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Hair follicles cycle between stages of growth (anagen) and metabolic quiescence (telogen) throughout life. In
mature follicles, transition from telogen back into anagen involves the activation, proliferation, and
differentiation of epithelial stem cells located in the bulge, a specialization of the outer root sheath. Recent
studies identified keratin 6a (K6a) transcripts as enriched in bulge epithelial stem cells in mouse skin. We used
messenger RNA probes, antibodies, a LacZ reporter mouse model, and whole-mount staining assays to
investigate the regulation of mK6a during mouse postnatal hair cycling, and compare it to mK75, a companion
layer (Cl) marker. We find that mK75 regulation parallels that of inner root sheath (IRS) markers, with expression
onset at anagen IIIa above the new hair bulb and subsequent spreading towards the bulge. Although also
occurring in the Cl, mK6a expression begins at anagen IIIb in differentiating cells located proximal to the bulge,
and subsequently spreads towards the hair bulb. mK6a and mK75 thus exhibit temporally distinct, and spatially
opposed, expression patterns in the Cl during postnatal anagen. These findings provide novel insight into the
morphogenesis and properties of the Cl, and raise the distinct possibility that it is an integral part of the IRS
compartment.
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INTRODUCTION
Epithelial appendages, including hair, nail, glands, tooth,
etc., are topologically complex miniature organs that develop
from the single-layered ectoderm during embryogenesis
(Hardy, 1992). Mature hair follicles, in particular, comprise
eight epithelial layers, each the product of a distinct terminal
differentiation pathway, organized in concentric circles
around the main axis of the follicle. They are, from inside
out, the medulla, cortex, and cuticle, which form the hair
shaft; another cuticle, the Huxley’s and Henle’s layers (He),
which form the inner root sheath (IRS); the companion layer
(Cl), and finally, the outer root sheath (ORS), a stratified
epithelium that wraps around the follicle and is contiguous
with the epidermis. The various types of hair follicles
occurring in mammals share the same general architecture
(Hardy, 1992; Sundberg and Hogan, 1994).

A fascinating property of hair follicles is the unique
developmental cycle they undergo throughout life, with
phases of rapid growth (anagen) interspersed with involution

(catagen) and rest (telogen) (Hardy, 1992). This cycle
recapitulates many of the key events occurring during
morphogenesis, and requires the temporal and spatial
integration of multiple stimulatory and inhibitory signals
(Paus and Cotsarelis, 1999; Fuchs et al., 2001; Millar, 2002).
Growth of a new hair requires re-entry into anagen via the
activation of progenitor (stem) cells residing in, or near, a
specialized part of the follicle ORS known as the bulge
(Cotsarelis et al., 1990; Taylor et al., 2000; Oshima et al.,
2001). Activating signals that emanate from mesenchymal
cells located in the proximal dermal papilla direct progenitor
cells to divide rapidly, migrate downward, and differentiate
to regenerate a hair bulb, from which a new hair shaft will
emerge (Cotsarelis et al., 1990; Taylor et al., 2000; Oshima
et al., 2001; Alonso and Fuchs, 2003). In specific settings, for
example, after skin epithelial injury, bulge epithelial cells
also participate in epidermal homeostasis (Ito et al., 2005;
Levy et al., 2005). Also, non-melanoma skin tumors often
originate from progenitor cells housed in hair follicles
(Stenback, 1980; Morris et al., 1986; Hutchin et al., 2005;
Cotsarelis, 2006). Not surprisingly, therefore, there has been
considerable interest in hair follicles, and its fascinating
growth cycle, in recent years.

A single layer of flattened epithelial cells, the Cl, occurs
between the outer and IRS compartments of hair follicles.
This layer was initially recognized as being distinct from the
ORS based on electron microscopy observations (Ito, 1986,
1988). A growing list of molecular markers, starting with
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keratin 6hf (now renamed as K75; Winter et al., 1998; Wojcik
et al., 2001; Schweizer et al., 2006) and now including the
serpin plasminogen activator inhibitor type 2 (PAI-2) (Jensen
et al., 2000), microtubule associated protein-2 (Hallman
et al., 2002) and calretinin (Poblet et al., 2005), confirmed
that the program of differentiation giving rise to the Cl is
distinct from the ORS and IRS layers. Yet, the function of the
Cl and its relationship to the proximal ORS and IRS has
remained incompletely understood.

Given their large number (450) and differentially
regulated expression, keratins are very useful as markers
reflecting the type and differentiated state of epithelial cells,
including those making up hair follicles. Several years ago,
researchers provided evidence that K15 and K19 antigens
occur at higher levels in hair bulge epithelial cells in vivo
(Michel et al., 1996; Lyle et al., 1998; Liu et al., 2003). More
recently, several researchers reported on the isolation and
characterization of hair bulge-derived cells that are highly
enriched in epithelial stem cells. In two such studies
involving mouse skin, gene expression profiling suggested
that the messenger RNA (mRNA) for the type II keratin 6a
(K6a) paralog occurs at higher levels in bulge epithelial cells
compared to epidermal basal cells, chosen as a reference
(Tumbar et al., 2004; Morris et al., 2004). In a third study,
also carried out in the mouse, K6 immunoreactivity was seen
to coincide with CD34, a cell surface marker reported to be
enriched in the hair bulge epithelial stem cells (Trempus
et al., 2003). Before these reports, K6 antigens and/or mRNAs
had been localized to the ORS (Takahashi et al., 1998) and,
specifically, to the Cl in anagen-stage hair follicles (e.g.,
Rothnagel and Roop, 1995; Winter et al., 1998; Rothnagel
et al., 1999; Wojcik et al., 2001; Bernot et al., 2002). In
telogen-stage follicles, K6 immunoreactivity occurs in the
club hair sheath (Bernot et al., 2002), a multilayered
epithelium wrapping around the base of the club hair,
featuring cells anchoring the hair on its inner side and
progenitor cells giving rise to the next generation of anagen
hairs on its outer side ( Wilson et al., 1994; Koch et al., 1998).
The status of mK6a as a marker enriched in epithelial stem
cells located in the bulge thus remains unclear.

