t_{1}}^{t}(t-s)^{\nu-1} d s
\end{aligned}
$$

since

$$
-\int_{t_{1}}^{t} A T_{A}(t-s) b(t) d s=T_{A}(0) b(t)-T_{A}\left(t-t_{1}\right) b(t)
$$

Thus $\left\|y^{\prime}(t)\right\|$ is bounded uniformly on compact subsets of $\left[t_{1}+\tau, \infty\right)$. From

$$
\|y(s+\theta)-y(t+\theta)\| \leqslant|s-t| \sup _{t \leqslant \sigma \leqslant s} \| y^{\prime}(\sigma+\theta) \mid
$$

it follows that y is locally Hölder continuous for $t>t_{1}+\tau$ for any exponent α, $0<\alpha \leqslant 1$.

Define x as the fixed point of \mathscr{T}; then $x \in \mathscr{S}_{\alpha}$. We show now that $x \in \mathscr{D}(A)$ for $t \geqslant t_{1}$. Since $y \in \mathscr{D}(A)$ and the range of P is in the null space of A, it is enough to show that

$$
\int_{t_{1}}^{t} T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s \in \mathscr{L}(A)
$$

and by the lemma it suffices to show that the improper integral

$$
\int_{t_{1}}^{t} A T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s
$$

converges. Since the only difficulty occurs at $s=t$, it is enough to show that

$$
L(c) \equiv \int_{t-\tau}^{t-\epsilon} A T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s
$$

converges as $\epsilon \rightarrow 0+$. To that end we write

$$
\begin{aligned}
L(\epsilon)= & \int_{t-\tau}^{t-\epsilon} A T_{A}(t-s)(1-P)\left[f\left(s, x_{s}\right)-f\left(s, x_{t}\right)\right] d s \\
& +\int_{t-\tau}^{t-\epsilon} A T_{A}(t-s)(1-P)\left[f\left(s, x_{t}\right)-f\left(t, x_{t}\right)\right] d s \\
& +\int_{t-\tau}^{t-\epsilon} A T_{A}(t-s)(1-P) f\left(t, x_{t}\right) d s=L_{1}(\epsilon)+L_{2}(\epsilon)+L_{3}(\epsilon)
\end{aligned}
$$

for arbitrary $\epsilon>0$. For L_{1} we have

$$
\left\|L_{1}(\epsilon)\right\| \leqslant K \int_{t-\tau}^{t-\epsilon} \frac{1}{t-s} \gamma(s)\left\|x_{s}-x_{t}\right\|_{0} d s
$$

the right-hand side converges as $\epsilon \rightarrow 0+$ because of the Hölder continuity of x. Similarly

$$
\left\|L_{2}(\epsilon)\right\| \leqslant K \int_{t-\tau}^{t-\epsilon} \frac{1}{t-s} \mu(s, 3 \rho)|t-s|^{\beta} d s
$$

which also converges as $\epsilon \rightarrow 0+$. Finally,

$$
\begin{aligned}
L_{3}(\epsilon) & =-\int_{t-\tau}^{t-\epsilon} \frac{d}{d s}\left\{T_{A}(t-s)(1-P) f\left(t, x_{t}\right)\right\} d s \\
& =T_{A}(\tau)(1-P) f\left(t, x_{t}\right)-T_{A}(\epsilon)(1-P) f\left(t, x_{t}\right)
\end{aligned}
$$

which certainly converges as $\epsilon \rightarrow 0$. We have thus shown that $\mathscr{T} x \in \mathscr{D}(A)$ and that

$$
(A \mathscr{T} x)(t)=A y(t)+\int_{t_{1}}^{t} A T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s
$$

for $t \geqslant t_{1}$.
We show now that x is differentiable and satisfies the differential equation (3) for $t>t_{1}$. It suffices to show that $\mathscr{S} x$ is differentiable for $t>t_{1}$. Consider first

