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Persson and Strang (2003) evaluated the integral over [−1,1] of a squared odd degree
Legendre polynomial divided by x2 as being equal to 2. We consider a similar integral
for orthogonal polynomials with respect to a general even orthogonality measure, with
Gegenbauer and Hermite polynomials as explicit special cases. Next, after a quadratic
transformation, we are led to the general nonsymmetric case, with Jacobi and Laguerre
polynomials as explicit special cases. Examples of indefinite summation also occur in
this context. The paper concludes with a generalization of the earlier results for Hahn
polynomials. There some adaptations have to be made in order to arrive at relatively nice
explicit evaluations.
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1. Introduction

The idea of this article comes from an integral

1∫
−1

(
P2n+1(x)

x

)2

dx = 2 (1.1)

given by Persson and Strang [11, (34)]. Here Pn is a Legendre polynomial. They prove the identity by deriving a first
order recurrence for the left-hand side of (1.1). A natural question is if this integral can be generalized for other or-
thogonal polynomials. We consider this problem first for orthogonal polynomials with respect to an even orthogonality
measure (the symmetric case), a class which includes the Legendre polynomials, but also, for instance, the Gegenbauer
and Hermite polynomials. The method of finding a first order recurrence for the integral still works, but a method involv-
ing the Christoffel–Darboux formula (to some extent equivalent to the earlier method) turns out to be more powerful in
the case of the Gegenbauer polynomials.

By applying a quadratic transformation to the symmetric case we arrive at the idea of a further generalization in the case
of a general orthogonality measure. Kernel polynomials, defined in terms of the Christoffel–Darboux kernel, enter the in-
tegral here. Explicit examples are considered for Jacobi and Laguerre polynomials. Explicitly summable indefinite sums
naturally occur here as side results.

The original Persson–Strang integral was motivated by a particular application. Related motivations may also be given
for our generalizations discussed until now (see also Remark 3.1). But our last section on Hahn polynomials is driven by

* Corresponding author.
E-mail addresses: e.diekema@gmail.com (E. Diekema), T.H.Koornwinder@uva.nl (T.H. Koornwinder).
0022-247X/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2011.12.001

https://core.ac.uk/display/82316578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jmaa.2011.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:e.diekema@gmail.com
mailto:T.H.Koornwinder@uva.nl
http://dx.doi.org/10.1016/j.jmaa.2011.12.001


126 E. Diekema, T.H. Koornwinder / J. Math. Anal. Appl. 388 (2012) 125–135
the pure mathematical question how the Persson–Strang integral and the related indefinite sum may generalize throughout
the Askey scheme. For the Hahn polynomials it turns out that the most straightforward generalizations do not admit nice
explicit evaluations. We are able to make there an adaptation which admits relatively nice evaluations and which still has
our results for Jacobi polynomials as a limit case.

2. Preliminaries on orthogonal polynomials

Let μ be a nonzero Borel measure on R with infinite support (or equivalently a nondecreasing function on R with an
infinite number of points of increase) such that

∫
R

|x|n dμ(x) < ∞ for all n ∈ Z�0. Let pn(x) (n ∈ Z�0) be a polynomial in x
of degree n such that∫

R

pm(x)pn(x)dμ(x) = hnδm,n (m,n ∈ Z�0) (2.1)

for certain constants hn (necessarily positive). The polynomials pn are called orthogonal polynomials with respect to the
measure μ, see for instance [1, §5.2], [3] or [13]. Up to constant nonzero factors they are uniquely determined by the above
properties. Let kn be the coefficient of xn in pn(x). We assume that p0(x) = k0 = 1.

If μ has support within some closed interval I then we say that the pn are orthogonal polynomials with respect to μ
on I . In many examples we have dμ(x) = w(x)dx on I with the weight function w a nonnegative integrable function on I .
Then (2.1) becomes∫

I

pm(x)pn(x)w(x)dx = hnδm,n.

In many other examples μ is a discrete measure given by positive weights w j on points x j ( j ∈ J , a countably infinite set).
Then (1.1) becomes∑

j∈ J

pm(x j)pn(x j)w j = hnδm,n.

