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a b s t r a c t

We are concerned with the design of a model and an algorithm for computing a shortest
path in a network having various types of fuzzy arc lengths. First, we develop a new
technique for the addition of various fuzzy numbers in a path using α-cuts by proposing
a linear least squares model to obtain membership functions for the considered additions.
Then, using a recently proposed distance function for comparison of fuzzy numbers, we
present a dynamic programming method for finding a shortest path in the network.
Examples are worked out to illustrate the applicability of the proposed model.
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1. Introduction

The problem of finding a shortest path from a specified source node to any other node is fundamental in graph
theory, and is of continuing interest [1,2]. This problem arises from many applications including transportation, routing,
communications, supply chain management or models involving agents. Let G = (V , E) be a graph, where V is the set of
vertices (nodes) and E is the set of edges (arcs). A path between two nodes is an alternating sequence of vertices and edges
beginning with a starting node and ending with an ending node. The distance (cost) of a path is the sum of the weights (arc
lengths) of the edges on the path. However, since there can be more than one path between any two vertices, the problem
of finding a path with aminimal cost between two specified vertices of interest is the so-called shortest path problem (SPP).
Although in conventional graph theory, the weights of the edges in an SPP are assumed to be precise real numbers, for

most practical applications, these parameters (i.e., costs, capacities, demands, time, etc.) are naturally imprecise. In such
cases, an appropriate modeling approach may justifiably make use of fuzzy numbers, and so does the name fuzzy shortest
path problem (FSPP) appear in the literature [1,3,4].
The FSPP, involving addition and comparison of fuzzy numbers, is quite different from the conventional SPP, which only

involves crisp numbers. In an FSPP, the costs being fuzzy numbers, the task of finding a path being smaller than all the others
is not straightforward, as the comparison of fuzzy numbers as an operation can be defined in a wide variety of ways.
Recently, several results have been published on the FSPP [5]. The work of Dubois and Prade [6] is one of the first on

this subject and considers extensions of the classical Floyd and Ford–Moore–Bellman (FMB) algorithms. However, it was
verified that the algorithm would compute the shortest path distance without identifying an existing path (see [7]) as was
outlined by Klein [8] with a fuzzy dominance set. Lin and Chern [3] defined the denomination of vital arcs as being those
whose removal from the path resulted in an increase of the cost. Another algorithm for this problem, presented by Okada
and Gen [9,10], is a generalization of the Dijkstra algorithm. In this algorithm, the weights of the arcs are considered to
be interval numbers, and are defined using a partial order between interval numbers. Okada and Soper [5] characterized a
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solution not as the shortest path, but as a fuzzy set solution, where each element of the set is a no dominated path or a Pareto
optimal path with fuzzy edge weights. However, this algorithm does not provide decision-makers with any guidelines for
choosing a best path according to their own viewpoints (optimistic/pessimistic, risky/conservative) [11]. Blue et al. [12]
presented an algorithm which would find a cut value to limit the number of analyzed paths, and then applied a modified
version of the k-shortest path (crisp) algorithm proposed by Eppstein [7]. Following the idea of finding a fuzzy set solution,
Okada [13] introduced the concept of the degree of possibility of an arc being on a shortest path. Among the most recent
work is the one by Nayeem and Pal [4] that proposes an algorithm based on the acceptance index introduced by Sengupta
and Pal [14] and which gives a single fuzzy shortest path or a guideline for choosing a best fuzzy shortest path according to
the decision-maker viewpoint [15].
Here, we propose a new approach and an algorithm to find a shortest path in a network with various fuzzy arc lengths.

The remainder of the paper is organized as follows. In Section 2, basic concepts and definitions are given. Section 3 explains
ways of computing α-cuts for fuzzy numbers. We present our fuzzy sum operator by use of a linear least squares model
in Section 4. In Section 5, using a recently proposed distance function, we present a dynamic programming algorithm for
finding fuzzy shortest path in a mixed fuzzy network. We conclude in Section 6.

2. Definitions

We start with basic definitions of some well-known fuzzy numbers.

Definition 1. An LR fuzzy number is represented by ã = (m, a, b)LR, with the membership function, µã(x), defined by

µã(x) =


L
[
m− x
a

]
x ≤ m

R
[
x−m
b

]
x ≥ m,

where L and R are non-increasing functions from R+ to [0, 1], L(0) = R(0) = 1, m is the center, a is the left spread and b is
the right spread.
Note that if L(x) = R(x) = 1 − x with 0 < x < 1, then x is a triangular fuzzy number and is represented by the triplet

ã = (m, a, b), with the membership function, µã(x), defined by

µã(x) =


1−

(
m− x
a

)
x ≤ m

1−
(
x−m
b

)
x ≥ m.