$$
\frac{1}{h}\left\{\int_{t+h}^{\infty} P f\left(s, x_{s}\right) d s-\int_{t}^{\infty} P f\left(s, x_{s}\right) d s\right\}=\frac{1}{h} \int_{t}^{t+h} P f\left(s, x_{s}\right) d s
$$

which converges to $\operatorname{Pf}\left(t, x_{t}\right)$ as $h \rightarrow 0$. Also,

$$
\begin{aligned}
& \frac{1}{h}\left\{\int_{t_{1}}^{t+h} T_{A}(t+h-s)(1-P) f\left(s, x_{s}\right) d s-\int_{t_{1}}^{t} T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s\right\} \\
& \quad=\frac{1}{h}\left\{\int_{t}^{t+h} T_{A}(t+h-s)(1-P) f\left(s, x_{s}\right) d s\right. \\
& \left.\quad+\int_{t_{1}}^{t}\left[T_{A}(t+h-s)-T_{A}(t-s)\right](1-P) f\left(s, x_{s}\right) d s\right\}
\end{aligned}
$$

For the second of these integrals we have

$$
\begin{aligned}
& \frac{1}{h} \int_{t_{1}}^{t} {\left[T_{A}(t+h-s)-T_{A}(t-s)\right](1-P) f\left(s, x_{s}\right) d s } \\
& \quad= \frac{1}{h}\left[T_{A}(h)-I\right] \int_{t_{1}}^{t} T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s \\
& \rightarrow A \int_{t_{1}}^{t} T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s \\
& \quad=\int_{t_{1}}^{t} A T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s
\end{aligned}
$$

as shown above. We show now that the first integral converges to

$$
(1-P) f\left(t, x_{t}\right)=\frac{1}{h} \int_{t}^{t+h}(1-P) f\left(t, x_{t}\right) d s
$$

To prove this, we show that the difference, which can be written as

$$
\begin{aligned}
\frac{1}{h} \int_{t}^{t+h} & T_{A}(t+h-s)(1-P)\left[f\left(s, x_{s}\right)-f\left(s, x_{t}\right)\right] d s \\
& +\frac{1}{h} \int_{t}^{t+h} T_{A}(t+h-s)(1-P)\left[f\left(s, x_{t}\right)-f\left(t, x_{t}\right)\right] d s \\
& +\frac{1}{h} \int_{t}^{t+h}\left[T_{A}(t+h-s)-I\right](1-P) f\left(t, x_{t}\right) d s \\
= & K_{1}+K_{2}+K_{3}
\end{aligned}
$$

converges to zero as $h \rightarrow 0$. For the norm of K_{1}, we have the estimate

$$
\left\|K_{1}\right\| \leqslant \frac{K}{h} \int_{t}^{t+h} \gamma(s)\left\|x_{s}-x_{t}\right\|_{0} d s \leqslant \frac{2 M K}{h} \int_{t}^{t+h} \gamma(s)(s-t)^{\alpha} d s
$$

which tends to zero as $h \rightarrow 0$. Similarly, for K_{2} we have the bound

$$
\left\|K_{2}\right\| \leqslant \frac{K}{h} \int_{t}^{t+h} \mu(t, 3 \rho)|s-t|^{\beta} d s
$$

which again tends to zero with h. Finally, with the change of variable $z=t+h-s, K_{3}$ can be written as

$$
\frac{1}{h} \int_{0}^{h}\left[T_{A}(z)-I\right](1-P) f\left(t, x_{t}\right) d z
$$

which is well-known to converge to $\left[T_{A}(0)-I\right](1-P) f\left(t, x_{t}\right)=0$.

