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We introduce the concept of a Galois covering of a pointed
coalgebra. The theory developed shows that Galois coverings
of pointed coalgebras can be concretely expressed by smash
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the covering. Thus the theory of Galois coverings is seen to
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1. Introduction

Every coalgebra is equivalent to a basic coalgebra, whose simple comodules appear with multi-
plicity one. Over an algebraically closed field a basic coalgebra is pointed and embeds in the path
coalgebra of its quiver. This motivates the study of pointed coalgebras as subcoalgebras of path coal-
gebras. The theory of coverings of coalgebras extends the theory of coverings of finite-dimensional
algebras via quivers with relations.

The theory of Galois coverings of quivers with relations is a standard tool in the representation
theory of finite-dimensional algebras see e.g. [1,10,20]. In this paper we introduce the concept of
coverings of pointed coalgebras, based on Galois coverings of quivers. The theory developed shows
that coverings of coalgebras can be concretely expressed by smash coproducts using the coaction
of the automorphism group of coverings. Thus the theory of Galois coalgebra coverings is seen to
be equivalent to group gradings of coalgebras. One advantageous feature of the coalgebra theory is
that neither the grading group nor the quiver is assumed finite in order to obtain a smash product
coalgebra. In the case that the grading group is infinite we do not need to pass to coverings of
k-categories, as done in [7].
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We begin with a review of path coalgebras and embeddings of pointed coalgebras into the path
coalgebra of their quivers. Next we turn to the theory of Galois coverings of quivers in Section 3.
In this context, coverings and smash coproducts are known in graph theory as derived graphs [12].
A covering of a quiver is specified by an arrow weighting (also known as a voltage assignment), where
group elements are assigned to edges. Coverings are obtained from a smash coproduct construction
(i.e. the derived graph with respect to a voltage assignment) on the base quiver. For the associated
path coalgebras, the covering path coalgebra becomes a smash coproduct coalgebra with a canonical
homomorphism onto the base path coalgebra (Theorem 4.2). We wish to restrict to subcoalgebras of
the path coalgebras and we provide conditions on the covering that characterize when this is possible
in Theorem 4.5, using a designated normal subgroup of the fundamental group of the base quiver. The
conditions guarantee that the covering coalgebra is a smash coproduct over the homogeneous base
coalgebra, which is graded by the automorphism group of the covering. Thus the covering quiver has
a subcoalgebra whose comodule category is equivalent to the category of graded comodules over the
base coalgebra. Moreover, the methods here provide a construction of a universal covering coalgebra
which provides a way of constructing all connected gradings of a pointed subcoalgebra of a path
coalgebra. As a converse to these results, in Theorem 5.1 we show that any connected grading of a
pointed coalgebra gives rise to a smash coproduct that serves as a covering coalgebra.

A grading of a pointed coalgebra is specified by an arrow weighting that comes from a vertex
lifting of a covering of the quiver. Different liftings yield possibly different gradings and isomorphic
smash coproducts. We show explicitly in Section 6 how liftings and gradings are related via vertex
weightings, and how they are equivalent via smash coproduct coalgebra isomorphisms.

We close with examples including single and double loop quivers, the Kronecker quiver, Exam-
ple 8.3, and the basic coalgebra of quantum SL(2) at root of unity, Example 8.4. In these examples we
examine coverings the gradability of arbitrary finite-dimensional comodules.

We partially follow the approach of E.L. Green in [11] where coverings of quivers with relations
were studied for locally finite quivers with relations. Green’s paper contains a definition of a Galois
covering for quivers with relations, and establishes a universal object in the category of such cov-
erings. He also showed that the representation theory of finitely generated group-graded algebras is
essentially equivalent to the theory of the representation theory of Galois coverings of finite quivers
with relations. More precisely, given a finitely generated algebra presented by a finite quiver with
relations, the category of representations of a covering with Galois group G is equivalent to the cate-
gory of G-graded modules over the algebra. Other related work concerning coverings of quivers with
relations and coverings of k-categories includes [16,7,15]. In this paper we work directly with cover-
ings via smash coproduct coalgebras, thereby obtaining results on graded comodules. Thus we do not
work directly with representations of quivers as is done in [11].

In a manner dual to the phenomenon for quivers with relations and finite-dimensional algebras,
a pointed coalgebra B can be embedded in kQ in more than one way (see Section 2). However,
for many presentations of algebras by quivers with relations, there is a canonical presentation which
results in universal fundamental group [15]. It would be interesting to extend this sort of result to
coalgebras.

The reader may refer to [17,13] for basic information on covering spaces and [12] for combinatorial
versions of covering graphs and smash coproduct quivers, known there as derived graphs of voltage
graphs. Basic coalgebra theory, including the theory of pointed coalgebras and path coalgebras, is
covered in e.g. [3]. The articles [6,5,2,21,19,22,14,23] contain results concerning path coalgebras.

2. Path coalgebras

The vertex set of a quiver Q is denoted by Q 0 and the arrow set is denoted by Q 1. For each
arrow a the start (or source) of a is denoted by s(a) and the terminal (or target) of a is written
t(a) where s, t : Q 1 → Q 0 are functions. Paths in Q are, by definition, finite concatenations of arrows,
and are always directed. Paths are written from right to left and are of the form anan−1 · · ·a1 with
ai ∈ Q and s(ai) = t(ai−1) for i = 2, . . . ,n. Using formal inverses of arrows, we also consider possibly
nondirected paths a±

n a±
n−1 · · ·a±

1 with s(a−) = t(a) and t(a−) = s(a), referred to as walks in Q . Here
we are slightly abusing terminology since paths and walks are in general not elements of Q . The
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set of paths of length n is denoted by Q n and their span by kQ n . For each pair x, y ∈ Q 0 we write
Q (x, y) (resp. Q ±(x, y)) for the set of paths (resp. walks) starting at x and ending at y. Here we have
B(x, y) = kQ (x, y) ∩ B and B = ⊕

x,y∈Q 0
B(x, y).