Here, we analyzed the regulation of mK6a mRNA during
hair follicle cycling. We used in situ hybridization for the
mK6a mRNA as well as a previously described hK6a-LacZ
transgenic mouse model (Takahashi and Coulombe, 1996,
1997) to circumvent specificity problems related to the high
homology between K6a and related type II keratins (Wang
et al., 2003), as well as sensitivity problems related to keratin
epitope modifications in hair follicle tissue (Nachat et al.,
2005). These studies were conducted in whole-mount
preparations of mouse tail skin (Braun et al., 2003), in which
the hair follicles are not only larger but histological sectioning
plane effects are reduced. Finally, we related our mK6a
findings to those of mK75, a bonafide marker of the Cl
(Winter et al., 1998; Wojcik et al., 2001; Wang et al., 2003)
(see comment about keratin gene nomenclature under
‘‘Materials and Methods’’), and trichohyalin, which is
expressed in the IRS and hair medulla (O’Guin et al.,
1992). We find that mK6a exhibit a novel and unique

regulatory pattern during hair cycling, which is restricted to
the Cl and proceeds in a hair bulge to hair bulb direction.
This pattern is temporally and spatially distinct from that of
mK75, which closely parallels that of trichohyalin in the IRS.
Our findings also suggest that very few mK6a-expressing cells
are actively dividing, and none appears to be ‘‘slow-cycling’’,
a typifying feature of stem cells. The significance of the mK6a
and mK75 mRNA patterns for the morphogenesis and
properties of the Cl, and its relationship to the outer and
IRS compartments in hair follicles, are discussed.

RESULTS
mK6a mRNA distribution during hair follicle cycling

We examined the distribution of mK6a mRNA during the first
postnatal hair follicle cycle using in situ hybridization. Mouse
tail skin epithelial preparations, which are ideally suited for
whole-mount labeling procedures (Braun et al., 2003), were
hybridized with a probe specific for the mK6a mRNA
(Takahashi et al., 1998). Pilosebaceous units (i.e., a hair
follicle with a pair of sebaceous glands) are organized in
triads in mouse tail skin, with the middle hair follicle cycling
ahead of the flanking ones (Schweizer and Marks, 1977).
Otherwise, hair cycling occurs exactly as in pelage skin (Gu
and Coulombe, unpublished data), and thus the morpho-
logical criteria defined by Muller-Rover et al. (2001) could be
applied to stage tail follicles along their postnatal cycle.
Tissue sampling was conducted between P22, when tail skin
follicles are in telogen, to the next telogen at P55.

During telogen, the mK6a mRNA was detected in the
innermost layer of the club sheath, forming a cup around the
club hair proper (Figure 1a). The epithelial downgrowth that
initially forms following the onset of anagen is negative for
the mK6a mRNA (Figure 1b and c). Starting at anagen IIIb and
established by stage IIIc, the mK6a mRNA occurs near the
base of the telogen follicles (Figure 1d and e), and
progressively extends downward between late anagen IIIc
and VI (Figure 1f–i). Additional data reported below confirms
these assignments. Once follicles are maximally elongated
(anagen V–VI), the hybridization signal reaches down to the
suprabulbar region of the follicle (Figure 1h and i). During
that period, the signal for mK6a mRNA persists in the club
hair sheath of the previous follicle until anagen VI (Figure
1e–i). By mid and late catagen (Figure 1j–l), the signal for
mK6a becomes significantly stronger in the narrower
follicular base, forming a ‘‘filled cup’’ that persists as the
follicle completes its regression. The newly formed telogen
hair follicle exhibits a hybridization pattern identical to that
shown in Figure 1a (data not shown). A sense probe yielded
background staining (Figure 1m), establishing specificity.

mK6a regulation is reproduced by the human K6a gene
promoter in transgenic reporter mice

We previously reported on a hK6a-LacZ mouse model
(Takahashi and Coulombe, 1996, 1997) in which 5.2 kb of
50 upstream sequence from the cloned human K6a gene
(Takahashi et al., 1995) controls the expression of a LacZ
reporter modified with a nuclear localization signal. As
described then, conventional pre-embedding X-gal staining
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failed to detect significant LacZ expression in anagen-stage
pelage hair follicles in these mice. In contrast, LacZ activity
could be readily detected in the larger vibrissae follicles
(Takahashi and Coulombe, 1997) and at the edge of skin
wounds, which are less prone to sectioning plane effects.
Wishing to extend the analysis of K6a expression during hair
follicle cycling, we performed whole-mount X-gal stainings
as well as LacZ antibody stainings on tail skin preparations
from hK6a-LacZ mice.

During telogen, the lacZ reporter is expressed predomi-
nantly in two locations: near the base of the club hair, and in
particular, in a ring structure slightly below the sebaceous
glands (Figure 2a and b). As was the case for mK6a mRNA,
the outer epithelial layer surrounding the club hair is devoid
of signal (Figure 2a and b). This distribution is maintained
(Figure 2c, d) until anagen stage IIIb, at which time a small
group of nuclei apposed against the club hair base now

express LacZ (Figure 2e and f). Although the number of Lac-Z-
positive nuclei has increased by anagen stage IIIc/IV, reporter
activity remains proximal to the old club hair sheath so that
the bulk of the epithelial downgrowth that has formed below
is conspicuously devoid of activity (Figure 2g, h). As anagen
progresses further to stages V (Figure 2i and j) and VI (data not
shown), expression of LacZ spreads in a downward direction
but, as is the case for mK6a, does not reach beyond the
suprabulbar region. By mid-catagen, LacZ expression has
reorganized into a cylinder capped at the distal (bulb) end
(Figure 2k and l). As the follicle progresses to late catagen, the
lacZ expression domain shortens whereas the signal increases
in intensity (e.g., Figure 2m and n). This process continues
until the pattern characteristic of telogen is re-achieved (data
not shown; see Figure 2a). This pattern, which was observed
in two independent lines of hK6a-LacZ mice, thus closely
mimics that of the endogenous mK6a mRNA (Figure 1).
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Figure 1. Regulation of endogenous mK6a mRNA during postnatal hair follicle cycling in mouse. Whole-mount tail epidermal sheets, prepared from P22-P55

wild-type mice, were hybridized with (a–l) antisense and (m) sense probes specific for the mK6a mRNA. Representative results are shown. Hair cycle stage is

indicated below each micrograph. In frames (a–f), a line depicts the outer limit of relevant areas of follicular tissue. Positive hybridization was detected in the

innermost epithelial layer of the bulge during telogen (a; see arrows). This distribution was maintained in anagen I/II (b; see arrows) and (c) anagen IIIa. (d) At

anagen IIIb, additional hybridization appears in the newly formed hair (‘‘new’’), proximal to the club hair sheath (see opposing arrows in d). Thereafter, the

signal intensifies and spreads downward, in the direction of the maturing hair bulb, during (e) anagen IIIb/c, (f) anagen IIIc, (g) anagen IV, (h) anagen V, and