Putting the results of these computations together, we have shown that $x=y+\mathscr{S} x$ is differentiable and that

$$
\begin{aligned}
\frac{d x}{d t}(t) & =\frac{d y}{d t}(t)+f\left(t, x_{t}\right)+\int_{t_{1}}^{t} A T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s \\
& =A x(t)+b(t)+f\left(t, x_{t}\right)
\end{aligned}
$$

for $t>t_{1}$, as required.
To show that the map $y \rightarrow x$ defined above is one-to-one and onto, let $x(t)$ be a bounded solution of (3) and define y by $y=x-\mathscr{S} x$. Using the above analysis it is easy to show that y is a bounded solution of (4).

Suppose now that $T_{A}(t)(1-P) x \rightarrow 0$ as $t \rightarrow \infty$ for any $x \in \mathscr{X}$. We must show that

$$
\int_{t_{1}}^{t} T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

For any $T>t_{1}$ we have

$$
\int_{t_{1}}^{T} T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s=T_{A}(t-T)(1-P) \int_{t_{1}}^{T} T_{A}(T-s) f\left(s, x_{s}\right) d s
$$

which converges to zero as $t \rightarrow \infty$; we have here used the commutativity of T_{A} and P. Finally,

$$
\begin{aligned}
\left\|\int_{T}^{t} T_{A}(t-s)(1-P) f\left(s, x_{s}\right) d s\right\| & \leqslant K \int_{T}^{t}\left\|f\left(s, x_{s}\right)\right\| d s \\
& \leqslant K \int_{T}^{\infty}\{\gamma(s)\|x\|+\|f(s, 0)\|\} d s
\end{aligned}
$$

which can be made arbitrarily small by choosing T sufficiently large. This completes the proof of the theorem.

Remarks. The hypotheses of the theorem become simpler if $f(t, \phi)$ can be factored as $g(t) h(\phi)$. Three sorts of factoring are possible: g scalar-valued and $h: \mathscr{C} \rightarrow \mathscr{X} ; g:[0, \infty) \rightarrow \mathscr{X}$ and h scalar-valued; or if \mathscr{X} is a Banach algebra, both g and h taking values in \mathscr{X}. In any of these cases the following hypotheses imply (a)-(d) of Theorem 1:
(a) g, h, are continuous,
(b) $g(t) \rightarrow 0$ as $t \rightarrow \infty$ and $\int_{0}^{\infty}|g(t)| d t<\infty$,
(c) for any $N>0$ and $\phi_{1}, \phi_{2} \in \mathscr{C}$ satisfying $\left\|\phi_{1}\right\| \leqslant N,\left\|\phi_{2}\right\| \leqslant N$, we have

$$
\left|h\left(\phi_{1}\right)-h\left(\phi_{2}\right)\right| \leqslant \text { const. }\left\|\phi_{1}-\phi_{2}\right\|_{\mathbf{0}}
$$

(d) for $|s-t| \leqslant 1$ we have $|g(s)-g(t)| \leqslant \mu(t)|s-t|^{\beta}$ for μ defined and continuous on $[0, \infty)$ and $0<\beta \leqslant 1$.
Here | | | denotes either $\|\cdot\|$ or $\mid \cdot$, as appropriate. Only (d) of the theorem perhaps requires demonstration; we have

$$
\begin{aligned}
f(s, \phi)-f(t, \phi) \| & \leqslant|g(s)-g(t)|[|h(\phi)-h(0)|-|h(0)|] \\
& \leqslant \mu(t)\left[\text { const. }\|\phi\|_{0}+|h(0)|\right] \mid s-t^{3} .
\end{aligned}
$$

Also, a sum of terms each a product satisfying (a)-(d) above satisfies the hypotheses of Theorem 1 .

We also observe that the last hypothesis of Theorem 1 is satisfied if A has a bounded inverse. Indeed, in this case we have

$$
\begin{aligned}
T_{A}(t)(1-P) x \| & =\left\|T_{A}(t) x\right\|=\| T_{A}(t) A A^{-1} x \\
& \leqslant\left\|A T_{A}(t)\right\|\left\|A^{-1} x\right\| \leqslant(K / t)\left\|A^{\mathbf{1}}\right\|
\end{aligned}
$$

using the fact that A and P commute with $T_{A}(t)$.