We may take J finite, say J = {0,1, . . . , N}. Then the pn are well defined by orthogonality for n = 0,1, . . . , N .
Orthogonal polynomials satisfy a three-term recurrence relation (see [1, Theorem 5.2.2])

pn+1(x) = (Anx + Bn)pn(x) − Cn pn−1(x), p−1(x) = 0, p0(x) = 1, (2.2)

with An, Bn, Cn real and An−1 AnCn > 0. If the measure μ is even (i.e., invariant under reflection with respect to 0) then
Bn = 0 for all n in (2.2). If μ is even and dμ(x) = w(x)dx on I then I = −I and w(x) = w(−x) (x ∈ I).

It follows immediately from (2.2) that

An = kn+1

kn
, Cn = kn−1hn An

knhn−1
= kn−1kn+1hn

k2
nhn−1

. (2.3)

Furthermore,

C2n−1 = − p2n(0)

p2n−2(0)
if μ is even. (2.4)

We will also need the Christoffel–Darboux formula (see [1, Remark 5.2.2])

Kn(x, y) :=
n∑

k=0

pk(x)pk(y)

hk
= kn

kn+1hn

pn+1(x)pn(y) − pn(x)pn+1(y)

x − y
(x �= y). (2.5)

Note that Kn is the kernel of the integral operator which projects onto the space of polynomials of degree � n. Thus∫
R

p(x)Kn(x, y)dμ(x) = p(y) (p a polynomial of degree � n). (2.6)

If we let y → x in (2.5) then we obtain

Kn(x, x) =
n∑

k=0

pk(x)2

hk
= kn

kn+1hn

(
p′

n+1(x)pn(x) − p′
n(x)pn+1(x)

)
. (2.7)

If the orthogonality measure μ is even then we have as a special case of (2.7):

K2n(0,0) =
n∑

k=0

p2k(0)2

h2k
= k2n

k2n+1h2n
p′

2n+1(0)p2n(0). (2.8)
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Remark 2.1. If we are dealing with classical orthogonal polynomials pn then p′
n is again a classical orthogonal polynomial,

so (2.7) can be written very explicitly. However, if we are dealing with orthogonal polynomials pn in the Hahn class, i.e.,
where the polynomials {�pn}n∈Z�1 are again orthogonal (with the difference operator � being defined by (� f )(x) :=
f (x + 1) − f (x)), then we may better consider (2.5) for y = x − 1 (see [7, formula after (2.11)] for an analogous observation
in the q-case), which yields

Kn(x, x − 1) =
n∑

k=0

pk(x)pk(x − 1)

hk

= kn

kn+1hn

(
pn(x)(�pn+1)(x − 1) − pn+1(x)(�pn)(x − 1)

)
. (2.9)

Formula (2.9) will take a very explicit form for polynomials of Hahn class. If we consider (2.9) for Hahn polynomials then a
suitable limit case will yield formula (2.7) for Jacobi polynomials.

3. The Persson–Strang integral generalized: the symmetric case

As a generalization of the integral of Persson and Strang we want to compute the integral

In :=
a∫

−a

(
p2n+1(x)

x

)2

dμ(x), (3.1)

where the pn are orthogonal polynomials with respect to an even measure μ on the interval [−a,a] or (−∞,∞). We will
discuss two methods to solve this problem. The first method, followed by Persson and Strang in the Legendre case, is by a
recurrence relation for In . The second method uses the Christoffel–Darboux formula.

3.1. The recurrence method

Rewriting Eq. (2.2) with Bn = 0 as

p2n+1(x)

x
= A2n p2n(x) − C2n

p2n−1(x)

x
,

squaring, and integrating over the interval [−a,a] with respect to μ gives

a∫
−a

(
p2n+1(x)

x

)2

dμ(x) = A2
2n

a∫
−a

p2n(x)2 dμ(x) − 2A2nC2n

a∫
−a

p2n(x)
p2n−1(x)

x
dμ(x) + C2

2n

a∫
−a

(
p2n−1(x)

x

)2

dμ(x)

= A2
2nh2n + C2

2n

a∫
−a

(
p2n−1(x)

x

)2

dμ(x).