J.A. Green (see [3]) showed that the structure theory for finite-dimensional algebras carries over
well to coalgebras, with injective indecomposable comodules replacing projective indecomposables.
Define the (Gabriel- or Ext-) quiver of a coalgebra C to be the directed graph Q (C) with vertices G
corresponding to isomorphism classes of simple comodules and dimk Ext1(h, g) arrows from h to g ,
for all h, g ∈ G . The blocks of C are (the vertices of) components of the undirected version of the
graph Q (C). In other words, the blocks are the equivalence classes of the equivalence relation on G
generated by arrows. The indecomposable or “block” coalgebras are the direct sums of injective inde-
composables having socles from a given block. When C is a pointed coalgebra we may identify G with
the set of group-like elements G(C) of C , and we may take the arrows to be a basis of a nonuniquely
chosen k-space I1 spanned by nontrivial skew primitive elements. Here C0 ⊕ I1 = C1.

The path coalgebra kQ of a quiver Q is defined to be the span of all paths in Q with coalgebra
structure

�(p) =
∑

p=p2 p1

p2 ⊗ p1 + t(p) ⊗ p + p ⊗ s(p),

ε(p) = δ|p|,0

where p2 p1 is the concatenation atat−1 · · ·as+1as · · ·a1 of the subpaths p2 = atat−1 · · ·as+1 and p1 =
as · · ·a1 (ai ∈ Q 0). Here |p| = t denotes the length of p and the starting vertex of ai+1 is required to
be the end of ai . Thus vertices are group-like elements, and if a is an arrow g ← h, with g,h ∈ Q 0,
then a is a (g,h)-skew primitive, i.e., �a = g ⊗ a + a ⊗ h. It follows that kQ is pointed with coradical
(kQ )0 = kQ 0 and the degree one term of the coradical filtration is (kQ )1 = kQ 0 ⊕ kQ 1. Moreover
have the coradical grading kQ = ⊕

n�0 kQ n by path length. The path coalgebra may be identified
with the cotensor coalgebra

⊕
n�0(kQ 1)

�n of the kQ 0-bicomodule kQ 1, cf. [18].
Let B be a pointed coalgebra over a field k. Then B embeds nonuniquely as an admissible sub-

coalgebra of the path coalgebra kQ of the Gabriel quiver associated to B . We review this embedding
here (see [6,24], or [22]; cf. [18]). Write B = kQ 0 ⊕ I for a (nonunique) coideal I , with projection
π0 : B → B0 along I , and write kQ = kQ 0 ⊕ J where J = kQ 1 ⊕ kQ 1 � kQ 1 ⊕ · · · and kQ = kQ 0 ⊕ J
is the cotensor coalgebra over kQ 0. We identify B0 with kQ 0, and let I1 = I ∩ B1, which we identify
with kQ 1. Define the embedding

θ : B → kQ = kQ 0 ⊕ J

by θ(d) = π0(d)+∑
n�1 π⊗n

1 �n−1(d) for all d ∈ B , where π1 : kQ → I1 is a B0-bicomodule projection
onto I1 = kQ 1.

It is very well known that an algebra might be presented by quivers with relations in essentially
different ways. Of course this happens coalgebraically as well. For example, let Q be the quiver

z
a
⇔
b

y c←− z

and consider the subcoalgebra of kQ spanned by the arrows and vertices together with the degree
two element ac. If we replace ac by ac + bc we obtain a different, but isomorphic, subcoalgebra.
In the embedding above, the nonuniqueness can be seen to be a result of the choice of the skew
primitive space I1. It will be apparent in Section 4 that these subcoalgebras are associated to different
subgroups of fundamental group of the quiver.

Henceforth we shall assume a fixed embedding of the pointed coalgebra B into its path coalgebra
so that B ⊆ kQ is an admissible subcoalgebra, i.e., B contains the vertices and arrows of Q . We shall
always assume that B is indecomposable and, equivalently, that Q is connected as a graph.
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3. Quivers and coverings

The quiver Q may be realized as a topological space, momentarily dropping the orientation of
arrows, as in e.g. [17,13]. Let F : Q̃ → Q be a topological Galois covering with base points x̃0, x0 ∈ Q 0,
F (x̃0) = x0. All coverings are assumed to be connected. The topological covering space Q̃ can be
realized as a quiver first by giving it a graph structure and then by assigning an orientation consistent
with the orientation on Q . The vertices of Q̃ are the union of the fibers of the vertices of Q , and
the arrows are the liftings of the arrows of Q . We can then consider F to be a morphism of quivers,
as done in [11]. Coverings can be viewed as quiver maps purely combinatorially, cf. [16,15]. One can
discretely construct a universal cover as the quiver as the quiver whose vertices are in bijection with
equivalence (homotopy) classes of walks in Q . Then any covering is isomorphic to an orbit quiver
under the free action of a subgroup G of the fundamental group π1(Q , x0) of Q .

For the purposes of this paper we discretely define a covering of a quiver Q to be a surjective
morphism of connected quivers F : Q̃ → Q such that for all x̃ ∈ Q̃ 0, F restricts to bijections between
the set of arrows starting at x̃ and the set of arrows starting at F (x̃), and also between the set of
arrows ending at x̃ and the arrows ending at F (x̃).

Let Q̃ F−→ Q F ′←−− Q ′ be two coverings of Q . A morphism θ : F → F ′ in the category of coverings
of Q is a quiver map θ : Q̃ → Q ′ such that F ′θ = F . We shall refer to such maps θ as a covering
morphisms of quivers.

The fundamental group functor provides an injective group homomorphism F∗ :π1(Q̃ , x̃) →
π1(Q , x) for x̃ ∈ Q̃ 0 lifting x ∈ Q 0 for any covering F : Q̃ → Q . The covering is said to be Galois
(also known as regular or normal) if F∗(π1(Q̃ , x̃0)) is a normal subgroup of π1(Q , x0). In this case
π1(Q , x0)/F∗(π1(Q̃ , x̃0)) is the automorphism group of F , viewed either combinatorially as a group
of quiver automorphisms, or topologically as a group of covering space automorphisms.