Definition 2. A trapezoidal fuzzy number ã is shown by ã = (a1, a2, a3, a4), with the membership function as follows:

µã(x) =



0 x ≤ a1
x− a1
a2 − a1

a1 ≤ x ≤ a2

1 a2 ≤ x ≤ a3
a4 − x
a4 − a3

a3 ≤ x ≤ a4

0 a4 ≤ x.

A general trapezoidal fuzzy number, along with a cut (to be explained later in Definition 4), is shown in Fig. 1. It is apparent
that a triangular fuzzy number is a special trapezoidal fuzzy number with a2 = a3.

Definition 3. If L(x) = R(x) = e−x2 , with x ∈ <, then x is a normal fuzzy number that is shown by (m, σ ) and the
corresponding membership function is defined to be:

µã(x) = e−(
x−m
σ )

2
, x ∈ <,

where m is the mean and σ is the standard deviation. A normal fuzzy number, along with a cut (to be explained later in
Definition 4), is shown in Fig. 2.

Definition 4. The α-cut and strong α-cut for a fuzzy number ã are shown by ãα and ã+α , respectively, and for α ∈ [0, 1] are
defined to be:

ãα =
{
x|µÃ(x) ≥ α, x ∈ X

}
,

ã+α =
{
x|µÃ(x) > α, x ∈ X

}
,

where X is the universal set.
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Fig. 1. A trapezoidal fuzzy number with an α-cut.

Fig. 2. A normal fuzzy number with an α-cut.

Note that the upper and lower bounds for theα-cut set (ãα) are shownby sup ãα and inf ãα , respectively. Here, we assume
that the upper and lower bounds of α-cuts are finite values and for simplicity we show sup ãα by ãRα and inf ãα by ã

L
α (see

Figs. 1 and 2).

3. Computing α-cuts for fuzzy numbers

For the LR fuzzy numbers with L and R invertible functions, the α-cuts are:

α = L
[
m− x
a

]
⇒
m− x
a
= L−1(α)⇒ ãLα = x = m− aL

−1(α),

α = R
[
x−m
b

]
⇒
x−m
b
= R−1(α)⇒ ãRα = x = m+ bR

−1(α).

For specific L and R functions, the following cases are discussed.

3.1. α-cuts for trapezoidal fuzzy numbers

Let ã = (a1, a2, a3, a4) be a trapezoidal fuzzy number. An α-cut for ã, ãα , is computed as:

α =
x− a1
a2 − a1

⇒ ãLα = x = (a2 − a1)α + a1,

α =
a4 − x
a4 − a3

⇒ ãRα = x = a4 − (a4 − a3)α,

⇒ ãα =

{
ãLα = (a2 − a1)α + a1
ãRα = a4 − (a4 − a3)α,

0 ≤ α ≤ 1, (1)

where ã=α [ã
L
α, ã

R
α] is the corresponding α-cut. The α-cuts for triangular fuzzy numbers are obtained by using the above

equations considering a2 = a3.

3.2. α-cuts for normal fuzzy numbers

If ã = (m, σ ) is a normal fuzzy number, then ãα is computed as:

α = e−(
m−x
σ )

2
⇒

√
− ln(α) =

m− x
σ
⇒ ãLα = x = m− σ

√
− lnα
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α = e−(
x−m
σ )

2
⇒

√
− ln(α) =

x−m
σ
⇒ ãRα = x = m+ σ

√
− lnα

⇒ ãα =

{
ãLα = m− σ

√
− lnα

ãRα = m+ σ
√
− lnα

, 0 < α ≤ 1. (2)

4. Fuzzy approximate sum operators

Here, we propose an approach for summing various fuzzy numbers approximately using α-cuts. The approximation is
based on fitting an appropriatemodel for the sumusingα-cuts of the addition as the fitness data. Let us divide theα-interval
[0, 1] into n equal subintervals by letting α0 = 0, αi = αi−1 +∆αi,∆αi = 1

n , i = 1, . . . , n. This way, we have a set of n+ 1
equidistant points. For the normal fuzzy numbers x ∈ (−∞,+∞), it is improper to assumeα being equal to zero. Therefore,
in this case we consider α ∈ (0, 1], and thus use the nonzero αi, 1 ≤ i ≤ n.
Here, we intend to show how to add up a trapezoidal fuzzy number with a normal one.We present a numerical approach

to approximate the sum and its corresponding membership function.