Hence we obtain the recurrence

In = C2
2n In−1 + A2

2nh2n (3.2)

with starting value

I0 =
a∫

−a

(
p1(x)

x

)2

w(x)dx = k2
1h0. (3.3)

The first order inhomogeneous linear recurrence relation (3.2) with initial value (3.3) has a unique solution. As observed by
Persson and Strang, in the case of Legendre polynomials the solution is In = 2 for all n, since this solution satisfies (3.2)
and (3.3).

3.2. Using the Christoffel–Darboux formula

Putting y = 0 in the Christoffel–Darboux formula (2.5) gives
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K2n+1(x,0) =
2n+1∑
k=0

pk(x)pk(0)

hk
= K2n(x,0)

=
n∑

k=0

p2k(x)p2k(0)

h2k
= k2n p2n(0)

k2n+1h2n

p2n+1(x)

x
. (3.4)

Remark 3.1. Combination of (3.4) with (2.6) yields

k2n p2n(0)

k2n+1h2n

a∫
−a

p(x)
p2n+1(x)

x
dμ(x) = p(0) (p a polynomial of degree � 2n + 1). (3.5)

Thus the linear functional λ: p �→ p(0) on the finite Hilbert space of real-valued polynomials of degree � 2n+1 with respect
to the inner product 〈p,q〉 := ∫ a

−a p(x)q(x)dμ(x) gives λ(p) as a constant times the inner product of p with the polynomial

x �→ p2n+1(x)/x. Therefore, the square of the norm ‖λ‖2 of the linear functional λ equals a constant times the integral In

given by (3.1). This gives a motivation for trying to compute In explicitly.
Another motivation considers the left-hand side of (3.5) with p being a white noise signal on [−a,a]. Then this expres-

sion equals the projection of p on the subspace of polynomials of degree � 2n + 1, evaluated at 0. This value is a random
variable. The expectation of the square of this value equals a constant times In . This is related to the motivation in Persson
and Strang [11, §4].

Now square the two sides of the last equality in (3.4) and integrate over the orthogonality interval with respect to μ,
where we use the orthogonality property. As a result we obtain

In =
a∫

−a

(
p2n+1

x

)2

dμ(x) =
(

k2n+1h2n

k2n p2n(0)

)2 n∑
k=0

p2k(0)2

h2k
. (3.6)

Then a very simple expression for In can be obtained by substitution of (2.8) in (3.6):

a∫
−a

(
p2n+1(x)

x

)2

dμ(x) = k2n+1h2n p′
2n+1(0)

k2n p2n(0)
. (3.7)

Remark 3.2. The sum (3.6) is equivalent to the recurrence

(
k2n p2n(0)

k2n+1h2n

)2

In =
(

k2n−2 p2n−2(0)

k2n−1h2n−2

)2

In−1 + p2n(0)2

h2n

with starting value (3.3). The recurrence can be rewritten as

In =
(

k2n−2k2n+1h2n p2n−2(0)

k2n−1k2nh2n−2 p2n(0)

)2

In−1 +
(

k2n+1

k2n

)2

h2n. (3.8)

In view of (2.3) and (2.4), the recurrences (3.8) and (3.2) are the same.

3.3. Example: Gegenbauer polynomials

With the notation of Section 3.2 let α > −1 and take orthogonality measure dμ(x) := (1− x2)α dx on the interval [−1,1].
Then the pn are Gegenbauer polynomials which we write as special Jacobi polynomials (see [4, 10.9(4)]):

pn(x) = P (α,α)
n (x) = (α + 1)n

(2α + 1)n
C

α+ 1
2

n (x).

For the evaluation of the right-hand side of (3.7) in this case we need (see [4, §10.8, 10.9]):

kn = (n + 2α + 1)n

2nn! , hn = 22α+1Γ (n + α + 1)2

(2n + 2α + 1)Γ (n + 2α + 1)n! ,

p2n(0) = (α + 1)2n

(2α + 1)2n
C

α+ 1
2

2n (0) = (−1)n (α + n + 1)n

22nn! ,

p′
2n+1(0) = (n + α + 1)P (α+1,α+1)

2n (0) = (−1)n (α + n + 2)n
2n

.

