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Antimicrobial peptides serve as a first line of innate immune defense against invading organisms such as
bacteria and viruses. In this study, we hypothesized that peptides produced by a normal microbial resident of
human skin, Staphylococcus epidermidis, might also act as an antimicrobial shield and contribute to normal
defense at the epidermal interface. We show by circular dichroism and tryptophan spectroscopy that phenol-
soluble modulins (PSMs) g and d produced by S. epidermidis have an a-helical character and a strong lipid
membrane interaction similar to mammalian AMPs such as LL-37. Both PSMs directly induced lipid vesicle
leakage and exerted selective antimicrobial action against skin pathogens such as Staphylococcus aureus. PSMs
functionally cooperated with each other and LL-37 to enhance antimicrobial action. Moreover, PSMs reduced
Group A Streptococcus (GAS) but not the survival of S. epidermidis on mouse skin. Thus, these data suggest
that the production of PSMg and PSMd by S. epidermidis can benefit cutaneous immune defense by selectively
inhibiting the survival of skin pathogens while maintaining the normal skin microbiome.
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INTRODUCTION
Infections from organisms such as Group A Streptococcus
(GAS, Streptococcus pyogenes) or Staphylococcus aureus
range from superficial to invasive, and collectively represent
a severe societal burden, only escalating with the increase of
resistance to pharmaceutically derived antibiotics (Jones,
2003; Carapetis et al., 2005; McCaig et al., 2006). Increasing
our understanding of innate host-derived antimicrobial
peptides (AMPs) offers an alternative to the development of

treatment of such infections, as AMPs have retained the
capacity to provide protection against infections by GAS,
S. aureus, and other microbes (Dorschner et al., 2001; Nizet
et al., 2001; Di Nardo et al., 2008), and have not lost their
antimicrobial relevance as in the case of many pharmaceu-
tical antibiotics.

Although our understanding of AMPs remains incomplete,
several classes of these antibiotic peptides have been
described. AMPs such as cathelicidin-related AMP (CRAMP)
in mice and LL-37 in humans are small cationic a-helical
peptides that act through a strong membrane activity. These
helical peptides associate with lipid membranes (Yu et al.,
2002; Porcelli et al., 2008) and are thought to kill microbes
by their capacity to disrupt the normal structure of the lipid
membrane (Henzler Wildman et al., 2003). Interestingly,
several bacteria have also been shown to produce mem-
brane-disruptive peptides. For example, delta-lysin (delta-
toxin or hld gene), also known as phenol-soluble modulin-g
(PSMg), from S. aureus has been shown to cause lysis of
membranes and displays strong lipid interactions (Alouf et al.,
1989). This peptide causes disease through the destruction of
red blood cells and neutrophils (Dhople and Nagaraj, 1993)
(Wang et al., 2007). The mechanism of action for this
member of the PSM group of peptides is similar to some
AMPs, as nuclear magnetic resonance studies have shown
that S. aureus delta-toxin forms an a-helix in lipid micelles
(Tappin et al., 1988). A few earlier studies have also found
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that delta-toxin from S. aureus can exert antibacterial activity
when chemically modified by amino-acid substitution and
truncation, but the S. aureus native peptide was unable to
inhibit Escherichia coli or S. aureus (Dhople and Nagaraj,
1993, 1995). Despite these hints that PSMs could be
antimicrobial, the action of these molecules as AMPs has
not been extensively studied.

As the related Staphylococcal species, Staphylococcus
epidermidis, normally resides in abundance on the surface of
healthy human skin, in this study, we sought to investigate
whether the unique peptides PSMg and PSMd found in
S. epidermidis could be beneficial to the host and thus serve
as an additional AMP on normal skin surface. On the basis of
the structure, biophysical properties, and antimicrobial
activity of PSMg and PSMd, this study suggests that
S. epidermidis has a beneficial role in skin immune defense
by producing innate, yet non-host-derived AMPs on the skin
surface.