4.1. α-cut sum

Let ã = (a1, a2, a3, a4) and b̃ = (m, σ ) be the trapezoidal and normal fuzzy numbers, respectively. Given αi ∈ (0, 1],
1 ≤ i ≤ n, the α-cut sum of these fuzzy numbers using Eqs. (1) and (2) is obtained as follows:

c̃αi = ãαi + b̃αi ⇒ c̃αi =

{
c̃Lα = (ã

L
α + b̃

L
α)

c̃Rα = (ã
R
α + b̃

R
α),

∀i, 1 ≤ i ≤ n,

where,

c̃Lαi =
[
(a2 − a1)α + a1 +m− σ

√
− lnα

]
,

c̃Rαi =
[
a4 − (a4 − a3)α +m+ σ

√
− lnα

]
. (3)

Using Eq. (3), corresponding to αi, 1 ≤ i ≤ n, 2n points are obtained for c̃ (n points for the c̃Lαi and n points for the
c̃Rαi ). Using these points, it is possible to approximate the sum of the two fuzzy numbers. An approximate membership
function of the sum is computed by fitting an appropriate function using the α-cut points. For the addition of normal and
trapezoidal fuzzy numbers, the case being considered in our examples later on, we propose an exponential membership
function for approximating the sum as follows (later, we will see that this choice would indeed provide a good model for
the approximating sum of trapezoidal and normal fuzzy numbers). Let xi = c̃Rαi and yi = µ(c̃Rαi), and using the n points

(xi, yi), 1 ≤ i ≤ n, consider the fitting model as y = e
−

(
x−λ
β

)2
. The unknown parameters λ and β appear nonlinearly. We

linearize the model, by noting that for any xi > λ (as is the case here for the right hand model), we must have:

ln yi = −
(
xi − λ
β

)2
. (4)

Since 0 < yi ≤ 1, then ln(yi) ≤ 0, and thus we can write,√
− ln yi =

(
xi − λ
β

)
, (5)

and hence,

β
√
− ln yi + λ = xi. (6)

Therefore, we define a linear of least squares model for the minimization of error as follows:

min E =
n∑
i=1

(
β
√
− ln yi + λ− xi

)2
, (7)

where xi = c̃Rαi is given by (3). To solve (7), we need to have:

∂E
∂β
=

∑
i

[(
2
√
− ln yi

) (
β
√
− ln yi + λ− xi

)]
= 0, (8)

∂E
∂λ
=

∑
i

[
2
(
β
√
− ln yi + λ− xi

)]
= 0.
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Hence, we need to solve the following so-called normal equations for the unknown parameters β and λ:

−β
∑
i

ln yi + λ
∑
i

√
− ln yi =

∑
i

xi
√
− ln yi, (9)

β
∑
i

√
− ln yi + nλ =

∑
i

xi. (10)

Using Cramer’s rule to solve (9) and (10), β and λ are explicitly determined to be:

β =

∣∣∣∣∣∣∣
∑
i

xi
√
− ln yi

∑
i

√
− ln yi∑

i

xi n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∑
i

ln yi
∑
i

√
− ln yi∑

i

√
− ln yi n

∣∣∣∣∣∣∣∣
⇒ β =

n
∑
i
xi ×
√
− ln yi −

∑
i

√
− ln yi ×

∑
i
xi

−n
∑
i
ln yi −

∑
i

√
− ln yi ×

∑
i

√
− ln yi

, (11)

λ =

∣∣∣∣∣∣∣∣
−

∑
i

ln yi
∑
i

(√
− ln yi × xi

)
∑
i

√
− ln yi

∑
i

xi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∑
i

ln yi
∑
i

√
− ln yi∑

i

√
− ln yi n

∣∣∣∣∣∣∣∣
⇒ λ =

−
∑
i
ln yi

∑
i
xi −

∑
i

(
xi
√
− ln yi

)
×
∑
i

√
− ln yi

−n
∑
i
ln yi −

∑
i

√
− ln yi ×

∑
i

√
− ln yi

. (12)

Now, similarly let x̄i = c̃Lαi and ȳi = µ(c̃
L
αi
), and consider the model y = e

−

(
λ′−x
β′

)2
. Using the above approach, we have:

ln yi = −
(
λ′ − xi
β ′

)2
. (13)

Or,

−β ′
√
− ln yi + λ′ = xi.

Thus, solving

min E ′ =
n∑
i=1

(
−β ′

√
− ln yi + λ′ − xi

)2
,

similarly leads to:

β ′ =

−n
∑
i
xi
√
− ln yi +

∑
i
xi ×

∑
i

√
− ln yi

−n
∑
i
ln yi −

∑
i

√
− ln yi ×

∑
i

√
− ln yi

, (14)

λ′ =

−
∑
i
ln yi ×

∑
i
xi −

∑
i

(
xi ×
√
− ln yi

)
×
∑
i

√
− ln yi

−n
∑
i
ln yi −

∑
i

√
− ln yi ×

∑
i

√
− ln yi

. (15)

Thus, the membership function is determined to be:

µc̃(x) =


e
−

(
λ′−x
β′

)2
x < λ′

1 λ′ ≤ x ≤ λ

e−
(
x−λ
β

)2
x > λ,

(16)

with λ, β, λ′ and β ′ as defined by (11), (12), (14) and (15), respectively.
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Fig. 3a. The α-cut points of fuzzy numbers.

Remarks. An equivalent approach for fitting the least squares model is to consider the basis functions
{√
− ln y, 1

}
, for the

fitting relation (6). This would lead to the minimization model,

min
θ
‖Aθ − x‖2 , (17)

with

A =


√
− ln y1 1
...