(i) anagen VI. (i) During that period, a strong signal for the mK6a mRNA is maintained in the club hair sheath of the previous hair (‘‘old’’) until anagen VI, at

which time it has disappeared (i). (j–l) During catagen, the signal for mK6a becomes stronger but restricted to the narrowing base of the involuting follicle. (m)

The sense probe yielded background staining in these preparations. SG, sebaceous gland; bulb, hair bulb. Asterisks depict melanin pigmentation that should not

be confused with hybridization signal. Bar¼50 mm.
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We performed dual indirect immunofluorescence on
whole-mount tail skin preparations to compare the distribu-
tion of LacZ antigens to that of K6 and its partner K17. Stained
preparations were visualized by confocal microscopy. In
anagen follicles, nuclear LacZ antigens form a thin layer that

coincides with cytoplasmic K6 antigens (Figure 2o and p,
anagen V). In catagen follicles, a single row of LacZ-positive
nuclei corresponds to the innermost portion of K17-positive
(Figure 2q and r; catagen I) and K6-positive tissue (Figure 2s
and t; catagen VIII). In telogen follicles, LacZ staining occurs
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Figure 2. Regulation of hK6a-LacZ reporter during postnatal hair follicle cycling in transgenic mice. (a–n) Whole-mount tail epidermal sheets, prepared from

P22-P55 hK6a-LacZ transgenic mice, were processed for X-gal staining, to detect LacZ enzymatic activity, or LacZ antibody, to detect the corresponding antigen.

Representative results are shown. Hair cycle stage is indicated below each micrograph. In frames, lines depict the outer limits of the relevant areas of the club

hair sheath of the previous hair (‘‘old’’) and/or newly formed hair (‘‘new’’). The LacZ open reading frame contains a nuclear localization signal.

All incubations in X-gal staining solutions were carried out for 1 hour. (a, b) During telogen and early anagen (II/IIIa; see c, d), LacZ-positive cells occur near the

base of the club hair and in a ring-like structure below the sebaceous glands (see arrows). (e, f) By anagen IIIb, at which time the tip of the newly emerging hair

nears the club hair sheath of the old one, a small group of nuclei apposed to the club hair base express LacZ (arrows). (e–j) Subsequently (anagen IIIc-4V), LacZ

expression intensifies and progressively spreads in the direction of the bulb. (k–n) During catagen, the signal for mK6a-LacZ becomes stronger but restricted to

the narrowing base of the involuting follicles. No signal occurs in similar preparations from non-transgenic mice (data not shown). SG, sebaceous gland; bulb,

hair bulb. Asterisks depict melanin pigmentation that should not be confused with signal. (o–v) Whole-mount tail epidermal sheets, prepared from P22-P55

hK6a-LacZ transgenic mice, were dual-immunostained using antibodies directed at (o–u) LacZ and either (p, t) K6, (r) K17, or (v) the IRS marker trichohyalin,

before analysis by confocal microscopy. Micrographs are labeled as above, and arrows denote labeling. The anti-mouse secondary antibody used yields

nonspecific staining on sebaceous glands (SG). Bar¼ 50mm.
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mostly as a concentric ring below the sebaceous glands
(Figures 1 and 2), whereas K17 antigens are present in the
entire club sheath (Bernot et al., 2002) (data not shown). Dual
staining for trichohyalin and LacZ antigens revealed that the
LacZ signal is immediately outside of the IRS (Figure 2u and
v), indicating that LacZ protein is restricted to the Cl.

Proliferation status of mK6a-expressing cells in cycling hair
follicles

We next ascertained the proliferation status of hK6a-LacZ
expressing cells, identified via antibody staining, through
BrdU immunolocalization studies. BrdU incorporation regi-
mens were varied so as to localize either slow cycling or
rapidly cycling keratinocytes. BrdU treatment was first
conducted to assess whether hK6a-LacZ expressing cells are

slow cycling (Cotsarelis et al., 1990; Bickenbach and Chism,
1998; Braun et al., 2003). We found that BrdU-positive
nuclei are distinct from, and located external to, LacZ-
positive ones (Figure 3b–c) in the postnatal telogen follicles
(P53). Lack of colocalization between CD34, a marker
enriched in bulge epithelial stem cells in the mouse (Trempus
et al., 2003; Morris et al., 2004; Tumbar et al., 2004), and K6
antigens, which are present in the hair proximal cell layers
(Blanpain et al., 2004) provide further support for this
interpretation (Figure 3d–i). We also treated hK6a-LacZ mice
of various age with BrdU 2 hours before skin tissue analysis to
determine whether the cells turning on hK6a-LacZ expression
during anagen are actively proliferating. Of the large group of
cells that are BrdU-positive as anagen progresses, only a
small faction are LacZ-expressing as well (Figure 3j–l).
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Figure 3. Proliferating status of hK6a-LacZ-expressing cells during postnatal hair follicle cycling. (a–c) hK6a-LacZ mice were treated with BrdU for the

detection of either slow-cycling cells or (j–l) actively proliferating cells. At the designated times (see Materials and Methods), mice were killed, and tail skin

samples were processed for dual-immunostaining using antibodies directed against the antigens identified below each micrograph. (a–c) Dual stain for BrdU,

identifying slow-cycling cells (arrows), and LacZ (arrowhead). The two signals do not coincide. (d–f, g–i) Dual stain for CD34 (arrows), a marker enriched in

epithelial stem cells of the bulge, and K6 (arrowhead). Again, the two signals do not coincide. The secondary antibody used to detect anti-CD34 reacts

nonspecifically with the hair shaft (see ‘‘old’’ in d). In g–i, the bulge region from a follicle oriented sideways is highlighted. (j–l) Dual stain for BrdU, identifying

S-phase (actively proliferating) cells (see arrows in j), and LacZ (arrowheads in k), imaged using confocal microscopy. The two signals coincide very rarely.