2 n!
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Then (3.7) yields

In =
1∫

−1

(
P (α,α)

2n+1 (x)

x

)2(
1 − x2)α dx = 22α+1Γ (2n + α + 2)2

Γ (2n + 2α + 2)(2n + 1)! . (3.9)

As special cases of (3.9) we note:

• α = 0, Legendre polynomials Pn := P (0,0)
n . Then In = 2 and we recover (1.1).

• α = − 1
2 , Chebyshev polynomials of the first kind Tn := n!

(1/2)n
P (−1/2,−1/2)

n . Then

In =
1∫

−1

(
T2n+1(x)

x

)2(
1 − x2)−1/2

dx = (2n + 1)π.

This corresponds to (3.2) and (3.3) becoming In = In−1 + 2π , I0 = π .
• α = 1

2 , Chebyshev polynomials of the second kind Un := (n+1)!
(3/2)n

P (1/2,1/2)
n . Then

In =
1∫

−1

(
U2n+1(x)

x

)2(
1 − x2)1/2

dx = (2n + 2)π.

This corresponds to (3.2) and (3.3) becoming In = In−1 + 2π , I0 = 2π .

3.4. Example: Hermite polynomials

With the notation of Section 3.2 take dμ(x) := e−x2
dx on the interval (−∞,∞). Then the pn are Hermite polynomials,

pn(x) = Hn(x),

for which we have (see [4, §10.13]):

hn = π1/22nn!, kn = 2n,

p2n(0) = (−1)n22n
(

1

2

)
n
, p′

2n+1(0) = 2(2n + 1)p2n(0).

Then (3.7) yields

In =
∞∫

−∞

(
H2n+1(x)

x

)2

e−x2
dx = π1/222n+2(2n + 1)!.

4. Persson–Strang type integrals for general measures

4.1. Quadratic transformation

Let the polynomials pn be orthogonal with respect to an even weight function w on the interval (−a,a). For nonzero
constants Cn define polynomials qn of degree n by

p2n+1(x) = cnxqn
(
x2).

Then the polynomials qn are orthogonal with respect to the measure x1/2 w(x1/2)dx on the interval [0,
√

a ), see Chihara [3,
Ch. I, §8]. We can also rewrite the integral (3.1) in terms of the polynomials qn:

a∫
−a

(
p2n+1(x)

x

)2

w(x)dx = c2
n

√
a∫

0

qn(x)2x−1/2 w
(
x1/2)dx.

This suggests that, for an orthogonality measure μ on an interval [0,a] and for orthogonal polynomials qn with respect to
the measure x dμ(x) on [0,a] the integral
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a∫
0

qn(x)2 dμ(x)

may have a nice evaluation. Moreover, we recognize the polynomials qn as kernel polynomials corresponding to the orthogo-
nal polynomials on [0,a] with respect to measure μ.

4.2. Using kernel polynomials

Let {pn} be a system of orthogonal polynomials with respect to an orthogonality measure μ with support within
(−∞,a]. Let kn be the coefficient of xn in pn(x). Let x0 � a. For certain nonzero constants cn put

qn(x) := cn Kn(x0, x) = cn

n∑
k=0

pk(x0)pk(x)

hk
. (4.1)

Then {qn} is a system of orthogonal polynomials with respect to the orthogonality measure (x0 −x)dμ(x). These polynomials
are called kernel polynomials (see [1, §5.6]). Let k′

n be the coefficient of xn in qn(x). Then

cn = k′
nhn

kn pn(x0)
.

Note as a special case of (4.1):

cn

n∑
k=0

pk(x0)
2

hk
= qn(x0). (4.2)

The kernel polynomial property of qn follows by combination of (2.6) and (4.1):∫
R

qn(x)p(x)dμ(x) = cn p(x0) (p a polynomial of degree � n). (4.3)

In particular, with p = qn ,∫
R

qn(x)2 dμ(x) = cnqn(x0). (4.4)

If, for special choices of μ and x0, we can explicitly evaluate pn(x0), qn(x0), hn and cn , then (4.4) and (4.2) yield possibly
interesting explicit evaluations of an integral and a finite sum, respectively.

Note that all formulas in this subsection remain unchanged if μ has support within [a,∞) and if x0 � a. Then {qn} is
a system of orthogonal polynomials with respect to the orthogonality measure (x − x0)dμ(x). For x0 in the interior of the
orthogonality interval for {pn}, the orthogonality property of {qn} persists, but then the orthogonality measure is no longer
positive.