...√
− ln yn 1

 , θ =

[
β
λ

]
, x =

x1...
xn

 .
The solution of (17) is obtained by solving the normal equations, ATAθ = AT x, yielding the same results as (11) and (12).
Conveniently, this general data fitting approach can be used to consider other membership functions in cases using various
types of fuzzy numbers. The key element is thus to decide the appropriate basic functions.

Now, we provide a numerical illustration for our proposed model for addition of trapezoidal and normal fuzzy numbers.

Example 1. Consider the following two fuzzy numbers, one being normal and the other being trapezoidal:

ã = (13, 5), b̃ = (4, 10, 17, 26).

The diagrams of the numbers at the α-cuts and their sum, (ã+ b̃), using Eq. (3), are shown in Figs. 3a and 3b, respectively.
As indicated in the diagram, the result is neither trapezoidal nor normal.

Using the points obtained from the α-cuts considering n = 100, the values of (λ, β) and (λ′, β ′) are obtained by (9)–(15).
For this example, we obtain:

µc̃(x) =


e−

(
23−x
8.559

)2
x < 23

1 23 ≤ x ≤ 30

e−
(
x−30
10.34

)2
x > 30.

5. An algorithm for fuzzy shortest path in a network

5.1. Distance between fuzzy numbers

Knowing thatwe can obtain a good approximation for the addition of various fuzzy numbers by use ofα-cuts,we compute
the distance between two fuzzy numbers using the resulting points from the α-cuts. Assume that ã and b̃ are two fuzzy
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numbers. We apply a fuzzy ranking method for fuzzy numbers. We have used this ranking method effectively in a recent
work [16].
Let us consider fuzzymin operations as follows:

Min value (ã, b̃) = (min(a1, b1),min(a2, b2),min(a3, b3),min(a4, b4)). (18)

It is evident that, for non-comparable fuzzy numbers ã and b̃, the fuzzymin operation results in a fuzzy number different from
both of them. For example, for ã = (5, 10, 13, 19) and b̃ = (6, 9, 15, 20), we get from (18) a fuzzyMṼ = Min value(ã, b̃) =
(5, 9, 13, 19), which is different from both ã and b̃. To alleviate this drawback, we use a method based on the distance
between fuzzy numbers. We use the distance function introduced in [17]. The main advantages of this distance function are
the generality of its usage on various fuzzy numbers, and its reliability in distinguishing unequal fuzzy numbers. Indeed, the
usage of the distance function below worked out to be quite appropriate for our approach.
The Dp,q-distance, indexed by parameters 1 < p < ∞ and 0 < q < 1, between two fuzzy numbers ã and b̃ is a

nonnegative function given by:

Dp,q(ã, b̃) =


[
(1− q)

∫ 1

0

∣∣a−α − b−α ∣∣p dα + q ∫ 1

0

∣∣a+α − b+α ∣∣p dα] 1p , p <∞,

(1− q) sup
0<α≤1

∣∣a−α − b−α ∣∣+ q inf0<α≤1

∣∣a+α − b+α ∣∣ , p = ∞.
(19)

The analytical properties of Dp,q depend on the first parameter p, while the second parameter q of Dp,q characterizes the
subjective weight attributed to the end points of the support; i.e., the a+α and a

−
α of the fuzzy numbers. If there is no reason

for distinguishing any side of the fuzzy numbers, then Dp, 12 is recommended. Having q close to 1 results in considering the
right side of the support of the fuzzy numbers more favorably. Since the significance of the end points of the support of the
fuzzy numbers is assumed to be the same, then we consider q = 1

2 .
For two fuzzy numbers ã and b̃with corresponding αi-cuts, the Dp,q distance is approximately proportional to:

Dp,q(ã, b̃) =

[
(1− q)

n∑
i=1

∣∣a−αi − b−αi ∣∣p + q n∑
i=1

∣∣a+αi − b+αi ∣∣p
] 1
p

. (20)

If q = 1
2 , p = 2, then the above equation turns into:

D2, 12 (ã, b̃) =

√√√√1
2

n∑
i=1

(a−αi − b
−
αi
)2 +

1
2

n∑
i=1

(a+αi − b
+
αi
)2. (21)
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To compare two fuzzy arc lengths ã and b̃withαi-cuts as their approximations, since they are supposed to represent positive
values, we compare them withMṼ = (0, 0, . . . , 0). In fact, we use formula (21) to compute D2, 12 (ã,MṼ ) and D2, 12 (b̃,MṼ )

and then use these values for comparison of the two numbers. Here, we consider ã = (6, 9, 15, 20) and b̃ = (5, 10, 13, 19)
with n = 10. Then, the α-cuts for ã are obtained to be

a+αi = {19.5, 19, 18.5, 18, 17.5, 17, 16.5, 16, 15.5, 15} .

a−αi = {9, 8.7, 8.4, 8.1, 7.8, 7.5, 7.2, 6.9, 6.6, 6.3}

and for b̃we have

b+αi = {18.4, 17.8, 17.2, 16.6, 16, 15.4, 14.8, 14.2, 13.6, 13} .

b−αi = {10, 9.5, 9, 8.5, 8, 7.5, 7, 6.5, 6, 5.5} .