(j–l) Dual stain for Ki67, identifying cycling cells (arrows in j), and LacZ (arrowheads in k), imaged using a standard epifluorescence microscope. Again, the two

signals do not coincide. (m–o) Dual stain for Ki67, identifying cycling cells (arrows in m), and LacZ (arrowheads in n), imaged using a standard epifluorescence

microscope. Bar¼ 50mm.
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Conversely, few LacZ-expressing cells are BrdU-positive as
well (see Figure 3j–l for an example). We extended this
analysis by performing dual immunostaining for LacZ and
Ki67, a marker present in all phases of the cell cycle except
G0. Ki67 immunoreactivity is strong in the outmost cell layer
of sebaceous gland, secondary hair germ cells, hair matrix
cells, and ORS of anagen follicles (Figure 3m and data not
shown). LacZ immunoreactivity signal occurred proximal to,
but did not coincide with, Ki67 (Figure 3n and o; anagen IIIc).
These results suggest that K6a expression is turned on as, or
after, the relevant subset of progenitor keratinocytes commit
to differentiation following anagen re-entry (see Discussion).

mK75 and trichohyalin show a regulation that is temporally and
spatially distinct from mK6a

K75 is a relatively new type II keratin gene (Winter et al.,
1998), and is expressed in the Cl and medulla in human and
mouse hair follicles (Wojcik et al., 2001; Wang et al., 2003).
Its regulation during hair cycling has not been characterized,
though it is known that the mK75 mRNA does not occur in
telogen-stage mouse hair follicles (Wang et al., 2003). To
address this gap, in situ hybridization for mK75 mRNA was
carried out on whole-mount tail skin preparation exactly as
performed for mK6a (Figure 1). No signal for the mK75
mRNA could be detected in telogen-stage tail skin follicles
(Figure 4a) or during anagen I/II (Figure 4b). A strong, triangle-
shaped hybridization signal appears in the follicle center,
right above the newly formed bulb region, at anagen IIIa
(Figure 4c). The hybridization signal progressively expands
downward (Figure 4d and e), and especially upward, during
anagen IIIb (Figure 4f), anagen IIIc (Figure 4g), anagen IV
(Figure 4h), and anagen V and VI (Figure 4i–j). During
catagen, the signal for K75 mRNA adopts a characteristic cup
shape at the base of the involuting hair (Figure 4k–m). The
sense probe yielded background staining (Figure 4n), estab-
lishing signal specificity. Of note, strong hybridization for the
mK75 mRNA was detected in the medulla of many follicles
(e.g., see asterisks in Figure 4i and k), suggesting that probe
penetration is not a limiting factor in these preparations.

The spatiotemporal pattern exhibited by the mK75 mRNA
during hair cycling in tail skin, with appearance in the core
region of the bulb at anagen IIIa and gradual spreading
towards the bulge area, is reminiscent of what has been
reported for IRS markers in pelage skin (Aoki et al., 2001;
Porter et al., 2001; Langbein et al., 2002, 2003). To confirm
that this also applies to tail skin follicles visualized in whole-
mount preparations, we immunolocalized trichohyalin, an
established marker of the IRS and medulla (O’Guin et al.,
1992). As expected, trichohyalin cannot be detected before
anagen IIIa (e.g., Figure 4o and p), at which time it adopts the
characteristic triangular-shaped signal above the hair bulb
(Figure 4, q, r, s, and t). At later stages of anagen (IIIa/b: Figure
4u; IIIb: Figure 4v; IIIc: Figure 4w) and in all other stages of
anagen examined, the pattern seen for trichohyalin was
similar to that of mK75. Altogether these observations
establish for the first time that a Cl marker, K75, is temporally
and spatially regulated in a pattern that is highly analogous to
markers of the IRS and hair shaft.

Specialized Huxley cells (Flügelzellen) occurs in mouse hair
follicles

To better appreciate the intimate features of Cl in anagen hair
follicles, we examined pelage hair follicles of P5 wild-type
mice by transmission electron microscopy. At that stage,
maturing follicles are at stage 7/8 (Paus et al., 1999), which is
similar to anagen III/IV follicles during postnatal hair cycling
(Muller-Rover et al., 2001). Hair follicles sectioned longitu-
dinally along their equatorial plane were selected for study.
Figure 5a and b, shows hair follicle tissue at low magnifica-
tion in the suprabulbar region and at a higher level, below the
isthmus, respectively, corresponding to intermediate and
advanced differentiation stages. In both instances, the He is
terminally differentiated, the cuticles of the hair shaft (Cuh)
and IRS (Cui) are interlocked owing to their inverted,
complementary topology (shown by arrows), and the Cl
appears as a monolayer of thin, elongated cells tightly
apposed against the He. When the more advanced stage of
differentiation corresponding to Figure 5b is viewed at a
higher magnification, numerous desmosomes connecting the
He and Cls (see arrowheads in Figure 5c) can be seen, as well
as large bundles of keratin filaments (K) in the cytoplasm of Cl
cells, polarized on the He side (Figure 5b and d). By
comparison, the interface between the Cl and the ORS
contains markedly fewer adhesion complexes and keratin
filaments (Figure 5c and d). The higher density of keratin
filaments occurring at the advanced stage of Cl differentiation
corresponds to the zone of maximal overlap between the
domains of mK6a and mK75 expression (Figures 1 and 4).
These studies also revealed the presence of gaps between
differentiated cells of the He, allowing for Huxley layer cells
to reach out for, and tightly adhere to, Cl cells (see
arrowheads in Figure 5e). Such structures, termed Flügelzellen
(Clemmensen et al., 1991; Langbein et al., 2002; Alibardi,
2004), have not been described in mouse before. These
ultrastructural observations indicate the Cl forms a tight
connection with the IRS (specifically the He and Huxley
layers), which is itself tightly integrated with the hair shaft,
during hair growth.

mK6a expression in human hair follicles and in the mouse nail
unit

To further substantiate that K6a and K75 are both expressed
in the Cl, we turned to human skin tissue as a guinea pig
antiserum that is monospecific for hK75 protein is available
(Winter et al., 1998; Wang et al., 2003). We find that hK6 and
hK75 antigens colocalize in a thin cell layer of anagen-stage
hair follicles on human scalp sections (5f–h). This layer is
located immediately inside of the ORS, visualized through
K14 staining (data not shown). Given that the hK6b mRNA
occurs at low levels in normal human skin (Takahashi et al.,
1995), the signal detected using our rabbit anti-K6 antiserum
(McGowan and Coulombe, 1998; Wang et al., 2003) mostly
reflects hK6a protein. This confirms that both K6a and K75
occur in the Cl of human hair follicles.