A fundamental property of coverings is that each walk in Q can be lifted uniquely to a walk in Q̃
once the starting point in Q̃ is specified. More specifically if w is a walk starting at x ∈ Q 0 and
F (x̃) = x, then there is a unique walk w̃ starting at x̃ and lifting w . If w is path, then the lifting w̃ is
a path. We say that a function L : Q 0 → Q̃ 0 is a lifting of F if F L = idQ 0 . For a walk w in Q , we shall
write L(w) to denote the unique lifting of w starting at L(s(w)).

For a group G , we say that a function δ : Q 1 → G is an arrow weighting. For later use we also define
a vertex weighting to be a function γ : Q 0 → G . The map δ may be extended to all walks by setting

δ
(
aen

n · · ·ae2
2 ae1

1

) = δ(an)
en · · · δ(a2)

e2δ(a1)
e1 ,

ei = ±. We shall henceforth identify arrow weightings and their extension to walks or paths in this
manner.

Next let G = π1(Q , x0)/F∗(π1(Q̃ , x̃0)) be the automorphism group of the Galois covering F . There
is an arrow weighting δL : Q 1 → G as follows. Let w ∈ Q ±(x, y). Let L(w) be the lifting of w start-
ing at L(x) and ending at L(y)g , g ∈ G . We define the map by letting δL(w) = g . Clearly δL depends
on the choice of lifting L. Restricting to arrows, we obtain an arrow weighting δL . Now let w =
aen

n · · ·a2
e2ae1

1 ∈ Q ±(x, z). It is true that δL(a
en
n · · ·ae2

2 ae1
1 ) = δL(an)en · · · δL(a2)

e2δL(a1)
e1 , for if w = rq,

with q ∈ Q ±(x, y) and r ∈ Q ±(y, z), then L(q) ∈ Q̃ ±(L(x), L(y)δL(q)) and L(r) ∈ Q̃ (L(y), L(z)δL(r));
hence L(r)δL (q)L(q) ∈ Q̃ (L(x), L(z)δL (r)δL(q)) is a lifting of rq and we conclude that δL(rq) = δL(r)δL(q).
Thus the weighting δL respects concatenation in agreement with the extension from arrows to walks
at the beginning of this paragraph.

An arrow weighting δ : Q 1 → G is said to be connected if for all x, y ∈ Q 0 and g ∈ G , there exists
a walk w in Q from x to y such that δ(w) = g . Assume δ is connected and let Q � G be the quiver
with underlying vertex set (Q � G)0 = Q 0 × G = {x � g | x ∈ Q 0, g ∈ G} and arrow set (Q � G)1 =
Q 1 × G = {a � g | a ∈ Q 1, g ∈ G}, declaring that s(a � g) = s(a) � g and t(a � g) = t(a) � δ(a)g . This
construction shall be called the smash coproduct quiver of Q and G . Let F : Q � G → Q be defined
by F (u � g) = u for u ∈ Q 0 ∪ Q 1, g ∈ G , and note that F is a surjective quiver morphism. Also, δ is
connected if and only if Q � G is connected as a graph. It is known that:
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Proposition 3.1. If δ : Q 1 → G is a connected arrow weighting, the canonical map F : Q � G → Q is a Galois
covering with automorphism group G.

Proof. By the hypothesis that δ is connected, it is immediate Q � G is connected as a graph. By the
construction of Q � G , each y ∈ Q 0 has fiber {y � g | g ∈ G} and each subgraph z b←− y a←− x in Q
with arrows a, b and vertices x, y, z lifts to a subgraph

z � δ(b)g
b�g←−− y � g

a�δ−1(a)g←−−−−−− x � δ−1(a)g

for all g ∈ G . This observation makes it evident that there is a bijection between the set of arrows
ending at (resp. starting at) y and the arrows ending at (resp. starting at) y � g . Also it is clear that
these arrows sets are disjoint for different g . It follows that F : Q � G → Q is a covering map.

We note that if [w] ∈ π1(Q , x0) is a walk class with closed walk w , then the map π1(Q , x0) → G
defined by [w] �→ δ(w) is onto since δ is connected. Its kernel is the set of walk classes of walks that
lift to closed walks in Q � G , i.e. the normal subgroup F∗(π1(Q � G)). Thus the covering F is Galois
and the automorphism group of the covering is G = π1(Q , x0)/F∗(π1(Q � G)). �

Alternatively one can observe that the right action of G on Q � G is free and that the orbit quiver
is isomorphic to Q .

4. Graded coalgebras from coverings

A coalgebra C is said to be graded by the group G if C is the direct sum of k-subspaces C =⊕
g∈G C g and

�(C g) ⊆
∑

ab=g
a,b∈G

Ca ⊗ Cb

for all g ∈ G and ε(C g) = 0 for all g = 1. The element c ∈ C g is said to be homogeneous of degree
δ(c) = g and we shall adapt Sweedler notation and write �(c) = ∑

c1 ⊗ c2 always assuming homo-
geneous terms in the sum. In this case C is a right kG-comodule coalgebra via the structure map
ρ : C → C ⊗ kG , ρ(c) = c ⊗ g for all g ∈ G and c ∈ C g . Conversely, every right kG-comodule coalgebra
is a G-graded coalgebra.

Let C be a G-graded coalgebra. The smash coproduct coalgebra of C and kG is denoted by C � kG
is defined as the k-vector space C ⊗ kG with � : C � kG → (C � kG) ⊗ (C � kG) given by

�(c � g) =
∑(

c1 � δ(c2)g
) ⊗ (c2 � g)

for all homogeneous c ∈ C and g ∈ G . Let F : C � kG → C , c � g �→ c be the canonical colagebra map
onto C . G acts canonically on the right as coalgebra automorphisms of C � kG via (c � g)h = c � gh
for all h ∈ G . It is clear the action of G preserves F , i.e. F = F ◦ h .

Proposition 4.1. (See [8].) The category of graded right comodules GrC of C is equivalent the comodule cate-
gory MC�kG over C � kG.