As a result, the distances are

D2, 12 (ã,MṼ ) = 42.36.

D2, 12 (b̃,MṼ ) = 39.47.

Therefore, ã > b̃.

5.2. An algorithm for computing a shortest path

The following dynamic programming algorithm is for computing the shortest path in a network. The algorithm is based
on Floyd’s dynamic programming method to find a shortest path, if it exists, between every pair of nodes i and j in the
network [18].
We make use of the following optimal value function fk(i, j) and the corresponding labeling function Pk(i, j):

fk(i, j) = length of the shortest path from node i to node jwhen the path is considered to use only the nodes
from the set of nodes {1, . . . , k} ,

Pk(i, j) = the last intermediate node on the shortest path from node i to node j using {1, . . . , k} as
intermediate node,

where, i is a source node, j is the end node and k refers to an intermediate node.
The dynamic updating for the optimal path length and its corresponding labeling are:

fk(i, j) = min {fk−1(i, j), fk−1(i, k)+ fk−1(k, j)} ,

Pk(i, j) =
{
Pk−1(i, j) if k is not on shortest path from i to j using {1, . . . , k}
Pk−1(k, j) otherwise.

We are now ready to give the steps of the algorithm.

Algorithm. A dynamic programming method for computing a shortest path in a fuzzy network G = (V , A), where V is the
set of nodes with |V | = N , and A is the set of arcs. The value d̃ij is the fuzzy arc distance for arc (i, j), if it exists. Below, f̃k(i, j)
the shortest path length is set to∞, when there is no arc.

Step 1: Let k = 0 and f̃k(i, j) = d̃ij, for all (i, j) ∈ A, f̃k = (i, j) = ∞, for all (i, j) 6∈ A. If an arc exists from node i to node j
then let Pk(i, j) = i.
Step 2: Let k = k+ 1.
Do the following steps for i = 1, 2, 3, . . . ,N, j = 1, 2, 3, . . . ,N, i 6= j.

2.1 Compute the value of f̃k(i, j) = min
[
f̃k−1(i, j), f̃k−1(i, k)+ f̃k−1(k, j)

]
(for the addition, our proposed method discussed

in Section 4.1 and for comparison of fuzzy numbers the Dp,q distance function (21) of Section 5.1 are applied).
2.2 If node k is not on the shortest path using the nodes {1, 2, . . . , k} as intermediate nodes, then let Pk(i, j) = Pk−1(i, j)

else let Pk(i, j) = Pk−1(k, j).

Step 3: If k < N then go to Step 2.
Step 4: Obtain the shortest path using the Pk(i, j) values. If fN(i, j) = ∞, then there is no path between i and j. The
shortest path from node i to j, if it exists, is identified backwards and read by the nodes: j, PN(i, j) = k followed by
PN(i, k), . . . , PN(i, l) = i, where l is the node immediately after i in the path.
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Fig. 4. A small sized network having mixed fuzzy arc lengths.

Table 1
The f̃0(i, j)matrix for k = 0.

i/j 1 2 3 4

1 – (2, 3, 4, 5) (4, 8, 12, 16) 2
2 – – (4, 1) (15, 4)
3 – – – (5, 1)
4 – – – –

Table 2
The P0(i, j)matrix for k = 0.

i/j 1 2 3 4

1 – 1 1 –
2 – – 2 2
3 – – – 3
4 – – – –

Table 3
The f̃1(i, j)matrix for k = 1.

i/j 1 2 3 4

1 – (2, 3, 4, 5) (4, 8, 12, 16) –
2 – – (4, 1) (15, 4)
3 – – – (5, 1)
4 – – – –

Table 4
The P1(i, j)matrix for k = 1.

i/j 1 2 3 4

1 – 1 1 –
2 – – 2 2
3 – – – 3
4 – – – –

5.3. Termination and complexity of the algorithm

The proposed algorithm terminates after N outer iterations corresponding to k. A total of N(N − 1)2 additions and
comparisons are needed for every k. For each addition, n fuzzy additions for the αi-cuts should be performed resulting
in 2n(N)(N− 1)2 additions. For comparisons, we have (2n+ 1)N(N− 1)2 additions and (2n+ 1) N(N− 1)2 multiplications
using (7). Therefore, the total needed operations are (6n + 2) N(N − 1)2 additions and multiplications, with N(N − 1)2
comparisons.

Example 2. Consider the mixed fuzzy network in Fig. 4 with four nodes and five arcs having two trapezoidal and three
normal arc lengths as specified in Table 1.