The nail features a region, the interface between
the growing nail plate and stationary nail bed, that is
functionally analogous to the Cl/ORS interface in hair

1066 Journal of Investigative Dermatology (2007), Volume 127

L-H Gu and PA Coulombe
Morphogenesis and Function of the Companion Layer in Hair Follicles



follicles. Intriguingly, this region is also enriched for K6
antigens along with expression of the hK6a-LacZ transgene
(Figure 5i and j). These results suggest that K6a (and K75;
Wang et al., 2003) is expressed in functionally similar regions
in the growing hair and nail plate.

DISCUSSION
The mK6a mRNA seemingly does not occur in slow-cycling
epithelial cells of the hair bulge

Other researchers reported that the mK6a mRNA (Morris
et al., 2004; Tumbar et al., 2004), or K6 protein (Trempus
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Figure 4. Regulation of mK75, a Cl marker, during postnatal hair follicle cycling in mouse. (a–n) Whole-mount tail epidermal sheets, prepared from P22-P55

wild-type mice, were hybridized with (a–m) antisense and (n) sense probes specific for the mK75 mRNA. Hair cycle stage is indicated below each micrograph.

(a–d) A line depicts the outer limit of relevant areas of the follicle. No hybridization was detected during (a) telogen or (b) anagen I. A signal first appeared at

anagen IIIa (see arrows in c, d), in a region located right above the bulb. Subsequently, between anagen IIIb and anagen VI, the hybridization signal intensified

and progressively extended upward, towards the bulge region (see e–j). (k–m) During catagen, the signal becomes restricted to the narrowing base of the

involuting follicles. A strong signal for the mK75 mRNA can often be seen in the medulla (asterisks in i, k), as expected (Wang et al., 2003), suggesting the probe

penetration is not a limiting factor. (n) Use of the sense probe yielded only background staining. (o–w) Whole-mount tail epidermal sheets, prepared from

P22-P55 wild-type mice, were dual-immunostained using the vital dye Hoechst (to visualize nuclei) and an antibody directed at trichohyalin, an IRS marker,

before analysis via standard epifluorescence microscopy. The results obtained are nearly identical as for the mK75 mRNA. See text for more details. SG,

sebaceous gland; bulb, hair bulb. Bar¼ 50 mm.
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et al., 2003), is enriched in sorted epithelial stem cells
originating specifically from the bulge region of hair follicles
(for different results, however, see Blanpain et al., 2004;
Ohyama et al., 2006). K6 is also considered as a progenitor
cell marker in a different epithelial setting, that is, mammary
glands (Smith and Chepko, 2001; Li and Rosen, 2005). Our
mK6a mRNA localization and BrdU incorporation studies
yielded a different outcome, that is, that mK6a is not
expressed in the slow-cycling epithelial cells of the hair
bulge. In support of this interpretation, Cre recombinase-
mediated activation of a highly sensitive reporter transgene

remains restricted to the Cl in mouse pelage skin when
placed under the control of the mK6a gene promoter (Smyth
et al., 2004). Were the mK6a gene transcribed in pluripotent
hair progenitor cells, the domain of Cre-activated reporter
expression clearly would exceed the boundaries of the Cl in
these mice. This said, mK6a expression occurs proximal to
the bulge, and persists in the innermost layer of the club hair
sheath, making such determinations technically challenging.
Moreover, the mK6a gene may be subjected to complex
transcriptional and post-transcriptional regulatory mechani-
sms (e.g., Lu et al., 2005) that may not be fully reproduced in
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Figure 5. Additional observations on the Cl, and parallel with nail tissue. (a–e) Transmission electron microscopy of longitudinally sectioned anagen-stage hair

follicles in P5 wild-type mice. In all cases, that hair is growing in the upper direction. (a and b) show low magnification surveys extending from the hair shaft to

the ORS, whereas (c–e) are higher magnification views detailing the interface between IRS and Cl. (c) The interface between the Henle (He) and Cl features

a high density of desmosomes, in contrast to the contralateral side, where a fine gap separates the Cl cell membrane form that of proximal ORS epithelial cells.

(d) Arrowheads point to large keratin filament bundles (K) in the cytoplasm of Cl cells, proximal to the He. (e) Direct contact, and formation of a tight adhesive

interface, between Huxley layer cells and Cl cells. Such contacts, termed flügelzellen, are made possible because of gaps between differentiated He cells.

Cl, companion layer, Cuh, cuticle of the hair shaft; Cui, cuticle of the IRS; Co, cortex of the hair shaft; He, Henle layer; Hu, Huxley layer; K, keratin filament

bundles; Me, medulla of the hair shaft; nu, nucleus; ORS, outer root sheath; th, trichohyalin. Bar¼ 2 mm. (f–h) Dual immunofluorescence showing the

colocalization of hK6 and hK75 in anagen-stage hair follicles in sections prepared from human scalp. Bar¼ 50mm. (i and j) Longitudinal cross-sections of nail

tissue prepared from hK6a-LacZ transgenic mice, and processed for (i) X-gal staining and (j) K6 immunostaining in hK6a-lacZ mice are expressed in the nail bed

in the front region of nail tissue. In both instances, there is a strong signal in the nail bed epithelium (arrows). Bar¼50 mm.
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the hK6a-LacZ (this study) and mK6a-Cre transgenic mice
(Smyth et al., 2004). Ultimately, more information on the
properties and roles of the innermost epithelial layer in the
club hair sheath (e.g., Blanpain et al., 2004; Ito et al., 2004)
should help revolve the issue of whether mK6a is expressed
in any progenitor (stem) cell population.