RESULTS
PSMs have structural similarities to AMPs and strongly interact
with synthetic lipid membranes

We observed that helical wheel plots of two peptides (PSMg
and PSMd) produced by S. epidermidis predicted the
segregation of their hydrophobic and cationic amino acids
with a 5-amino-acid periodicity, which resembles that
of classic AMPs such as LL-37 (Figure 1a and b). As
S. epidermidis is a major normal resident microbe on the
surface of human skin, a structural similarity to native human
AMPs suggested the potential of these peptides to have a
similar effect and to contribute to the normal antimicrobial
defense of the skin. To evaluate the validity of this structural
prediction by wheel plot, and to test the capacity of PSMs to
adopt the charge distribution predicted by Figure 1b, circular
dichroism (CD) was carried out on synthetically produced
PSMg and PSMd. CD spectral analysis showed a-helical
tendencies for both peptides in buffer alone (Figure 1c and d).
In the presence of anionic POPC/POPG ((1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine)/(1-palmitoyl-2-oleoyl-
sn-glycero-3-[phospho-rac-(1-glycerol)]) lipid vesicles, PSMd,
but not PSMg, became more a-helical (Figure 1d).

Next, a spectroscopic analysis of tryptophan in PSMg was
carried out to evaluate the capacity of the peptide to associate
with lipid membranes, a characteristic consistent with the
amphipathic structure predicted by the wheel plot. As
tryptophan was present only in PSMg, only this peptide was
amenable to this form of spectroscopic analysis. In buffer
alone, PSMg’s tryptophan emitted maximally at 339 nm,
whereas in the presence of POPC/POPG lipid vesicles the
maximal emission shifted to 332 nm, indicating a more
buried state (Figure 1e and g). The addition of urea
successfully unfolded and dissociated peptide oligomers of
PSMg, as shown by a red shift of the maximal emission to
355 nm. However, in the presence of lipid vesicles, the
maximal emission in urea remained low (335 nm), indicating
a continued strong membrane association (Figure 1f and g).
These data confirmed that PSMg strongly associates with lipid
membranes even under the strongly dissociating condition

of 5.5 M urea. Thus, the combined observations of being
a-helical, a secondary structural change in the presence of
membranes, and a strong interaction with lipid vesicles
confirmed that PSMs have similarities to AMPs in terms of
secondary structure and membrane affinity.

S. epidermidis PSMs form multimeric complexes in solution

Another common characteristic of AMPs is their ability to form
complexes. To determine whether PSMg forms multimeric
complexes, we generated unfolding curves of PSMg as a
function of peptide concentration in urea. In this two-state
model, we considered ‘‘folded’’ to be that of a multimeric state
that allows for stabilization and embedding of tryptophan. In
the ‘‘unfolded’’ state, peptides are monomeric in solution and
the tryptophan residue will be solvent exposed. PSMg is shown
to be in a multimeric state at 0 M urea and a in a monomeric
state at 4 M (Figure 2a). The unfolding curve of 5mM PSMg had a
midpoint (Cm) of 2.14 M urea, a slope of 0.67 kcal M

�1 mol�1 at
the midpoint, and a DG�ðH2OÞ of 1.43 kcal mol�1 (Figure 2a and
b). Increasing the concentration of PSMg to 25mM caused a shift
in the midpoint to 3.2 M urea, a slope of 0.49 kcal M

�1 mol�1 at
the midpoint, and a DG�ðH2OÞ to 1.57 kcal mol�1. This result
indicated that a greater concentration of urea was required to
unfold PSMg in the presence of more peptide, indicating the
formation of stable multimeric complexes.

In addition to multimeric complexes, we probed PSMd
and PSMg for their ability to form hetero-multimeric
complexes using CD. CD spectra of PSMg were measured
in the presence of increasing concentrations of PSMd. The
PSMd spectrum alone was subtracted from the combined
spectrum; hence, the output shows only the changes in the
secondary structure of PSMg. On addition of PSMd, PSMg
signal increased in intensity, suggesting a greater a-helical
character (Figure 2c). Thus, the alteration of PSMg’s spectrum
by PSMd suggests that the peptides are interacting.

PSMs disrupt artificial membrane vesicles and kill skin
pathogens

Next, to determine whether the physical similarities of PSMs
to AMPs extend to the functional capacity to perturb lipid
membrane vesicles, we tested their ability to perforate POPC/
POPG vesicles. The vesicles evaluated were generated in
such a manner that they encapsulated the fluorophore ANTS
(8-aminonaphthalene-1,3,6-trisulfonic acid, disodium salt)
and a quencher DPX (p-xylene-bis-pyridinium bromide). As
shown upon addition of Triton X, the release of ANTS from
vesicle resulted in increased fluorescence because of
dissociation from the quencher (Figure 3a and b). Incubation
of these vesicles with increasing concentrations of PSMg or
PSMd induced greater fluorescence, thereby demonstrating a
leakage of ANTS from vesicles (Figure 3a and b). Thus, PSMs
are directly membrane active and can perforate POPC/POPG
vesicles, a functional characteristic similar to mammalian
AMPs such as LL-37.