More generally than (4.2) and (4.4) we will consider later in this paper specializations for Hahn polynomials of the
identities

n∑
k=0

pk(x0)pk(x1)

hk
= Kn(x0, x1) =

∫
R

Kn(x0, x)Kn(x1, x)dμ(x). (4.5)

4.3. Example: Jacobi polynomials

Let α,β > −1 and take for the orthogonality measure dμ(x) := (1 − x)α(1 + x)β dx with support [−1,1]. Then the pn are
Jacobi polynomials (see [4, §10.8])

pn(x) = P (α,β)
n (x),

which are normalized by their value at x0 := 1:

pn(1) = (α + 1)n

n! .

Then

hn = 2α+β+1 Γ (n + α + 1)Γ (n + β + 1)
, kn = (n + α + β + 1)n

n
.

2n + α + β + 1 Γ (n + α + β + 1)n! 2 n!



E. Diekema, T.H. Koornwinder / J. Math. Anal. Appl. 388 (2012) 125–135 131
Furthermore, the qn are Jacobi polynomials

qn(x) = P (α+1,β)
n (x),

for which

qn(1) = (α + 2)n

n! , k′
n = (n + α + β + 2)n

2nn! ,

hence

cn = 2α+β+1Γ (α + 1)Γ (n + β + 1)

Γ (n + α + β + 2)
.

Substitution of the expressions for cn and qn(1) in (4.4) yields

1∫
−1

P (α+1,β)
n (x)2(1 − x)α(1 + x)β dx = 2α+β+1

α + 1

Γ (n + α + 2)Γ (n + β + 1)

Γ (n + α + β + 2)n! . (4.6)

Formula (4.6) is given without proof in [5, p. 285, formula (6)]. After substitution of the explicit values of pk(1), hk , qn(1)

and cn , formula (4.2) can be written as

n∑
k=0

((α + β + 3)/2)k(α + β + 1)k(α + 1)k

((α + β + 1)/2)k(β + 1)kk! = (α + 2)n(α + β + 2)n

(β + 1)nn! . (4.7)

The left-hand side of (4.7) can be written as a terminating very well poised hypergeometric series, by which (4.7) takes the
form

5 F4

(
α + β + 1,1 + 1

2 (α + β + 1),α + 1,n + α + β + 2,−n
1
2 (α + β + 1),β + 1,−n,n + α + β + 2

;1

)
= (α + 2)n(α + β + 2)n

(β + 1)nn! . (4.8)

Formula (4.8), which we derived here from (4.2), is also a special case of [1, Corollary 3.4.3] (which, in its turn is a termi-
nating version of a degenerate case of Dougall’s evaluation of a terminating 2-balanced very well poised 7 F6(1), see (2.2.9)
and (2.2.10) in [1]).

Remark 4.1. The left-hand side of (4.7) is an example of an indefinite sum: a sum
∑n

k=0 ck , where ck is a hypergeometric term
(i.e., ck+1/ck is a rational function of k) which does not depend on the upper limit n of the sum. Moreover, by (4.7) the
sum can be evaluated for each n as a hypergeometric term sn (i.e., sn+1/sn is a rational function of n). In general, Gosper’s
algorithm can test whether an indefinite sum of hypergeometric terms is summable with a hypergeometric term as sum,
and it explicitly gives this sum if it exists (see [12, Ch. 5]). See (5.4) for a more involved example of such an indefinite sum
(which has (4.7) as a limit case). Of course, as soon as we have an explicit indefinite summation

∑n
k=0 ck = sn then an a

posteriori proof can be immediately given by checking c0 = s0 and sn − sn−1 = cn .

4.4. Example: Laguerre polynomials

Let α > −1 and take for the orthogonality measure dμ(x) := xαe−x dx with support [0,∞). Then the pn are Laguerre
polynomials (see [4, §10.12])

pn(x) = Lα
n (x),

which are normalized by their value at x0 := 0:

pn(0) = (α + 1)n

n! .

Then

hn = Γ (n + α + 1)

n! , kn = (−1)n

n! .