A graded comodule M acquires the structure of a C � kG-comodule given by ρ ′(m) = ∑
m0 ⊗

(m1 � δ(m)−1), m ∈ M . If N is a C � kG-comodule, then N acquires a right kG-comodule structure via
the coalgebra map C � kG → kG , c � g �→ ε(c)g−1; N is a right C-comodule via the coalgebra map
C � kG → kG , c � g �→ c. Thus N corresponds to an object of GrC . See [8] for more details.

Consider a Galois covering F : Q̃ → Q with automorphism group G and lifting L. We saw in the
previous section that there is an arrow weighting associated to L. The path coalgebra kQ is similarly
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a G-graded coalgebra as follows: Let p be a path in Q (x, y). Let L(p) = p̃ be the lifting of p starting
at L(x) = x̃ and ending at L(y)g . We define the degree map δ(p) = g . Suppose p is the concatenation
of paths p = rq. Then L(p) = L(r)δ(q)L(q) so δ(p) = δ(r)δ(q). It follows that δ determines a coalgebra
grading of kQ depending on the choice of lifting L. It is apparent that grading is determined by the
arrow weighting obtained by restricting to Q 1. We accordingly form the smash coproduct kQ � kG =
kQ �L kG , with the canonical projection F L : kQ �L kG → kQ , F (p � g) = p, using this coaction of
kG on kQ , sometimes leaving the lifting L implicit.

Theorem 4.2. Let F : Q̃ → Q be a Galois covering and let L : Q 0 → Q̃ 0 be a lifting. There is a coalgebra
isomorphism ψ : kQ̃ → kQ � kG with F L ◦ψ = F and a Galois covering isomorphism from F L : Q � G → Q
to F : Q̃ → Q .

Proof. If p̃ is a path in Q̃ , then p̃ is a lifting of F (p̃). Hence there exists σ(p̃) ∈ G such that L F (p̃) =
p̃σ(p̃) . Since σ(p̃) = σ(s(p̃)), σ = σL : Q̃ 0 → G is a vertex weighting on Q̃ that extends to a function
on all paths in Q̃ , as specified. Let g ∈ G and let p ∈ Q (x, y). Define maps φ : kQ � kG → kQ̃ and
ψ : kQ̃ → kQ � kG by φ(p � g) = L(p)g and ψ(p̃) = F (p̃) � σ(p̃) for paths p, p̃. Then

�(p � g) =
∑
p=rq

(
r � δ(q)g

) ⊗ (q � g)

and

�
(
L(p)g) =

∑
p=rq

L(r)δ(q)g ⊗ L(q)g

using the fact that L(q) is the lifting starting at L(x) and ending at L(y)δ(q) = s(L(r)δ(q)). It follows im-
mediately that φ is coalgebra map. Next observe that ψφ(p � g) = ψ(L(p)g) = F (L(p)g)�σ(L(p)g) =
p � g . Similarly, φψ = id

kQ̃ . Thus we have shown that φ and ψ are mutually inverse coalgebra iso-
morphisms. It is immediate that F Lψ = F . The isomorphism restricts to an isomorphism on vertices
and arrows, so there is a covering isomorphism Q̃ ∼= Q � G as well. �

The result shows that the isomorphism type of the smash coproduct coalgebra kQ � kG does not
depend on the choice of lifting L, which is determined by the grading δL . In addition we have

Proposition 4.3. The smash coproduct coalgebra kQ � kG is isomorphic to the path coalgebra k(Q � G) of
the smash coproduct quiver.

Proof. Define a map E : kQ � kG → k(Q � G) on elements p � g where p = an · · ·a2a1 (ai ∈ Q 1) is a
path in Q and g ∈ G by letting E(p � g) be the concatenation

(
an � δ(an−1) · · · δ(a1)g

) · · · (a2 � δ(a1)g
)
(a1 � g)

= (
an � δ(an−1 · · ·a1)g

) · · · (a2 � δ(a1)g
)
(a1 � g)

noting that E identifies the group-likes x� g and the vertices (denoted by the same symbol). Similarly
E identifies the skew-primitives a � g and the arrows. It is straightforward to check that E is a
coalgebra isomorphism. �

We provide some terminology and notation:

• Let B ⊆ kQ be an admissible subcoalgebra. Let b = ∑
i∈I λi pi ∈ B(x, y) with x, y ∈ Q 0 and distinct

paths pi . We say that b is a minimal element of B if
∑

i∈I ′ λi pi /∈ B(x, y) for every nonempty
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proper subset I ′ ⊂ I , and |I| � 2. Clearly every element of B is a linear combination of paths and
minimal elements.

• Fix a base vertex x0 ∈ Q 0. We define a symmetric relation ∼ on paths by declaring p ∼ q if there
is a minimal element b = ∑

i∈I λi pi ∈ B(x, y) where the pi are distinct paths, λi ∈ k, x, y ∈ Q 0
and p = p1, q = p2. We define N(B, x0) to be the normal subgroup of π1(B, x0) generated by
equivalence (homotopy) classes of walks w−1 p−1qw where p, q are paths in Q (x, y) with p ∼ q
and w is a walk from x0 to x.

• Consider a Galois covering F : Q̃ → Q with automorphism group G and lifting L. For each mini-
mal element b = ∑

λi pi ∈ B we put L(b) = ∑
λi L(pi) and we let B̃ denote the k-span of {L(b) |

L a lifting, b ∈ B a minimal element or a path}. We say that the restriction F : B̃ → B is a Galois
coalgebra covering if every minimal element of B can be lifted to B̃ in the following sense: for
every minimal element b ∈ B(x, y) with x, y ∈ Q 0 and x̃ ∈ Q̃ 0, there exists ỹ ∈ Q̃ 0 and a minimal
element b̃ ∈ B̃(x̃, ỹ) such that F (b̃) = b.

Proposition 4.4. Let F : B̃ → B be a Galois coalgebra covering. Then

(a) F (min(B̃)) = min(B),
(b) F∗(N(B̃, x̃0)) = N(B, x0) for all x0 ∈ Q , x̃0 ∈ Q̃ with F (x̃0) = x0 .