Step 1: We set f̃k(i, j) = d̃ij, for k = 0, as specified in Table 1.
Therefore, with Pk(i, j) = i, Table 2 is obtained.

Step 2: Here, we consider k = 1 and compute the value of fk(i, j) = min [fk−1(i, j), fk−1(i, k)+ fk−1(k, j)]. The result is shown
in Table 3.
Therefore, for Pk(i, j) = i, Table 4 is obtained.
If node k is not on the shortest path using {1, 2, . . . , k} as intermediate nodes, then we consider Pk(i, j) = Pk−1(i, j),

otherwise we let Pk(i, j) = Pk−1(i, k). We now report the results obtained for other values of k in Tables 5–10. Note that, the
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Table 5
The f̃2(i, j)matrix for k = 2.

i/j 1 2 3 4

1 – (2, 3, 4, 5) V1 W1
2 – – (4, 1) (15, 4)
3 – – – (5, 1)
4 – – – –

Table 6
The P2(i, j)matrix for k = 2.

i/j 1 2 3 4

1 – 1 2 2
2 – – 2 2
3 – – – 3
4 – – – –

Table 7
The f̃3(i, j)matrix for k = 3.

i/j 1 2 3 4

1 – (2, 3, 4, 5) V2 W2
2 – – (4, 1) (9, 2)
3 – – – (5, 1)
4 – – – –

Table 8
The P3(i, j)matrix for k = 3.

i/j 1 2 3 4

1 – 1 2 3
2 – – 2 3
3 – – – 3
4 – – – –

Table 9
The f̃4(i, j)matrix for k = 4.

i/j 1 2 3 4

1 – (2, 3, 4, 5) V3 W3
2 – – (4, 1) (9, 2)
3 – – – (5, 1)
4 – – – –

Table 10
The P4(i, j)matrix for k = 4.

i/j 1 2 3 4

1 – 1 2 3
2 – – 2 3
3 – – – 3
4 – – – –

sets Vi andWi are the points obtained by α-cut additions, where the V andW values are obtained by the αi-cuts considering
n = 10. It includes 10 points for the a−αi and 10 points for the a

+
αi
:

V1 = {(4.58257, 10.4174), (4.93136, 10.0686), (5.20274, 9.79726), (5.44277, 9.55723), (5.66745, 9.33255), (5.88528,
9.11472), (6.10278, 8.89722), (6.32762, 8.67238), (6.57541, 8.42459), (7, 8)}
W1 = {(11.0303, 25.9697), (12.1255, 24.8745), (12.911, 24.089), (13.5711, 23.4289), (14.1698, 22.8302), (14.7411,

22.2589), (15.3111, 21.6889), (15.9105, 21.0895), (16.6016, 20.3984), (18, 19)}
V2 = {(4.58257, 10.4174), (4.93136, 10.0686), (5.20274, 9.79726), (5.44277, 9.55723), (5.66745, 9.33255), (5.88528,

9.11472), (6.10278, 8.89722), (6.32762, 8.67238), (6.57541, 8.42459), (7, 8)}
W2 = {(8.06515, 16.9349), (8.66273, 16.3373), (9.10549, 15.8945), (9.48554, 15.5145), (9.83489, 15.1651), (10.1706,

14.8294), (10.5056, 14.4944), (10.8552, 14.1448), (11.2508, 13.7492), (12, 13)}
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Table 11
The analysis of parameter variation.

n Path β ′ β λ′ λ

10 1–2–3–4 2.659 2.6591 12.06 12.93
20 1–2–3–4 2.6508 2.6508 12.064 12.935
25 1–2–3–4 2.646875 2.6468508 12.063175 12.936845
50 1–2–3–4 2.63426 2.6342363 12.056546 12.943473
100 1–2–3–4 2.6167371 2.616722 12.044909 12.955093
200 1–2–3–4 2.6167371 2.616722 12.044909 12.955093
250 1–2–3–4 2.614963 2.6149583 12.043631 12.956366
500 1–2–3–4 2.6108975 2.6109 12.040661 12.959343

Table 12
The parameters of non-optimal path with their distance values for Example 2.

n Path β ′ β λ′ λ D2, 12
100 1–2–4 4.6590285 4.6590285 18.06286 18.937162 49.06
100 1–3–4 3.636081 1.6360606 13.251405 16.748611 46.71

V3 = {(4.58257, 10.4174), (4.93136, 10.0686), (5.20274, 9.79726), (5.44277, 9.55723), (5.66745, 9.33255), (5.88528,
9.11472), (6.10278, 8.89722), (6.32762, 8.67238), (6.57541, 8.42459), (7, 8)}
W3 = {(8.06515, 16.9349), (8.66273, 16.3373), (9.10549, 15.8945), (9.48554, 15.5145), (9.83489, 15.1651), (10.1706,