Furthermore, the qn are Laguerre polynomials

qn(x) = Lα+1
n (x),

for which

qn(0) = (α + 2)n
, k′

n = (−1)n

, hence cn = Γ (α + 1).

n! n!
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Substitution of the expressions for cn and qn(1) in (4.4) yields

∞∫
0

Lα+1
n (x)2xαe−x dx = Γ (α + 1)

(α + 2)n

n! . (4.9)

A more general version of formula (4.9), but still a specialization of (4.3), was earlier obtained by Carlitz [2, p. 340] (however
with an erroneous factor (−1)n and without a side condition that m � n). Yet earlier, Mayr [10, §3] evaluated the integral∫ ∞

0 e−λxLa
r (αx)Lb

s (βx)xσ−1 dx as an Appell F2 hypergeometric function. Specialization of his formula puts the left-hand side
of (4.9) equal to

Γ (α + 1)

(
(α + 2)n

n!
)2

F2(α + 1,−n,−n,α + 2,α + 2;1,1)

= Γ (α + 1)

(
(α + 2)n

n!
)2 n∑

m=0

(α + 1)m(−n)m

m!(α + 2)m
2 F1

(
α + m + 1,−n

α + 2
;1

)

= Γ (α + 1)

(
(α + 2)n

n!
)2 n∑

m=0

(α + 1)m(−n)m

m!(α + 2)m

(1 − m)n

(α + 2)n
,

which equals the right-hand side of (4.9). In the last equality we used the Chu–Vandermonde formula [1, Corollary 2.2.3].
After substitution of the explicit values of pk(0), hk , qn(0) and cn , formula (4.2) can be written as

n∑
k=0

(α + 1)k

k! = (α + 2)n

n! . (4.10)

The left-hand side can be rewritten as the terminating hypergeometric series

2 F1(−n,α + 1;−n;1).

Hence (4.10) is a special case of the Chu–Vandermonde formula. Of course, (4.10) can also be immediately checked (see end
of Remark 4.1).

5. Further generalization in the case of Hahn polynomials

In this section we use Hahn polynomials

pn(x) = Q n(x;α,β, N) = 3 F2

(−n,n + α + β + 1,−x
α + 1,−N

;1

)
(n = 0,1, . . . , N) (5.1)

(see [8, §1.5]) for a pilot study in order to see how the general theory of Section 4.2 can be made concrete for families of
orthogonal polynomials higher up in the Askey scheme. We will take x0 = N , but then it will turn out that the right-hand
sides of (4.2) and (4.4) cannot be made explicit in a simple form. Instead we will therefore consider (4.5) with x0 = N ,
x1 = N − 1.

Hahn polynomials satisfy the orthogonality relation

N∑
x=0

pm(x)pn(x)wx = hnδm,n (m,n = 0,1, . . . , N)

with

wx = (α + 1)x

x!
(β + 1)N−x

(N − x)!
and

hn = (α + β + 2)N

N!
n + α + β + 1

2n + α + β + 1

(−1)nn!
(−N)n

(β + 1)n

(α + 1)n

(N + α + β + 2)n

(α + β + 2)n
.

We have also (with notation of Section 4.2 and with x0 = N):

kn = (n + α + β + 1)n

(α + 1)n(−N)n
, pn(N) = (−1)n(β + 1)n

(α + 1)n
,

qn(x) = Q n(x;α,β + 1, N − 1), k′
n = (n + α + β + 2)n

.

(α + 1)n(−N + 1)n
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Hence

cn = (α + β + 2)N

N!
(N + α + β + 2)n

(α + β + 2)n

n!
(−N + 1)n

.