Proof. Since each path in Q lifts to a unique path in Q̃ starting at x̃, it follows that each minimal
element in b ∈ B can be lifted uniquely to an element of B̃(x̃, ỹ) starting at x̃ and ending at ỹ for some
ỹ ∈ Q̃ 0. Now letting x̃ vary over F −1(x), we see that F −1(b) is the consists of the set of liftings, one
for each x̃. It is immediate that each such lifting is minimal in B̃ . Conversely, if b̃ ∈ B̃(x̃, ỹ) is minimal,
then it is the unique lifting of F (b̃) starting at x̃; it follows that F (b̃) is minimal. The conclusions
follow. �

The fundamental example is given as follows. Let B ⊆ kQ be a homogeneous admissible subcoal-
gebra with respect to the grading given by an arrow weighting δ : Q 1 → G . The grading is said to be
connected if the arrow weighting is connected. If b = ∑

i∈I λi pi ∈ B(x, y) is a minimal element, then it
is necessarily homogeneous. Consider the canonical map F : kQ � kG → kQ defined by F (p � g) = p
and consider the restriction to B � kG → B . Then under the identification of kQ � kG with kQ̃ we
easily see that B̃ = B � kG . The liftings of the minimal element b ∈ B are given by b � g with g ∈ G .

Theorem 4.5. The following are equivalent for a subcoalgebra B ⊆ kQ and Galois quiver covering F : Q̃ → Q .

(a) B is a homogeneous subcoalgebra of kQ .
(b) N(B, x0) ⊆ F∗(π1(Q̃ , x̃0)) for all x0 ∈ Q , x̃0 ∈ Q̃ with F (x̃0) = x0 .
(c) F : B̃ → B is a Galois coalgebra covering.
(d) B is a homogeneous subcoalgebra of kQ and the grading is connected.

Proof. (a) implies (b). Suppose that B is a graded subcoalgebra of kQ . Let [w−1q−1 pw] be a gen-
erating element of N(B, x) with p ∼ q. This means that there are distinct paths p,q ∈ Q (x, y) with
b = p + λq + · · · ∈ B(x, y) minimal. The minimality of b of forces it to be homogeneous in the grading
determined by L. Accordingly, we have t(L(p)) = t(L(q)) = L(y)δ(p) = L(y)δ(q) . Now it is easy to check
that

L(w)−1(L(q)δ(w)
)−1

L(p)δ(w)L(w)

is a closed path in Q̃ starting at L(x0) lifting w−1q−1 pw . This shows that [w−1q−1 pw] ∈
F∗(π1(Q̃ , x0)).

Assume as in (b) that N(B, x0) ⊆ F∗(π1(Q̃ , x̃0)) and let b = ∑
i∈I λi pi ∈ B(x, y) with x, y ∈ Q 0

and distinct paths pi be a minimal element of B . For each i ∈ I , let p̃i be a lifting of pi starting at
x̃ = L(x) and ending at, say, ỹi . Our assumption implies that N(B, y) ⊆ F∗(π1(Q̃ , ỹ1)) by a standard
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isomorphism (given by conjugation by a walk class from y to x0). Observe that p̃2 p̃−1
1 is a walk from

ỹ1 to ỹ2 lifting the closed walk p2 p−1
1 . Therefore [p2 p−1

1 ] ∈ N(B, y) ⊆ F∗(π1(Q̃ , ỹ1)), and we see that
p2 p−1

1 also has a lifting that is a closed walk starting and ending at ỹ1 Therefore p̃2 p̃−1
1 is a closed

walk by e.g. [17, Ch. 8, Lemma 3.3] and ỹ1 = ỹ2. This argument shows that the ỹi are all equal.
Thus b̃ = ∑

i∈I λi p̃i is a lifting of b in B(x̃, ỹ1) and it is easily seen to be minimal. This proves (b)
implies (c).

Assume (c) and let b = ∑
i∈I λi pi ∈ B(x, y) with x, y ∈ Q 0 be a minimal element of B . For each

i ∈ I , let p̃i be a lifting of pi starting at x̃ = L(x) and, by definition of the grading, ending at L(yi)
δ(pi) .

The assumption forces the δ(pi) to all be equal. This shows that b is homogeneous and thus that B is
a graded subcoalgebra of kQ .

We have shown that (a)–(c) are equivalent. We complete the proof by showing that any grading
of B is connected. Let x, y ∈ Q 0 and let g ∈ G . Then there exists a walk w̃ ∈ Q̃ (L(x), L(y)g). So w =
F (w̃) is a walk from x to y with lifting w̃ , and evidently δ(w) = g . Thus the grading is connected. �

Let Q̃ F−→ Q F ′←−− Q ′ be two coverings of Q . Recall that a morphism F → F ′ in the category of
coverings of Q is given by a quiver morphism θ : Q̃ → Q ′ such that F ′θ = F . Consider coalgebra
coverings of B ⊂ kQ arising from the quiver coverings

kQ̃ F−→ kQ F ′←− kQ ′
∪ ∪ ∪
B̃ −→ B ←− B ′

where the vertical maps are the presumed inclusions of admissible subcolagebras. A morphism of
coalgebra coverings (F : B̃ → B) → (F ′ : B ′ → B) is a morphism of quiver coverings θ as above such that
the θ restricts to coalgebra map B̃ → B ′ (again abusively denoting both the map on path coalgebras
and its restriction by θ ).

Corollary 4.6. Assume any of the equivalent conditions of the theorem hold and fix a lifting L : Q 0 → Q̃ 0 . Then
the coalgebra covering F : B̃ → B is isomorphic to F L : B � G → B.

Proof. It is easy to check that B � G is the span of all liftings to Q � G of paths and minimal
elements of B . The result follows from Theorem 4.5, which says that a lifting L gives rise to a covering
isomorphism from F L : Q � G → Q to F : Q̃ → Q . �
Lemma 4.7. Let θ : B̃ → B ′ be a morphism of Galois coalgebra coverings of B. Then the map θ : B̃ → B ′ is a
Galois coalgebra covering.