To directly determine whether the capacity of PSMs to
disrupt membranes would extend to the ability of these
peptides to kill or inhibit the growth of potential skin
pathogens, GAS, S. aureus, and S. epidermidis were
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incubated with PSMs at various concentrations for 24 h,
plated, and colonies were enumerated to determine bacterial
survival. Growth of both GAS and S. aureus was inhibited,
and bacteria were killed by either PSMg or PSMd at
concentrations 416 mM, whereas S. epidermidis was resistant
and survived at the highest concentration tested (64 mM)
(Figure 3c–f). Similarly, Table 1 illustrates that these peptides
produced by S. epidermidis showed significant bactericidal

activity toward other pathogens, but were somewhat selec-
tive in their potency. S. aureus (including methicillin-resistant
S. aureus), S. pyogenes, and E. coli were unable to survive at
PSMd concentrations of 32 mM, whereas S. epidermidis
survived at the highest concentration assayed.

To further evaluate the mechanisms responsible for the
antimicrobial action of PSMs, and to support the data shown
earlier, the direct action of PSM on bacterial membranes was
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Figure 1. Phenol-soluble modulins have structural similarities and strongly interact with synthetic lipid membranes. (a) Sequences of PSMg and PSMd,

highlighting tryptophan in PSMg. (b) Helical wheel plots show sequestration of hydrophobic residues for PSMg, PSMd, and LL-37. Circular dichroism spectra of

20mM PSMd (c) or PSMg (d) in the presence and absence of 1 mM of 2:1 POPC/POPG lipid vesicles in 20 mM potassium phosphate buffer, pH 7.3, show an

a-helical structure and structural changes of PSMd and PSMg in the presence of lipid vesicles. Tryptophan fluorescence spectra of PSMg in the presence and

absence of 1 mM of 2:1 POPC/POPG vesicles in 20 mM potassium phosphate buffer, pH 7.3 (e), or in the presence of 5.5 M urea (f). (g) Table displaying the

maximum emission wavelength of PSMg’s tryptophan. POPC/POPG vesicles in 20 mM of potassium phosphate buffer, pH 7.3 (Kpi), cause a blue shift in the

tryptophan’s maximal emission indicating an embedment of PSMg in the lipid membrane.
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evaluated. S. epidermidis, GAS, or S. aureus was incubated
with PSMg and cells fixed within 20 min for electron
microscopy. This analysis showed that membrane blebbing
of both GAS and S. aureus was induced by PSMg (Figure 3g).
This effect was not observed in S. epidermidis treated
similarly. The degree of membrane blebbing observed in
GAS and S. aureus was similar to that seen when bacteria
were treated with mammalian AMP CRAMP (Figure 3g).
PSMg and PSMd also induced dose-dependent membrane
leakage in cultured mammalian cells as measured by cell
propidium iodide (PI) uptake in cultured normal human
keratinocytes (Figure 4). This capacity to disrupt mammalian
cell membranes is a property previously reported for PSMs
(Wang et al., 2007) and similar to AMPs also found on the
skin, such as LL-37. Cell permeability was measured by PI
uptake in cells exposed to peptides in culture. The number of
PI-positive fluorescent cells per field indicates relative

permeability effects on the cell population. Maximal PI
uptake in the population occurred at 8 mM for both LL-37 and
PSMg. Thus, PSMs cause membrane leakage and membrane
perturbation in bacteria and mammalian cells, and this
function is similar to that of innate cutaneous AMPs.

Next, on the basis of the spectroscopic observations
suggesting interactions of PSMg and PSMd, we determined
whether PSMd and PSMg would show increased antimicro-
bial action when combined. GAS was incubated with
increasing concentrations of both PSMd and PSMg. As shown
previously, 8 mM of PSMg alone completely inhibited GAS.
The addition of 2 mM of PSMd reduced the concentration of
PSMg needed to completely inhibit GAS growth to 4 mM

(Figure 5a). Similarly, PSMs also cooperated with LL-37 to
inhibit GAS survival (Figure 5b and c). These data show that
PSMs function better together, and will further increase the
potency of existing host AMPs on skin, such as LL-37.
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PSMs are present on the surface of the human skin and act
ex vivo to selectively kill GAS

As S. epidermidis is located on the epidermis, we sought to
determine whether the presence of PSMs could prevent
pathogen survival on the skin’s surface. Sterilized skin
explants from wild-type mice were treated with PSMs and
then challenged with GAS or S. epidermidis. Similar to the
in vitro minimal bactericidal concentration data that illustrate
selective antimicrobial activity, PSMg and PSMd reduced
GAS survival but not S. epidermidis on the skin’s surface
(Figure 6a and b).