The Cl forms alongside the IRS layers during anagen
re-initiation in mouse, and is functionally integrated with the
IRS and hair shaft during hair growth

Our study of mK6a and mK75 mRNA localization during
postnatal hair follicle cycling, using whole-mount assays in
mouse tail skin epithelia (Braun et al., 2003), yielded exciting
new insight into the morphogenesis of the Cl and the
regulation of gene expression as telogen hair follicles
re-enter anagen. As is already established for markers of both
the IRS (e.g., trichohyalin; this study) and hair shaft (see Muller-
Rover et al., 2001), the mK75 mRNA can be first detected in
the upper portion of the newly formed hair bulb, in a
characteristic cone-shaped pattern, at anagen IIIa. Thereafter,
mK75 expression progressively extends towards the isthmus, in
a ‘‘bulb-to-bulge’’ direction, as follicles progress further into
anagen. This pattern is similar to trichohyalin, an established
IRS marker. In anagen stage follicles, K75 occurs in the Cl, a
single row of cells located between the IRS and ORS
compartments, and in the medulla of the hair shaft (Winter
et al., 1998; Wang et al., 2003). Based on evidence introduced
here and elsewhere (Ito, 1986; Winter et al., 1998; Wang
et al., 2003), the Cl originates from the upper matrix of the hair
bulb concomitant with the IRS layers.

Ultrastructural findings also provide strong support for the
notion that the Cl, IRS, and hair shaft are integrated into one
functional unit during hair growth. Relative to the interface
with He, which features extensive tight junctional and
desmosomal cell–cell contacts, many fewer adhesions occur
between the Cl and ORS layer (Figure 5a and c; Ito, 1986,
1988). In addition to this intimate connection between the Cl
and He, specialized Huxley cells extend cytoplasmic bridges,
through rather wide ‘‘gaps’’ occurring between differentiated
He cells, which directly contact the Cl. These remarkable
structures, termed Flügelzellen, have been previously des-
cribed in human and marsupial hair follicles (Clemmensen
et al., 1991; Langbein et al., 2002; Alibardi, 2004), though
their functional significance is unknown. Here, we establish
that they also exist in mouse (Figure 5e). In regards to the
interface between the IRS and hair shaft, it has again long
been known that their cuticles are tightly interlocked owing
to their complementary topology (Figure 5a and b; also, see
Hashimoto and Shibazaki, 1976; Abell, 1994, for similar data
from human hair follicles). The resulting Cl/IRS/hair shaft unit
is able to ‘‘glide’’ along the inner aspect of the ORS, a
compartment with distinct cellular origin and overall proper-
ties, during anagen. The tight interlinking of these three
compartments (hair shaft, IRS, and Cl) likely provides a
tubular frame that guides the growing hair during its
ascension towards the surface. When this unit reaches the
isthmus, the hair shaft breaks free from surrounding sheaths,
which are sloughed off in the hair canal (Ito, 1989; Winter

et al., 1998; Langbein et al., 2002; Langbein and Schweizer,
2005). This model calls for an exquisite degree of coordina-
tion in the rate of cell production and differentiation in the
seven epithelial lineages originating from epithelial pre-
cursors housed in the hair matrix.

A conceptually similar ‘‘tissue engineering’’ problem
occurs as the growing nail plate is gliding along the nail
bed epithelium (Wong et al., 2005). Of interest, a similar
complement of keratin proteins occurs at this interface as
well (De Berker et al., 2000; McGowan and Coulombe,
2000). In hK6a-LacZ mice, for instance, reporter activity can
be readily detected in the nail bed, which also expresses
K6 antigens.

Together with the literature discussed above, the new
findings reported in the study raise the distinct possibility that
the Cl is an integral part of the IRS compartment in hair
follicles. By virtue of the location of its progenitors in the hair
matrix, the timing and location of its formation soon after
anagen re-entry (as seen, specifically, through mK75 expres-
sion), and its ultrastructural integration with the IRS layers
and hair shaft, the Cl certainly is more akin to the IRS than the
ORS compartment. If so, the master regulators of the IRS
lineage should initiate Cl morphogenesis as well. K6 gene
expression is ‘‘retained’’ in the grossly abnormal hair follicles
of GATA-3 null mice, which show specific defects in the IRS
lineage (Kaufman et al., 2003), but this phenomenon likely
reflects the exquisite sensitivity of the K6/K16 pair to aberrant
differentiation in the ORS compartment.

The significance of differential keratin expression in the Cl is
unclear

Although both the mK75 and mK6a genes are expressed in
the Cl of anagen-stage follicles, we show here that the latter
shows a strikingly distinct regulation during postnatal hair
cycling. Thus, the mK6a mRNA is first detected in cells
located adjacent to the club hair epithelium, starting at
anagen IIIb. Thereafter the domain of mK6a mRNA expres-
sion spreads towards the newly generated bulb as follicles
progress further into anagen. These findings are corroborated
by studies of mice in which the expression of a LacZ reporter
is placed under the control of the human orthologous gene
promoter (hK6a) (Takahashi and Coulombe, 1996, 1997). As
reported here, transgenic hK6a expression rarely occurs in
proliferating cell in postnatal hair follicles, and could not be
deteted in slow-cycling cells. In regenerating hair follicles,
therefore, mK6a regulation differs from that of mK75 and
markers of the IRS/hair shaft in several respects, including the
timing and location of its appearance, and its subsequent
progression in time.

Ultrastructurally, prominent keratin filament bundles can
be seen in Cl cells, specifically on the He side (e.g., Figure 5b
and d), starting in the mid-section of the hair follicle. These
bundles have been described before (Ito, 1986, 1988).
Together with the high density of cell–cell adhesions between
the companion and He (and possibly, the enigmatic
Flügelzellen), the presence of such bundles likely fosters
locally high mechanical strength in Cl cells, on the IRS side.
By comparison, the lower density of keratin filament bundles
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occurring on the other side of the cell, facing the ORS, likely
fosters a less adhesive interface, and presumably, allow for
gliding while avoiding intracellular rupture. Whether K6a
and K75 proteins are partially segregated, or completely
integrated (and intermixed) within the asymmetrically orga-
nized keratin network of the Cl, is unknown at this time.
Besides, the distinct spatiotemporal regulation exhibited by
K6a and K75 mRNA following anagen re-entry could serve a
purpose other than, or in addition to, modulating the
mechanical support function of keratin filaments (Coulombe
and Wong, 2004; Kim et al., 2006). These issues certainly are
worth pursuing in follow-up studies.