Proof. Adopt the notation of the preceding paragraph. Fix x0 ∈ Q , x̃0 ∈ Q̃ , x′
0 ∈ Q ′

0 with F (x̃0) =
x0 = F ′(x′

0). The quiver morphism θ : Q̃ → Q ′ is a continuous map on the topological realizations.
Therefore by e.g. [17, Ch. 5, Lemma 6.7] it is a topological covering. It is immediately seen to be a
quiver morphism as well, as the condition F ′θ = F forces θ to behave well on vertices and arrows.
Next, we have F ′∗θ∗(π1(Q̃ , x̃0)) = F∗(π1(Q̃ , x̃0)) is a normal subgroup of π1(Q , x0); also we have

F ′∗θ∗
(
π1(Q̃ , x̃0)

) ⊆ F ′∗
(
π1

(
Q ′, x′

0

)) ⊆ π1(Q , x0)

from which we conclude that θ∗(π1(Q̃ , x̃0)) is normal in π1(Q ′, x′
0). Thus θ is a Galois covering

of quivers. Furthermore, note that by Proposition 4.4 F∗(N(B̃, x̃0)) = N(B, x0) = F ′∗(N(B ′, x′
0)) and

N(B, x0) ⊆ F∗(π1(Q̃ , x̃0)) = F ′∗θ∗(π1(Q̃ , x̃0)). We deduce that N(B ′, x′
0) ⊆ θ∗(π1(Q̃ , x̃0)). By Theo-

rem 4.5 again we see that θ is a Galois coalgebra covering, noting that B̃ is the span of all liftings of
minimal elements and paths in B ′ . �
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5. Coverings from gradings

Proposition 5.1. Let B ⊆ kQ be a pointed coalgebra and let δ : Q 1 → G be a connected arrow weighting
determining a grading of B. Then F : Q � G → Q is a Galois covering of quivers and the restriction F : B̃ → B
is a coalgebra covering.

Proof. In view of Proposition 3.1 and by Theorem 4.5 we need to show that N(B, x0) ⊆ F∗(π1(Q � G,

x0 � 1)). Let [w−1q−1 pw] ∈ N(B, x0) be a generator where
∑

λi pi ∈ B is a homogeneous minimal
element with distinct paths p1 = p and p2 = q, both in Q (x, y), and walk w from x0 to x. Then,
since p and q have the same weight, u = w−1q−1 pw is a closed walk in Q having weight 1G . It
follows that u lifts to a closed walk ũ in Q � G starting and ending at x0 � 1. We have shown that
F∗([̃u]) = [u] ∈ F∗(π1(Q � G, x0 � 1)) and thus N(B, x0) ⊆ F∗(π1(Q � G, x0 � 1)). �
6. Liftings, weightings and isomorphisms

Let F : Q̃ → Q be a Galois covering. Let L, L′ : Q 0 → Q̃ 0 be liftings of F . By Theorem 4.2 there
are covering isomorphisms with kQ � kG ∼= kQ̃ ∼= kQ �

′
kG determined by the liftings (� = �L ,

�
′ = �L′ ), so we can identify Q̃ with the smash coproduct quiver Q � G and then write

L′(x) = x � γ (x)

for all x ∈ Q 0 where γ : Q 0 → G is a function, depending on L′ , that we call a vertex weighting. We
write δ (resp. δ′) for the grading corresponding to L (resp. L′).

Given a vertex weighting γ , let δγ : Q 1 → G associate the γ -twisted grading defined by the weight
function

δγ (a) = γ (y)−1δ(a)γ (x)

for all arrows a ∈ Q 1(x, y), x, y ∈ Q 0. Observe that this formula extends to all paths (playing the role
of the arrow a), i.e., if p = anan−1 · · ·a2a1 is a path in Q with vertex sequence t(an) = xn, . . . , x1 =
s(a2) = t(a1), x0 = s(a0), then we set gi = γ (xi) and define δγ (p) = δ(an)δ(an−1) · · · δ(a2)δ(a1). We see
that

δγ (p) = g−1
n δ(an)g−1

n−1 gn−1δ(an−1) · · · g−1
2 g2δ(a2)g−1

1 g1δ(a1)g0

= γ
(
t(an)

)−1
δ(an)δ(an−1) · · · δ(a2)δ(a1)γ

(
s(a1)

)

= γ
(
t(p)

)−1
δ(p)γ

(
s(p)

)
.

An isomorphism θ : F → F ′ of Galois coverings of Q (or of the coalgebras coverings kQ̃ F−→ kQ F ′←−−
kQ ′) is said to be a G-isomorphism if it commutes with the right action of the automorphism group

G = π1(Q , x)

F∗(π1(Q̃ , x̃))
= π1(Q , x)

F ′∗(π1(Q ′, x′))

where F (x̃) = F ′(x′) = x. Let kQ �
′
kG be a smash coproduct coalgebra using a grading δ′ : Q 1 → G .

For a G-isomorphism of smash coproduct coverings θ : kQ � kG → kQ �
′
kG we have θ(p � g) =

p �
′ gp g for some gp ∈ G , for all paths p and g ∈ G . We say that the weighting δ′ implicit in the

smash coproduct kQ �
′
kG is the G-grading associated to the G-isomorphism θ .

Given the associated gradings to each lifting, vertex weighting and G-isomorphism θ we have
described, we have the following result.
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Proposition 6.1. Let F : Q̃ → Q be a Galois covering of quivers and fix a lifting L : Q 0 → Q̃ 0 . There are
bijections between the following sets:

(a) liftings L′ : Q 0 → Q̃ 0 ,
(b) vertex weightings γ : Q 0 → G,
(c) G-isomorphisms of coverings kQ � kG → kQ �

′
kG.

Moreover, these bijections preserve the associated gradings.