Then (4.1) takes the form

Q n(x;α,β + 1, N − 1)

= (N + α + β + 2)n

(α + β + 2)n

n!
(−N + 1)n

n∑
k=0

2k + α + β + 1

k + α + β + 1

(α + β + 2)k

(N + α + β + 2)k

(−N)k

k! Q k(x;α,β, N). (5.2)

Instead of putting x = N in (5.2) (like we obtained (4.2) from (4.1)), we can better put x = N − 1 in (5.2). Indeed,
Q n(N;α,β + 1, N − 1) does not have a simple explicit expression, but there is a simple expression

qn(N − 1) = Q n(N − 1;α,β + 1, N − 1) = (−1)n(β + 2)n

(α + 1)n
,

while

pn(N − 1) = Q n(N − 1;α,β, N) = (−1)n(β + 1)n

(α + 1)n

(
1 − n(n + α + β + 1)

(β + 1)N

)
,

as follows easily from (5.1). Thus we will specialize (4.5) for Hahn polynomials with x0 = N and x1 = N − 1. Then, by
recalling that qn(x) = cn Kn(N, x) and by putting

rn(x) := cn Kn(N − 1, x),

we can rewrite (4.5) as

cn

n∑
k=0

pk(N)pk(N − 1)

hk
= qn(N − 1) = 1

cn

N∑
x=0

qn(x)rn(x)wx. (5.3)

We will examine the two identities in (5.3) more closely in the next two subsections.

5.1. The first identity: terminating very well poised 6 F5(−1)

The first identity in (5.3) can be rewritten more explicitly as follows

(N + α + β + 2)n

(α + β + 2)n

n!
(−N + 1)n

n∑
k=0

2k + α + β + 1

k + α + β + 1

(α + β + 2)k

(N + α + β + 2)k

(−N)k

k!

× (−1)k(β + 1)k

(α + 1)k

(
1 − k(k + α + β + 1)

(β + 1)N

)

= (−1)n(β + 2)n

(α + 1)n
. (5.4)

The left-hand side of (5.4) can be written as a linear combination of two terminating very well poised hypergeometric series
of argument −1, by which (5.4) takes the form

6 F5

(
α + β + 1,1 + 1

2 (α + β + 1),β + 1,−N,n + α + β + 2,−n
1
2 (α + β + 1),α + 1, N + α + β + 2,−n,n + α + β + 2

;−1

)

− 6 F5

(
α + β + 3,1 + 1

2 (α + β + 3),β + 2,−N + 1,n + α + β + 3,−n + 1
1
2 (α + β + 3),α + 2, N + α + β + 3,−n + 1,n + α + β + 3

;−1

)
(α + β + 2)(α + β + 3)

(N + α + β + 2)(α + 1)

= (β + 2)n(α + β + 2)n

(α + 1)nn!
(−1)n(−N + 1)n

(N + α + β + 2)n
. (5.5)

We can also write the left-hand side of (5.5) as one single terminating very well poised 8 F7 of argument −1:

8 F7

(
a,1 + 1

2 a, c + 1,a − c + 1, β + 1,−N,n + a + 1,−n
1
2 a, c,a − c,α + 1, N + a + 1,−n,n + a + 1

;−1

)

= (β + 2)n(α + β + 2)n (−1)n(−N + 1)n
, (5.6)
(α + 1)nn! (N + α + β + 2)n
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where

a = α + β + 1, c =
(

(β + 1)N + 1

4
(α + β + 1)2

)1/2

.

Note that (4.8) (with α and β interchanged) can be obtained as the limit of (5.5) or (5.6) for N → ∞.
Formula (5.5) can also be derived by combining a few identities for hypergeometric functions given in the literature. First

apply Whipple’s formula [14, (6.3)], [1, Theorem 3.4.6] to the two 6 F5(−1)’s in order to rewrite the left-hand side of (5.5)
as a linear combination of two 0-balanced 3 F2(1)’s:

(−1)n(α + β + 2)n

n!
(

3 F2

(
N + α + 1,n + α + β + 2,−n

N + α + β + 2,α + 1
;1

)

+ n(n + α + β + 2)

(N + α + β + 2)(α + 1)
3 F2

(
N + α + 1,n + α + β + 3,−n + 1

N + α + β + 3,α + 2
;1

))
. (5.7)

By the contiguous relation (see [6, (3.11)])

3 F2

(
a,b, c

d, e
; z

)
= 3 F2

(
a,b, c − 1

d, e
; z

)
+ abz

de
3 F2

(
a + 1,b + 1, c

d + 1, e + 1
; z

)
, (5.8)

which can be proved in a straightforward way, expression (5.7) simplifies to

(−1)n(α + β + 2)n

n! 3 F2

(
N + α,n + α + β + 2,−n

N + α + β + 2,α + 1
;1

)
. (5.9)

By the Pfaff–Saalschütz formula [1, (2.2.8)] expression (5.9) is equal to the right-hand side of (5.5).