Applications

Here we shall give some applications of Theorem 1, without striving for maximum generality.

1. Let Ω be a bounded domain of \mathbb{R}^{n} with smooth boundary, let \mathscr{X} be the Hilbert space $\mathscr{L}^{2}(\Omega)$, and take $P \equiv 0$. Let for $x \in \Omega$ the linear differential operator $B(x, D)$ be defined by

$$
B(x, D) u(x)=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j}(x) \frac{\partial u(x)}{\partial x_{i}}\right)-c(x) u(x)
$$

where $c \geqslant 0$; we suppose that B is formally self-adjoint, uniformly strongly elliptic, and has smooth coefficients. Define the operator A by

$$
A u=B(x, D) u
$$

for $u \in \mathscr{L}(A)=H^{2}(\Omega) \cap H_{0}{ }^{1}(\Omega)$ (standard notation). Then $-A$ is a self-adjoint and nonnegative operator, and so generates an analytic semigroup $T_{A}(t)$ [6]. Moreover, by Theorem 1 of [4, Chap. 6],

$$
T_{A}(t) x \|_{L_{2}(\Omega)} \rightarrow 0
$$

as $t \rightarrow \infty$.
The condition $u \in H_{0}^{1}(\Omega)$ is a generalized form of the boundary condition
$\left.u\right|_{\partial \Omega}=0$; cf. [5]. Since we allow nonhomogeneous equations, there is no loss of generality in assuming homogeneous boundary conditions.

Let $b(t, x)$ be in $\mathscr{L}^{2}(\Omega)$ for each $t \geqslant 0$ and be uniformly Hölder continuous in t. Let $f(t, x, \phi) \in \mathscr{L}^{2}(\Omega)$ for each $t \geqslant 0$ and $\phi \in \mathscr{C}$, and let f satisfy hypotheses (a)-(d) of Theorem 1. We conclude the following. For every (generalized) solution of

$$
\begin{aligned}
\partial v_{t}(t, x) & =B(x, D) v(t, x) \mid b(t, x), \\
\left.v\right|_{\partial \Omega} & =0
\end{aligned}
$$

which has bounded $\mathscr{L}^{2}(\Omega)$ norm there exists for all sufficiently large t a (generalized) solution $u(t, x)$ of

$$
\begin{aligned}
\frac{\partial}{\partial t} u_{t}(t, x) & =B(x, D) u(t, x)+b(t, x)+f\left(t, x, u_{t}\right) \\
\left.u\right|_{\partial \Omega} & =0
\end{aligned}
$$

such that $\|u-v\|_{\mathscr{L}_{2}(\Omega)} \rightarrow 0$ as $t \rightarrow \infty$, and vice versa.
2. The projection P plays a nontrivial role when A is an elliptic partial differential operator without constant term and \mathscr{X} contains constant functions; for example, the heat equation on a bounded region Ω in \mathbb{R}^{n} with boundary conditions $\partial u /\left.\partial \nu\right|_{\partial \Omega}=0$, where $\partial / \partial \nu$ denotes the derivative along the normal to the boundary of Ω. Here we give a simpler example of a nontrivial P : the Cauchy problem for the one-dimensional heat equation.