Proof. By Theorem 4.2 we know that kQ̃ ∼= kQ � kG where � is the smash coproduct with grading
induced by L. Let L′ : Q 0 → Q̃ 0 be a lifting. By the isomorphism, we may assume kQ̃ = kQ �kG with
Q̃ = Q � G and therefore L′(x) = x � γ (x) for all x ∈ Q 0 for some γ (x) ∈ G . This produces a vertex
lifting γ . Since each such choice of γ provides a unique lifting, we have obtained a bijection between
the sets in (a) and (b). Let δ′ : Q 1 → G be the arrow weighting induced by L′ . Let p be a path in
Q (x, y). Then L′(p) = p � γ (x) is a path in Q̃ starting at x � γ (x) and ending at

y � δ(p)γ (x)

= y � γ (y)γ (y)−1δ(p)γ (x)

= L′(y)γ (y)−1δ(p)γ (x)

= L′(y)δ
γ (p).

This shows that δ′ = δγ , so that the associated grading is preserved, as claimed.
We move on to demonstrating a grading-preserving isomorphism between (b) and (c). For any

vertex weighting γ : Q 0 → G , define a map θγ : kQ � kG → kQ �
′
kG by θγ (p � g) = p �

′ γ (x)−1 g
for all paths p and g ∈ G . This clearly defines a linear isomorphism with F ′θ = F . On the other hand,
given a k-linear isomorphism θ : kQ �kG → kQ �

′
kG such that for all p � g ∈ kQ �kG with paths p

in Q and g ∈ G , θ(p � g) = p � gp g for some gp ∈ G , we note that

�
(
θ(p � 1)

) = �
(

p �
′ gp

)

=
∑
p=rq

(
r �

′ δ′(q)gp
) ⊗ (

q �
′ gp

)

and on the other hand

(θ ⊗ θ)�(p � 1) = (θ ⊗ θ)
∑
p=rq

(
r � δ(q)

) ⊗ (q � 1)

=
∑
p=rq

(
r �

′ grδ(q)
) ⊗ (

q �
′ gq

)
.

Equating the right tensor factors yields gp = gq for all initial segments q of p. In particular, we see
in this situation that gp is determined by the starting vertex, i.e., gp = gs(p) for all paths p. Let the
vertex weighting γ be defined by γ (x) = g−1

x for all x ∈ Q 0. Next, equating the left tensor factors at
p = q results in the equation δ′(p) = gt(p)δ(p)g−1

p = γ (y)−1δ(p)γ (x) = δγ (p) for all p ∈ Q (x, y). This
shows that θ is a G-coalgebra covering isomorphism if and only if δ′ = δγ and θ = θγ . It follows that
we have a bijective mapping from the set (c) to the set (b) given by γ �→ θγ , which preserves the
associated grading. �
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Remark 6.2. The set of vertex weightings G Q 0 forms group under pointwise multiplication in G .
Therefore we can construe the bijections in the theorem as group isomorphisms, and the group of
gradings (again pointwise) as a homomorphic image of each of the three isomorphic groups in (a)–(c).
The quite arbitrary choice of the lifting L provides an identity element in the group of liftings, corre-
sponding to the neutral vertex weighting x �→ 1G , x ∈ Q 0.

7. Universality

Theorem 7.1. Let B ⊆ kQ be a pointed coalgebra. Then:

(a) There exists a Galois coalgebra covering F : B̃ → B such that for every Galois coalgebra covering
F ′ : B ′ → B, there exists a Galois coalgebra covering E : B̃ → B ′ such that the following diagram com-
mutes

B̃
E

F

B ′

F ′

B.

(b) If we fix base points x0 ∈ B0 , x′
0 ∈ B ′

0 , x̃0 ∈ B̃0 with F (x̃0) = x0 = F ′(x′
0), then E can be uniquely chosen

so that E(x̃0) = x′
0 .

(c) The Galois covering F : B̃ → B is unique up to isomorphism.

Proof. Fix x0 ∈ Q 0. The smash coproduct Q � π1(Q , x0) is the universal covering of Q where the
connected grading δ̂ : Q 1 → π1(Q , x0) arises from a lifting L such that L(x0) = x0 � 1π1(Q ,x0) . Let
G = π1(Q , x0), N = N(B, x0) and Q̃ = Q � G/N , where the grading is induced by composing with the
natural map onto G/N , i.e., δ is the composition

Q 1
δ̂−→ G → G/N.

This is immediately seen to give a connected grading of kQ . Now observe that F∗(π1(Q̃ , x0 �1)) = N ,
as the elements of N are precisely the equivalence classes of closed walks based at x0 that lift to
closed walks at x0 � 1. By Theorem 4.5, we obtain a coalgebra covering F : B̃ → B where B̃ = B � kG
is the span of liftings of minimal relations of B .

Let F ′ : B ′ → B be the hypothetical coalgebra covering arising as the restriction of a covering
F ′ : Q ′ → Q with base vertex x′

0 ∈ Q ′
0, F ′(x′

0) = x0. Let N ′ = F ′∗(N(B ′, x′
0)). By Theorem 4.5 we have

N ′ ⊇ N = F∗
(
N

(
π1(Q̃ , x̃0)

))
.

Thus we may form the smash coproduct Q � G/N ′ using the induced connected grading via Q 1
δ−→

G → G/N ′ . Here F ′∗(π1(Q � G/N ′, x0 � 1)) = N ′ = F ′∗(N(B ′, x′
0)), so by standard results e.g. [17, Ch. 5,

Corollary 6.4], there is a unique isomorphism of coverings E : Q � G/N ′ ∼−→ Q ′ sending x0 � 1 to x′
0.1

We have the commuting diagram of quivers

1 If we identify Q ′ with Q � G/N ′ and x′
0 = x � ḡ with ḡ ∈ G/N , then the isomorphism is concretely given by the right

action of ḡ .
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Q � G/N

F

Q � G/N ′ Q ′

F ′

Q .

The horizontal composed map Q � G/N → Q ′ provides a morphism of coalgebra coverings by
Lemma 4.7. This proves the assertions (a) and (b).

The uniqueness of F follows since it is the unique Galois covering such that F∗(π1(Q̃ , x0 �

1)) = N . �
The covering coalgebra Q � G/N in this result is the universal Galois covering of B ⊆ kQ .