DISCUSSION
In this study, we tested the hypothesis that S. epidermidis may
have a beneficial or mutualistic relationship with human skin.
Such findings have precedence with microbiota of the gut
(Blum and Schiffrin, 2003; Backhed et al., 2005; Gao et al.,
2007; Grice et al., 2008), but has not been shown for
cutaneous epithelia. In this study, our findings show that
S. epidermidis produces two PSM peptides that have
antimicrobial properties similar to those of host AMPs.
Biophysical properties of PSMs supporting this conclusion

include observations that PSMg forms multimeric complexes
and exhibits a strong a-helical structure in solution that is
modified by the presence of lipid membranes, thus disrupting
the aggregates in solution. These findings suggest that PSMg
acts through the barrel-stave mechanism to disrupt microbial
membranes and kill the organism, a mechanism of action
similar to that of some other AMPs. Furthermore, the
antimicrobial properties of these PSMs directly coincide with
the predictions based on biophysical measurements. Impor-
tantly, PSMs seem to provide a selective advantage for S.
epidermidis as they inhibit several common skin microbes
but do not inhibit its own growth. Thus, the observation that
S. epidermidis typically resides harmlessly on the human skin
surface, combined with the potent antimicrobial properties of
PSMg and PSMd, suggest that they could provide benefit to
the host as additional epithelial AMPs.

There is clear evidence that the presence of AMPs at
epithelial surfaces is beneficial. For example, we have
previously shown that mice lacking cathelicidin (Camp�/�)
become much more susceptible to invasive GAS infections of
the skin (Nizet et al., 2001). Similarly, the transgenic
expression of an additional AMP in the small intestine
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provides protection against fatal infections by salmonella
(Salzman et al., 2003), and expression in keratinocytes
protects against skin infection (Braff et al., 2005b). However,
there is no evidence yet that cutaneous microbes offer a
similar benefit to host immunity. Despite the many reports of
microbial-produced antimicrobial molecules, such as bacter-
iocins (Hale and Hinsdill, 1975; Sahl, 1994; Ekkelenkamp
et al., 2005), the consequences of AMP production by
resident microbes have not yet been investigated on skin. In
contrast, microbes living on epithelial surfaces within the gut
have been suggested to provide immune education and
reciprocal benefit for the nutrient-rich niche (Backhed et al.,
2005). On the basis of mounting data on the benefits of
resident microbes, combined with clear evidence of an
important role for AMPs in skin innate immunity, it is
reasonable to conclude that AMPs produced by microbes on
the skin can be beneficial.

The properties described in this study for PSMs as AMPs
are not inconsistent with previously described properties of
these peptides as virulence factors (Wang et al., 2007). In the
setting of an immunocompromised host, and often in
conjunction with a broken skin barrier with catheters, the
production of PSMs by S. epidermidis can lead to tissue
damage and cell lysis that contributes to virulence (Mehlin
et al., 1999; Hajjar et al., 2001; Liles et al., 2001; Vuong and
Otto, 2002; Vuong et al., 2004). Similarly, host AMPs such as
LL-37 can also lead to disease when abnormally expressed
(Howell et al., 2004, 2006; Yamasaki et al., 2007; Hollox
et al., 2008). Thus, membrane-active peptides often present a
double-edged sword, providing defense but also potentially
causing harm. In the situation with S. epidermidis PSMs, it is
possible that they are beneficial when present on the surface

of intact skin, but become potentially dangerous to the host
when the barrier is deeply invaded by live S. epidermidis, and
these bacteria then inhibit leukocytes attempting to repel
their invasion. On the basis of the rare occurrence of this
phenomenon in normal skin, it is unlikely that PSMs do more
harm than good.

An important aspect of our data is that it shows that PSMs
have a unique and highly desirable function for selective
removal of pathogenic organisms on the skin, such as
S. aureus and GAS. Importantly, PSMs do this while retaining
normal flora, such as S. epidermidis, thus enabling normal
flora to maintain their proposed beneficial effects while
eliminating pathogens. The mechanism of action for selective
killing by PSMs likely involves a cooperative interaction with
other native AMPs released by the host, thus boosting innate
immune defense in an immediate and selective manner. This
finding presents the possibility for a topical antimicrobial
strategy to kill common pathogens while the microbiome is
preserved, an approach that would be likely to extend the
duration of maximal immune defense and prevent repopula-
tion by pathogens. This selective activity could become an
important part of a normal microbial defense strategy against
colonization and transmission of hospital-acquired bacterial
pathogens, and could also be exploited for a role in future
anti-infective therapeutics.