Let \mathscr{X}_{1} be the set of functions h defined and continuous on $(-\infty, \infty)$ and satisfying $\lim _{|x| \rightarrow \infty} h(x)=0$. Let C denote the constant functions on $(-\infty, \infty)$, and let $\mathscr{X}=\mathscr{X}_{1}+C$ with the sup norm. Then \mathscr{X} is a Banach space. Let $A=\partial^{2} / \partial x^{2}$ on $\mathscr{D}(A)=\left\{h \in \mathscr{X}: h^{\prime \prime} \in \mathscr{X}\right\}$. Let P denote projection onto C, the null space of A. It is well known that A generates the analytic semigroup T_{A} given by

$$
\left[T_{A}(t) h\right](x)=\frac{1}{2(\pi t)^{1 / 2}} \int_{-\infty}^{\infty} e^{-(x-s)^{2} /(4 \pi t)} h(s) d s
$$

An elementary integration shows that $T_{A}(t) 1 \equiv 1$, hence $h \in C$ implies that $T_{A}(t) h \in C$, i.e., P commutes with T_{A}. Let now h be in the range of $I-P$, that is, $h \in \mathscr{X}_{1}$. Let $\epsilon>0$ be given, and choose M so large that $s \geqslant M$ or $s \leqslant-M$ implies $|h(s)|<\epsilon / 4$. Then

$$
\left|\frac{1}{2(\pi t)^{1 / 2}} \int_{M}^{\infty} e^{-(x-s)^{2} /(4 \pi t)} h(s) d s\right|,\left|\frac{1}{2(\pi t)^{1 / 2}} \int_{-\infty}^{-M} e^{-(x-s)^{2} /(4 \pi t)} h(s) d s\right|<\frac{\epsilon}{4} .
$$

It follows that for all $t>0$

$$
\begin{aligned}
\left|\left[T_{A}(t) h\right](x)\right| & <\frac{\epsilon}{2}+\frac{1}{2(\pi t)^{1 / 2}} \int_{-M}^{M} e^{-(x-s)^{2} /(4 \pi t)}|h(s)| d s \\
& \leqslant \frac{\epsilon}{2}+\frac{M}{(\pi t)^{1 / 2}} \sup _{s}|h(s)|
\end{aligned}
$$

which can be made less than ϵ by choosing t sufficiently large. We have thus shown that $\left\|T_{A}(t)(1-P) g\right\| \rightarrow 0$ as $t \rightarrow \infty$ for any $g \in \mathscr{X}$. Theorem 1 can now be applied for any suitable f and b.

References

1. F. Brauer and J. S. W. Wong, On the asymptotic relationships between solutions of two systems of ordinary differential equations, J. Differential Equations 6 (1969), 527-543.
2. K. L. Сооке, Asymptotic equivalence of an ordinary and a functional differential equation, J. Math. Anal. Appl. 51 (1975), 187-207.
3. W. A. Coppel, "Stability and Asymptotic Behavior of Differential Equations," Heath, Boston, 1965.
4. A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice-Hall, Englewood Cliffs, N.J., 1964.
5. A. Friedman, "Partial Differential Equations," Holt, Rinehart, and Winston, New York, 1969.
6. J. A. Goldstein, "Semigroups of operators and abstract Cauchy problems," Tulane University Lecture Notes, Tulane Univ. of Louisiana, New Orleans, La., 1970.
7. G. E. Ladas and V. Lakshmikantham, "Differential Equations in Abstract Spaces," Academic Press, New York, 1972.
8. T. S. Sulavko, Estimation and stability of the solution of a parabolic equation with retarded argument (in Russian), Differential Equations 8 (1972), 1235-1241.
9. S. A. Tyr, The solution of equations of parabolic type with retarded argument by means of a certain variant of Ju. D. Sokolov's method (in Russian), in "Differential Equations and their Applications," pp. 124-126, Dnepropetrovsk Gos. Univ., Dnepropetrousk, 1971.
10. K. Zima, Un problème mixte pour l'équation aux dérivées partielles du second ordre du type parabolique à argument fonctionnel, Ann. Polon. Math. 22 (1969/70), 61-68.
11. C. Travis and G. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395-418.
12. T. Zamanov, Differential equations with retarded argument in a Banach space, Trudy Sem. Teor. Differencial. Uravnenii s Otklon. Argumentom Univ. Družby Narodov Patrisa Lumumby 4 (1967), 111-115.