Remark 5.1. Formula (5.8) can be extended to the more general contiguous relation

r Fs

(
a1, . . . ,ar

b1, . . . ,bs
; z

)
= r Fs

(
a1, . . . ,ar−1,ar − 1

b1, . . . ,bs
; z

)
+ a1 . . .ar−1z

b1 . . .bs
r Fs

(
a1 + 1, . . . ,ar−1 + 1,ar

b1 + 1, . . . ,bs + 1
; z

)
. (5.10)

For the proof just write the summand for the power series expansion in z of the left-hand side as

(a1)k . . . (ar−1)k(ar)k−1(ar − 1)

(b1)k . . . (bs)kk! zk + (a1)k . . . (ar−1)k(ar)k−1k

(b1)k . . . (bs)kk! zk.

The q-analogue of (5.10) is given by Krattenthaler [9, (2.2)].

5.2. The second identity: the kernel polynomials Kn(N − 1, x)

In the second identity of (5.3) the only still unexplicit expression is the polynomial rn(x) = Kn(N − 1, x). As a kernel
polynomial for the point N − 1 it satisfies the property that

N∑
x=0

rn(x)p(x)wx = cn p(N − 1) (p a polynomial of degree � n).

For the evaluation in terms of Hahn polynomials of rn(x) we derive the following

rn(x) = cn

n∑
k=0

pk(N − 1)pk(x)

hk
=

n∑
k=0

(
1 − k(k + α + β + 1)

(β + 1)N

)
pk(N)pk(x)

hk

= qn(x) − 1

(β + 1)N
(Λqn)(x),

where (see [8, (1.5.5)])

(Λ f )(x) := (x + α + 1)(x − N)(� f )(x) + x(x − β − N − 1)(� f )(x − 1).

Now use (see [8, (1.5.5), (1.5.7)]) that

(Λqn)(x) = n(n + α + β + 2)qn(x) − (x + α + 1)(�qn)(x)

= n(n + α + β + 2)Q n(x;α,β + 1, N − 1) + n(n + α + β + 2)
Q n−1(x;α + 1, β + 2, N − 2).
(α + 1)(N − 1)
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So we obtain that

rn(x) =
(

1 − n(n + α + β + 2)

(β + 1)N

)
Q n(x;α,β + 1, N − 1)

− n(n + α + β + 2)

N(N − 1)(α + 1)(β + 1)
(x + α + 1)Q n−1(x;α + 1, β + 2, N − 2). (5.11)

Thus the second identity in (5.3) becomes

(
1 − n(n + α + β + 2)

(β + 1)N

) N∑
x=0

(
Q n(x;α,β + 1, N − 1)

)2
wx − n + α + β + 2

(α + 1)(β + 1)

× n

N(N − 1)

N∑
x=0

Q n(x;α,β + 1, N − 1)Q n−1(x;α + 1, β + 2, N − 2)(x + α + 1)wx

= (α + β + 2)N

N!
(−1)n(β + 2)n

(α + 1)n

(N + α + β + 2)n

(α + β + 2)n

n!
(−N + 1)n

. (5.12)

Remark 5.2. In (5.12) replace x by N X , divide both sides by Nα+β+1 and let N → ∞. Then we obtain, at least formally, as
a limit case of (5.12) the identity

1∫
−1

P (α,β+1)
n (x)2(1 − x)α(1 + x)β dx = 2α+β+1

β + 1

Γ (n + α + 1)Γ (n + β + 2)

Γ (n + α + β + 2)n! , (5.13)

which becomes (4.6) after an easy rewriting. For the limit transition from (5.12) to (5.13) use that

lim
N→∞ Q n(Nx;α,β, N) = n!

(α + 1)n
P (α,β)

n (1 − 2x)

(see [8, (2.5.1)]) and

lim
k→∞

Γ (k + a)

Γ (k + b)
kb−a = 1

(see [1, (1.4.3)]). Note that the second sum on the left-hand side of (5.12) is killed in the limit process.
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