MATERIALS AND METHODS
Peptides

PSMd and PSMg were commercially synthesized and purified by

HPLC (Quality Controlled Biochemicals, Hopkinton, MA). PSMg
purity was 495% and PSMd purity was 470%. Mouse cathelicidin-

related antimicrobial peptide and LL-37 were commercially synthe-

sized and purified by HPLC to a purity 495% as previously

described (Braff et al., 2005a).

Table 1. MBC activities of phenol-soluble modulins
Phenol-soluble modulin-g MBC

Staphylococcus epidermidis, 12228 464 mM

Staphylococcus epidermidis, 1457 464 mM

MRSA, Sanger 252 464 mM

MRSA, USA 300 464 mM

Staphylococcus aureus, 113 4–8 mM

Streptococcus pyogenes, NZ131 16 mM

Escherichia coli 8–16 mM

Phenol-soluble modulin-d

Staphylococcus epidermidis, 12228 464 mM

Staphylococcus epidermidis, 1457 464 mM

MRSA, Sanger 252 16–32 mM

MRSA, USA 300 32 mM

Staphylococcus aureus, 113 8 mM

Streptococcus pyogenes, NZ131 16 mM

Escherichia coli 8 mM

MBC, minimal bactericidal; MRSA, methicillin-resistant Staphylococcus
aureus.
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Cell culture

Normal human epidermal keratinocytes (Cascade Biologics, Portland,

OR) were grown in EpiLife medium (Cascade Biologics) supplemented

with 0.06 mM CaCl2, 1% EpiLife-defined growth supplement, and

penicillin/streptomycin (100 Uml�1 and 50mg ml�1, respectively). Cells

were maintained at 37 1C in a humidified atmosphere of 5% CO2.

Vesicle preparation and leakage assay
POPC and POPG (Avanti Polar Lipids) were combined at a 2:1 M

ratio of POPC/POPG, dried under argon gas, resuspended by bath

sonication in 20 mM potassium phosphate buffer (pH 7.3), or in

20 mM potassium phosphate buffer (pH 7.3), 50 mM DPX, and 50 mM

ANTS. Vesicles were extruded through a 0.2-mm polycarbonate film

and run over a size exclusion column to remove unencapsulated

dye. Leakage assays were carried out by incubating vesicles (1:5

dilution) with the desired concentration of peptide for 1 h.

Conditions for ANTS fluorescence were the following: excitation

wavelength of 385 nm, emission wavelength of 400–700 nm,

excitation and emission bandpass of 5 nm, 1 nm per step scan

speed, and integration time of 0.2 s.

CD assay

The molar ellipticity ([y] � 103, deg* cm2 dmol�1) of synthetic

PSMg and PSMd was determined at 25 1C. For vesicle studies, 20 mM

synthetic peptide in 20 mM potassium phosphate buffer, pH 7.3, was

incubated with or without 1 mM of 2:1 POPC/POPG lipid vesicles for

1 h at 25 1C. For peptide interaction studies, 20 mM PSMg was

incubated with 5 or 10mM of PSMd for 1 h at 25 1C. Spectra were

collected over 190–260 nm in an AVIV model Circular Dichroism

Spectrometer (Aviv Biomedical, Lakewood, NJ) with a 0.1-cm path

length, collecting data at 1 nm intervals. Five repeat scans were

taken for each sample, and the averaged baseline spectrum was

subtracted from the sample average. For vesicle studies, 20 mM

potassium phosphate, pH 7.3, in the presence or absence of vesicles,

was used as baseline. For peptide interaction studies, 5 or 10 mM of

PSMd was used as baseline.