14.8294), (10.5056, 14.4944), (10.8552, 14.1448), (11.2508, 13.7492), (12, 13)}.
Finally, when k = N , we identify the shortest path as follows:
Shortest path from 1 to 4: 1–2–3–4.
Shortest path length from 1 to 4:

(8.06515, 16.9349), (8.66273, 16.3373), (9.10549, 15.8945), (9.48554, 15.5145), (9.83489, 15.1651), (10.1706, 14.8294),
(10.5056, 14.4944), (10.8552, 14.1448), (11.2508, 13.7492), (12, 13).
Here, we obtain the membership function as shown in Fig. 5.
To investigate the variation of β , β ′, λ, and λ′ with respect to n, for the membership function (16), we solve the least

squares problem for different values of n and obtain the left and right membership function parameters. The results are
reported in Table 11. Note that, the path does not change for different sizes of n and after n = 100, the variations in
membership function parameters are negligible.
Also, for this optimal path D2, 12 = 42.53. Moreover, the costs of other paths with n = 100 are obtained as shown in

Table 12.
Next, we consider a problem with a larger number of nodes to specify the general input and output structures using the

proposed algorithm.

Example 3. We consider a larger network as shown in Fig. 6.

We consider the network having mixed arc lengths (a combination of normal and trapezoidal fuzzy numbers) and use
our dynamic algorithm to find the shortest paths. The arc lengths are specified in Table 13.
Using the distance function Dp,q (for q = 1/2 and p = 2), the shortest path from the source node 1 to the destination

node 23 is determined to be: 1→ 5→ 12→ 15→ 18→ 23.
To find an optimal path, Table 14 is used. For instance, to find an optimal path from node 1 to node 23, according to

P23(i, j) matrix, we have P23(1, 23) 6= 1 and P23(1, 23) = 18. From P23(1, 23) = 18, the path 1 → 18 → 23 is obtained.
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Table 13
The arc lengths.

Arc Fuzzy number Arc Fuzzy number Arc Fuzzy number

(1, 2) (12, 13, 15, 17) (1, 3) (40, 11) (1, 4) (8, 10, 12, 13)
(1, 5) (7, 8, 9, 10) (2, 6) (35, 10) (2, 7) (6, 11, 11, 13)
(3, 8) (40, 11) (4, 7) (17, 20, 22, 24) (4, 11) (6, 10, 13, 14)
(5, 8) (29, 9) (5, 11) (7, 10, 13, 14) (5, 12) (10, 13, 15, 17)
(6, 9) (6, 8, 10, 11) (6, 10) (35, 11) (7, 10) (9, 10, 12, 13)
(7, 11) (6, 7, 8, 9) (8, 12) (5, 8, 9, 10) (8, 13) (20, 5)
(9, 16) (6, 7, 9, 10) (10, 16) (40, 13) (10, 17) (15, 19, 20, 21)
(11, 14) (8, 9, 11, 13) (11, 17) (28, 9) (12, 14) (13, 14, 16, 18)
(12, 15) (12, 14, 15, 16) (13, 15) (37, 12) (13, 19) (17, 18, 19, 20)
(14, 21) (11, 12, 13, 14) (15, 18) (8, 9, 11, 13) (15, 19) (25, 7)
(16, 20) (38, 12) (17, 20) (7, 10, 11, 12) (17, 21) (6, 7, 8, 10)
(18, 21) (15, 17, 18, 19) (18, 22) (16, 5) (18, 23) (15,5)
(19, 22) (15, 16, 17, 19) (20, 23) (13, 14, 16, 17) (21, 23) (12, 15, 17, 18)
(22, 23) (20, 5)

Table 14
P23(i, j)matrix.

k/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 – 1 1 1 1 2 2 5 6 7 5 5 8 11 12 9 11 15 15 17 14 18 18
2 – – – – – 2 2 – 6 7 7 – – 11 – 9 10 – – 17 14 – 21
3 – – – – – – – 3 – – – 8 8 12 12 – – 15 13 – 14 18 18
4 – – – – – – 4 – – 7 4 – – 11 – 10 11 – – 17 14 – 21
5 – – – – – – – 5 – – 5 5 8 11 12 – 11 15 15 17 14 18 18
6 – – – – – – – – 6 6 – – – – – 9 10 – – 16 17 – 20
7 – – – – – – – – – 7 7 – – 11 – 10 10 – – 17 14 – 21
8 – – – – – – – – – – – 8 8 12 12 – – 15 13 – 14 18 18
9 – – – – – – – – – – – – – – – 9 – – – 16 – – 20
10 – – – – – – – – – – – – – – – 10 10 – – 17 17 – 21
11 – – – – – – – – – – – – – 11 – – 11 – – 17 14 – 21
12 – – – – – – – – – – – – – 12 12 – – 15 15 – 14 18 18
13 – – – – – – – – – – – – – – 13 – – 15 13 – 18 19 22
14 – – – – – – – – – – – – – – – – – – – – 14 – 21
15 – – – – – – – – – – – – – – – – – 15 15 – 18 18 18
16 – – – – – – – – – – – – – – – – – – – 16 – – 20
17 – – – – – – – – – – – – – – – – – – – 17 17 – 21
18 – – – – – – – – – – – – – – – – – – – – 18 18 18
19 – – – – – – – – – – – – – – – – – – – – – 19 22
20 – – – – – – – – – – – – – – – – – – – – – – 20
21 – – – – – – – – – – – – – – – – – – – – – – 21
22 – – – – – – – – – – – – – – – – – – – – – – 22
23 – – – – – – – – – – – – – – – – – – – – – – –