Implications for the pathophysiology of Cl and nail disorders

Genetic evidence in both human (Winter et al., 2004) and
mouse (Wojcik et al., 1999) establishes that altering keratin
filaments in the Cl significantly compromises the shape and
path of the hair shaft as it grows towards the tissue surface.
Pseudofolliculitis barbae is a common Cl disorder with a
higher prevalence in African American males and other
people with curly hair. The problem arises as a result of
shaving, causing highly curved hairs to grow back into the
skin and trigger a local inflammation and foreign body
reaction. A particular missense mutation, Ala12-4Thr, in K75
has been identified as a risk factor in this disorder (Winter
et al., 2004). Mutations in K6a and K6b genes cause the nail
bed disorder pachyonychia congenita (Bowden et al., 1995;
Smith et al., 1998, 1999; Lin et al., 1999; Terrinoni et al.,
2001; Ward et al., 2003). In addition to the hallmark nail
dystrophy, pachyonychia congenita patients often exhibit
hair anomalies such as pili torti, in which the hair is twisted
and mechanically fragile (Clementi et al., 1986; Feinstein
et al., 1988; Dahl et al., 1995; McLean et al., 1995;
Templeton and Wiegand, 1997). Based on genetic evidence
gathered from mouse studies, it is highly likely that the impact
of mutations in either K6a or K6b is mitigated by their
markedly redundancy function (Wong et al., 2000; Wojcik
et al., 2001). Loss of both mK6a and mK6b causes marked
epithelial fragility in the oral mucosa (Wong et al., 2000;
Wojcik et al., 2001) and at the edge of skin wounds (Wong
and Coulombe, 2003), reflecting a mechanical support role
in these settings. Likely owing to K75 (Wojcik et al., 2001),
however, it has been difficult to ascertain the role of mK6a
and mK6b in hair follicles, and in particular, in the Cl. The
use of Cl-specific gene rearrangement (e.g., Smyth et al.,
2004) to conditionally inactivate the K6a, K6b, and K75 loci,
and replace them with one type II keratin gene at a time, may
help resolve the contribution of individual keratins to the
properties of the Cl in vivo.

MATERIALS AND METHODS
Keratin nomenclature

The novel keratin nomenclature devised by Schweizer et al. (2006)

is in use in this article. The mK6a and mK6b gene were

formally designated as mK6a and mK6b, respectively (Takahashi

et al., 1998; Wong et al., 2000), whereas the mK75 gene was

formerly known as mK6hf (Winter et al., 1998; Wojcik et al., 2001;

Wang et al., 2003).

Animal model, whole-mount epidermal sheets preparation, and
hair cycle analysis

All protocols for mouse experimentation were reviewed and

approved by the Johns Hopkins University Animal Care Use

Committee. Two previously described lines of hK6a-LacZ mice

(23-3 m, 23-1p), harboring a transgene featuring 5.2 kb of 50upstream

sequence from the hK6a gene, were used (Takahashi and Coulombe,

1997). Whole-mount epidermal sheets were prepared from mouse

tail skin as described (Braun et al., 2003). Briefly, tail skin was slit

along its main axis, peeled from the bone, and cut into square-

shaped pieces. After incubation in 5 mM EDTA in phosphate-saline

buffer (PBS) for 4–6 hours at 371C, epidermal sheets were gently

peeled away from the tissue, prepared and used for various analyses.

Because of the focus on hair cycling, all epidermal sheets were

obtained from the same region on the dorsal side of the tail. Hair

cycle stage was determined based on mouse age along with the

morphological criteria defined by Müller-Röver et al. (2001). Hair

follicle cycling proceeds identically in mouse tail and pelage skin

(Gu and Coulombe, unpublished data).

Antibodies, probes, and other reagents

We used a rabbit polyclonal antiserum raised against a K6

C-terminal peptide epitope (‘‘K6gen’’, McGowan and Coulombe,

1998) that reacts equally well with the classic K6 isoform a and b,

but not with K75 or K5 (Wang et al., 2003). Other antibodies used

included rabbit polyclonal antisera directed against K14 (AF64,

Covance Inc., Princeton, NJ), K17 (McGowan and Coulombe, 1998),

Ki67 (VP-K451, Vector lab, UK) and LacZ/b-galactosidase (ab616,

Abcam Ctd); a guinea-pig polyclonal antiserum directed against K75

(Winter et al., 1998); mouse monoclonal antibodies directed against

LacZ/b-galactosidase Ab (40-1a, Developmental study hybridoma

bank, University of Iowa), trichohyalin (AE15, O’Guin et al., 1992)

and BrdU (B9285, Sigma Chem Co., St Louis, MO); and a rat

monoclonal antibody against CD34 (clone RAM34, BD Bioscience,

Rockville, MD). Rhodamine- or FITC-conjugated goat anti-mouse,

anti-rabbit, anti-guinea, or anti-rat secondary antibodies were

obtained from Kirkegaard and Perry Labs (Gaithersburg, MD). In

situ hybridization for the mK6a and mK75 mRNA was performed

using antisense and sense (control) probes as described (Takahashi

et al., 1998; Wang et al., 2003).