Spectroscopic measurements

Synthetic peptide at concentrations of 5 and 25 mM were incubated in

solutions containing 20 mM potassium phosphate, pH 7.3. Urea

concentrations were determined by refractive index measurements

taken on an Abbe 3L Bausch & Lomb Refractometer (Rochester, NY)

(Shirley, 1995). Fluorescence measurements were taken on a Jobin

Yvon SPEX FL3-11 spectrofluorometer (Edison, NJ) equipped with an

R928 Photomultiplier Tube (Hamamatsu, Bridgewater, NJ). Condi-

tions for tryptophan fluorescence are as follows: excitation

wavelength of 290 nm, emission excitation and emission bandpass

of 8 and 4 nm, respectively, 1 nm steps, and an integration time of

1 s. Unfolding curves assumed a two-state system (Pace, 1986) and

reversible unfolding, and were performed in 20 mM potassium

phosphate buffer, pH 7.3, in the absence of lipid vesicles. Emission

maximum was determined for all protein samples and normalized to

a scale of 0–1. Fraction unfolded, f, was plotted against urea

concentration and was fit to the following equation (Pace, 1986):

f ¼
exp �m Cm�C

RT

� �� �

1þ exp �m Cm�C
RT

� �� � ð1Þ

The fit-determined values for the slope, m, and midpoint urea

concentration, Cm, were used to calculate the free energy of

unfolding in the absence of denaturant, using the following equation

(Pace, 1986; Sanchez et al., 2008):

DG
�

ðH2OÞ ¼ mCm ð2Þ
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Figure 5. Phenol-soluble modulins cooperate with each other and host
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(b) or PSMd (c) shows cooperative antimicrobial effect. Data representative of

two individual experiments performed in triplicate. Data are mean±SEM of a

single experiment performed in duplicate and are representative of two

independent experiments.
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In vitro antibacterial studies
Synthetic peptide (Quality Controlled Biochemicals) minimal

bactericidal concentrations and bacterial killing curves were

determined as before in the presence of carbonate, with the only

modification being with GAS (in 25% Todd–Hewitt Broth, 75% of

1� Dulbecco’s (d) PBS (phosphate-buffered saline)), as GAS would

not grow in media containing carbonate (Dorschner et al., 2006). As

a control for the survival curve, GAS and S. epidermidis were grown

in the same medium. For electron microscopy analysis, GAS, S.

epidermidis, and S. aureus were grown to midlog phase in

Todd–Hewitt Broth. Cells were washed with 1� dPBS and

resuspended at 108 CFU ml�1 in 1� dPBS. A final concentration

of 16 mM peptide was added to the cells and incubated for 20 min on

ice. The cells were submitted for EM analysis.

Keratinoyte toxicity study

Normal human epidermal keratinocytes (Cascade Biologics), grown

to 75% confluence in EpiLife media containing 0.02 mM calcium and

epidermal growth factor supplement (Cascade Biologics), were

incubated with 0, 1, 2, 4, 8, and 16mM of PSMg, PSMd, or CRAMP

for 18 h. The cells were stained for permeability using 50 mg ml�1 PI

in 1� dPBS for 10 min. The number of PI-positive fluorescent cells

was counted per � 400 field. Three fields per well were enumerated

and averaged. The experiment was performed twice with triplicate

wells. In the representative experiment, error bars represent ±SEM.

Ex vivo mouse skin infections
The backs of 10- to 12-week-old wild-type C57BL/6 mice (Charles

River, Wilmington, MA) were shaved. Nair (a depilating agent) was

applied for 2 min and removed with a wet towel. At 18–24 h after

hair removal, the mice were killed using CO2. The skin was cleaned

with 70% ethanol. Full-thickness punch biopsies of size 8 mm were

floated on EpiLife media containing 0.06 mM calcium and epidermal

growth factor supplement (Cascade Biologics). Synthetic PSMg at

5ml or PSMd at 64 mM (0.32 nmol) or 32 mM (0.16 nmol) in 1� dPBS

was added to the punch biopsies for 5–10 min. A volume of 5ml

of GAS (S. pyogenes NZ131) or S. epidermidis (ATCC 12228,

Manasass, VA) at 2� 105 CFU (colony-forming unit)/ml was then

added to skin punches treated with the peptides. The samples were

incubated at 37 1C for 4 h. CFUs were recovered by bead beating

with 1 mm zirconia beads (which do not disrupt bacteria) in 1 ml 1�
dPBS for 1 min. The samples were placed on ice for 5 min and then

bead beated again for 1 min. Supernatant was serially diluted onto

Todd–Hewitt agar for CFU enumeration. Experiment was performed

twice in triplicate. In the combined experiment, error bars represent
±SEM. All experiments using mice were conducted according to

institutional guidelines for animal experiments.

Statistical analysis

All statistical analyses were carried out using GraphPad Prism 4.0.

One-way analysis of variance and Bonferroni’s post hoc test were
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used to determine significance for experiments with three more

groups. An unpaired t-test was used to determine significance for

experiments with only two groups. Values of Po0.05 were

considered significant.
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