Also, P23(1, 18) = 15, P23(1, 15) = 12, and P23(1, 12) = 5. Since P23(1, 5) = 1, then we Stop. Therefore, the shortest path
is: 1→ 5→ 12→ 15→ 18→ 23.
Using the least squaresmodel,we regress the estimatedpoints andobtain the following equation asmembership function

for the shortest path. By addition of various fuzzy numbers on the corresponding path, themembership function is obtained
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Table 15
The results of parameter variation.

n Path β ′ β λ′ λ

10 1–5–12–15–18–23 8.954 9.613 59.439 64.622
20 1–5–12–15–18–23 8.905 9.556 59.452 64.612
25 1–5–12–15–18–23 8.881 9.528 59.442 64.621
40 1–5–12–15–18–23 8.828 9.467 59.411 64.647
50 1–5–12–15–18–23 8.805 9.439 59.395 64.660
80 1–5–12–15–18–23 8.761 9.388 59.363 64.688
100 1–5–12–15–18–23 8.743 9.367 59.349 64.700
200 1–5–12–15–18–23 8.7 9.317 59.31 64.73
250 1–5–12–15–18–23 8.689 9.304 59.305 64.738
500 1–5–12–15–18–23 8.66 9.276 59.284 64.75

1
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3 4

5

6

Fig. 8. The network.

Table 16
The arc lengths of network (both crisp and fuzzy).

Arc Fuzzy lengths Crisp lengths Arc Fuzzy lengths Crisp lengths Arc Fuzzy lengths Crisp lengths

(1, 2) (1, 2, 7) 2 (1, 3) (2, 3, 4) 3 (2, 3) (3, 5, 8) 5
(2, 4) (1, 2, 6) 2 (2, 5) (2, 5, 6) 5 (3, 4) (1, 3, 4) 3
(4, 5) (1, 4, 5) 4 (4, 6) (1, 2, 5) 2 (5, 6) (4, 5, 8) 5

by (11)–(14) as follows:

µc̃ (x) =


e−

(
x−59
9.154

)2
x < 59

1 59 < x < 65

e−
(
x−65
8.559

)2
x > 65.

The regressed membership function is presented in Fig. 7.
To analyze the variations of β , β ′, λ, and λ′ with respect to n, we use different sizes of n and obtain the left and right

membership function parameters. The results are reported in Table 15. Note that the path does not change for different
values of n bigger than 100, and the variations of membership function parameters are negligible.

6. Discussion

Our approach can easily be used when the distances are crisp values. This can serve as a tool for comparing crisp versus
fuzzy arc length for a particular case. Consider the example shown by Fig. 8.
Both the fuzzy and crisp distances of arcs are given in Table 16. As an example, we considered the crisp value of each

arc to be the corresponding maximummembership value. The obtained results for the shortest paths corresponding to the
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two cases show the difference of the optimal paths. For the fuzzy case, the optimal path is 1–3–4–6, while for the crisp case,
the optimal path is 1–2–4–6. The distance value of optimal path in the fuzzy network, using our proposed algorithm is 5.93,
while for the crisp situation is 6 (for the path 1–2–4–6). Moreover, for the optimal path 1–3–4–6 in the fuzzy network, we
will obtain the value of 8 for the crisp case, showing the difference of 8−5.93 = 2.07 in favor of the fuzzy case. This example
shows the possible effectiveness of considering fuzzy arc lengths in a network.

7. Conclusions

Anovel practical approachwasproposed for computing a shortest path in a fuzzynetworkhavingmixed fuzzy arc lengths.
In doing this, an α-cut method was presented to compute the addition of various fuzzy numbers as arc lengths. To obtain
an approximation of the corresponding membership function for the addition, we proposed a linear least squares model.
Finally, using a recently proposed distance function, we showed how to decide distances for comparison of fuzzy arc lengths
to be used in our proposed dynamic programming algorithm for finding an optimal (shortest) path. The effectiveness of our
approach was shown by working out illustrating examples. The proposed model, while being practically simple, has the
flexibility to consider a mixture of various types of fuzzy arc lengths in a general network. We also gave a comparative case
of fuzzy and crisp fuzzy cases to point out a possible effectiveness of a fuzzy network.
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