Routine histological analyses

For indirect immunofluorescence, whole-mount epidermal sheets

were fixed in 4% paraformaldehyde at room temperature for

20 minutes, rinsed in PBS (2� 10 minutes), blocked and permeabi-

lized by incubation in phosphate–borate buffer (0.5% skim milk

powder, 0.25% fish skin gelatin, 0.5% Triton X-100 in 0.9% NaCl/

20 mM N-2-hydroxyethylpiperazine-N0-2-ethanesulphonic acid pH

7.2) for 30 minutes (Braun et al., 2003). The sheets were then

incubated with properly diluted primary antibodies for B36 hours

with gently agitation, washed in PBS containing 0.2% Tween 20

(4� 1 hour), and then incubated in FITC-or Rhodamine-conjugated

secondary antibodies overnight. Epidermal sheets were washed

again in PBS containing 0.2% Tween 20, rinsed in distilled water

and mounted in Movoil mounting media. Preparations were

visualized using either a Zeiss Axioplan-2 microscope equipped

for epifluorescence or a PerkinElmer UltraView confocal

microscope.
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For b-galactosidase histochemistry, samples were rinsed once in

2 mM MgCl2/PBS and fixed in 0.5% glutaraldehyde/PBS for 15 minutes

at room temperature. They were then washed in 2 mM MgCl2/PBS

(2� 5 minutes) and incubated in freshly prepared 1 mg/ml X-gal

(5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside, G-5001-0101,

ISC, BioExpress) in X-gal solution containing 100 mM Na2HPO4/

NaH2PO4 (pH 7.3), 2 mM MgCl2, 3 mM K3Fe(CN)6, 3 mM K4Fe(CN)6,

0.01% Na-deoxycholate, 0.02% NP-40 for 1 hour at 371C. After

incubation, the samples were washed once in 2 mM MgCl2/PBS and

mounted with crystal mount media (Biomeda, Foster city, CA). Samples

were then analyzed and images captured using a light microscope.

Mouse tissue (nail and tail) were obtained from adult mice and

embedded in OCT (Sakura Finetec, Torrance, CA), 10–20 mm frozen

sections were obtained before fixation.

Transmission electron microscopy

Pelage skin from 5-day-old wild-type C57Bl/6 mice was fixed in

0.1 M sodium cacodylate buffer (pH 7.2) containing 2% glutaralde-

hyde/1% paraformaldehyde, post-fixed in 1% osmium tetroxide/

0.1 M phosphate buffer, and embedded in LX112 epoxy resin (Ladd

Research Industries Inc., Burlington, VT) as described elsewhere

(Paladini and Coulombe, 1999; McGowan et al., 2002). Thin

(50–70 nm) sections were counterstained with uranyl acetate and

lead citrate, and visualized using a Philips CM120 electron

microscope. Longitudinally sectioned hair follicles containing the

entire hair axis were selected for study.

BrdU incorporation and localization

For short-term labeling, mice were intraperitoneally injected

with BrdU (100 mg/kg) 2 hours before killing. For long-term

labeling, P10 mice were intraperitoneally injected with BrdU

(50 mg/kg body weight) every 12 hours for a total of four injections

and killed at P52–P55 for analysis. For BrdU localization, 4%

paraformaldehyde pre-fixed whole-mount epidermal sheets were

denatured in 2 M HCL at 371C for 30 minutes, neutralized twice in

0.1 M borate buffer, pH 8.5 for 5 minutes, and washed twice in PBS

for 5 minutes. Samples were then treated with 0.2% Triton X-100 for

30 minutes, washed three times in PBS, and immunostained as

described above.

In situ hybridization on whole-mount epidermal sheets

All reagents and containers used were 0.1% diethylpyrocarbonate

(DEPC)-treated. Whole-mount epidermal sheets were fixed in 4%

paraformaldehyde at 41C overnight then dehydrated through graded

methanol (25, 50, 75, 100%) in PBS and stored at �201C until use.

Subsequent steps were carried out in sterile 12-well plates over 2

days at room temperature unless mentioned otherwise.

Pre-fixed tail epidermal sheets, warmed to room temperature,

were re-hydrated through 75, 50, 25% methanol in PBS (5 minutes

each) and washed in PBST (0.2% Tween20 in PBS) (3� 5 minutes).

After PBS rinses, samples were then further fixed in 4% paraform-

aldehyde (10 minutes) followed by proteinase K (20 mg/ml in 200 mM

CaCl2/PBS; pre-warmed at 371C) digestion for 15 minutes. Samples

were washed in PBST (3� 10 minutes), post-fixed in 4% paraform-

aldehyde in PBS for 20 minutes, washed again in PBST (2� 10 min-

utes), briefly incubated in 0.1 M TEA buffer (1 minute) and then in

0.25% acetic anhydride in 0.1 M TEA buffer (10 minutes).

After additional washes in PBST (2� 10 minutes), samples were

permeabilized in 0.1% Triton X-100 in PBS for 30 minutes. After

three washes in PBST (10 minutes each), samples were incubated for

1 hour at 651C in pre-warmed hybridization solution (10% Dextran

sulfate, 5� Denhardt’s reagent, 1 M NaCl, 50% formamide, 500mg/ml

tRNA). 1mg/ml probe was added to pre-warmed hybridization solution,

heated at 851C for 3 minutes, and then immediately mixed with the

sample for an overnight incubation at 651C. The next day, the

hybridization solution was removed and samples rinsed in freshly

prepared washing solution (50% formamide, 0.5� standard sodium

citrate, 0.1% Tween 20) at 651C, and incubated in this washing

solution for 2 hours at 651C. Following a wash in 0.2� standard

sodium citrate at 721C for 15 minutes, epidermal sheets were brought

back to room temperature in 0.2� standard sodium citrate, transferred

to blocking solution (3% normal goat serum, 3% fetal bovine serum in

PBS) for 30 minutes, followed by an incubation in alkaline phosphatase

(AP)-conjugated sheep anti-DIG-fab fragments (diluted 1:1,000 in

blocking solution containing 0.3% Tween 20) for 4 hours to overnight

at 41C in the dark. Epidermal sheets were then washed with PBS

(5� 15 minutes), rinsed in AP buffer (100 mM Tris-HCl, pH 9.5, 100 mM

NaCl, 50 mM MgCl2) for 10 minutes, and incubated in freshly prepared

developer solution (4ml/ml nitroblue tetrazolium, 3ml/ml 5-bromo-4-

chloro-8-indolilphosphate (BCIP), 0.2 mg/ml levamizole in AP buffer)

for 12–16 hours. This reaction is stopped by washing the samples with

PBS for 10 minutes, and hybridized epidermal sheets are mounted in

crystal/mount media in preparation for microscopy.
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