8. Examples

Example 8.1. Let Q be the quiver consisting of a single loop a and single vertex x. The universal
cover Q̃ is a quiver of type A∞ with all arrows in the same direction. The automorphism group
π1(Q , x) is infinite cyclic, generated by g = [a]. A connected grading is given by δ(a) = g . Since there
is a single vertex and G is abelian, Theorem 6 says that all other liftings yield the same grading.
The path i → · → · · · · → i + , i ∈ Z,  ∈ N corresponds to a

� gi ∈ kQ � kG . All other coverings
of Q are given by the action of a subgroup 〈gn〉 of G and are easily seen to be the cyclic quiver
0̄ → 1̄ → ·· · → n − 1 → n̄ = 0̄ of length n ∈ N. The only subcoalgebras of kQ are the truncations B =
k{x,a,a2 · · ·an−1}. There are no minimal elements, so the universal covering B̃ is isomorphic to B �kG
where the path i → · → · · · · → i +  corresponds to a

� gi , 0 �  � n, i ∈ Z. Each finite-dimensional
comodule for kQ̃ corresponds to a quiver representation k → k → ·· · · → k, which pushes down to
the -dimensional representation of Q corresponding to the comodule k{x,a,a2 · · ·a−1}. Since these
comodules are precisely the representatives of finite-dimensional indecomposables for kQ , it is clear
that the forgetful functor MkQ̃ ≈ GrkQ → MkQ is dense. We note here that the indecomposable
representations of Q corresponding to indecomposables over the path algebra k[a,a−1] with nonzero
(Jordan) eigenvalue are not comodules as they are not locally nilpotent (cf. [3]).

Example 8.2. Let Q be the quiver consisting of two loops a, b and single vertex x. The fundamental
group G is a free group on two generators. The quiver Q̃ is the Cayley graph of the free group on a,
b and the vertices of Q̃ are indexed by the elements of G , and these group elements correspond to
vertex weightings. Distinct vertex weightings give rise to distinct gradings, which are thus infinite in
number.

Example 8.3. Let Q be the Kronecker quiver

x ⇒ y

consisting of the two arrows a, b from the vertex x to the vertex y. The fundamental group is infinite
cyclic. Specifying an arrow weighting δ : Q 0 → G by δ(a) = 1 and δ(b) = g , we get the covering quiver
Q̃ = Q � G of type A∞ with zig-zag orientation

· · · ← x0 → y0 ← x1 → y1 ← x2 → ·· ·
where xn = x � gn and yn = y � gn . Here again there are infinitely many distinct gradings, with
isomorphic smash coproducts. The finite-dimensional indecomposable comodules for kQ̃ are given
by the representations of Q̃ . By the theory of special biserial (co)algebras, see [4] (and [9]), these
representations are given by the strings k−k−· · ·−k−k of finite length where − denotes ← or →.
On the other hand, the finite-dimensional indecomposable representations of Q are well known to be
given by string modules and a one-parameter family of band modules [9]. Note that the band modules
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correspond to comodules in M B , as they are locally nilpotent (cf. [3]), in contrast to Example 8.1. The
band comodules correspond to non-gradable comodules for kQ . Thus the forgetful functor M B̃ ≈
GrB → M B is not dense.

Example 8.4. Consider the coordinate Hopf algebra kζ [SL(2)] at a root of unity ζ of odd order 

over a field k of characteristic zero. The basic coalgebra decomposes in to block coalgebras Br ,
r = 0,1,2, . . . ,  − 2. The nontrivial blocks are indexed by integers r �  − 2, and they are all isomor-
phic [4]. Each nontrivial block B is isomorphic to the subcoalgebra of path coalgebra of the quiver Q :

x0

b0
�
a0

x1

b1
�
a1

x2

b2
�
a2

· · ·

spanned by the by group-likes xi corresponding to vertices, arrows ai , bi , i � 0, together with coradical
degree two elements

d0 := b0a0,

di+1 := aibi + bi+1ai+1, i � 0.

Therefore N(B, x0) is generated by homotopy classes closed walks of the form w−1b−1
i a−1

i bi+1ai+1 w
for appropriate walks w (from x0 to xi ), and it follows that the fundamental group of B ⊂ kQ is
the infinite cyclic group G = 〈g〉, generated by g = [b0a0] and the universal cover is a quiver of
type ZA∞ . For example letting δ(b) = g−1 and δ(a) = 1G we obtain a connected grading of B and
covering quiver Q � G

...

x0,1
a01

x1,1 x2,1

x0,0 x1,0 x2,0 · · ·
b1,−1

x0,−1 x1,−1 x2,1

...

with vertices xin = xi � gn; i ∈ N, n ∈ Z. The arrows are ain = ai � gn starting at xin and ending at
xi+1,n , and bin = bi � gn starting at xi+1,n+1 � gn+1 and ending at xin . The coalgebra B̃ is spanned by
the vertices, arrows, paths d0n := b0,n−1a0,n and the minimal elements di+1,n := ainbin +bi+1,nai+1,n+1,
i � 0.

The finite-dimensional representations of B are determined in [4]. Each arrow ai generates the
length two right comodule known as a Weyl comodule, with composition series kxi

kxi+1
. The arrow bi

generates the dual Weyl comodule. Any grading of B is determined by an arrow weighting, so each
Weyl and dual Weyl comodule is obviously thus graded. The coalgebra B is an example of a special
biserial coalgebra and all finite-dimensional comodules are string comodules. Each of these comodules
corresponds to a walk (i.e. a string) of one of the following forms

atb−
t−1 · · ·as−1b−

s+1as,

b−
t at−1 · · ·bs−1as+1b−

s ,
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atb−
t−1 · · ·as+1b−

s ,

b−
t at−1 · · ·b−

s+1as

where the subscripts form an interval [s, t] of nonnegative integers strictly increasing from right to left
in the walk. Each of these can be constructed as an iteration of pullbacks and pushouts of Weyl co-
modules and dual Weyl comodules (with isomorphic socles or tops), both of which are gradable. Since
the simple comodules have trivial weighting, it follows that every finite-dimensional B-comodule is
gradable. Thus the forgetful functor GrB → M B is dense.
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