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Abstract

Let T be a separating incompressible torus in a 3-manifold M . Assuming that a genus g Heegaard splitting V ∪S W can be
positioned nicely with respect to T (e.g., V ∪S W is strongly irreducible), we obtain an upper bound on the number of stabi-
lizations required for V ∪S W to become isotopic to a Heegaard splitting which is an amalgamation along T . In particular, if T is
a canonical torus in the JSJ decomposition of M , then the number of necessary stabilizations is at most 4g − 4. As a corollary, this
establishes an upper bound on the number of stabilizations required for V ∪S W and any Heegaard splitting obtained by a Dehn
twist of V ∪S W along T to become isotopic.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Recent study of Heegaard splittings indicates that generically, Heegaard splittings of Haken manifolds are amal-
gamations along incompressible surfaces; that is, they can be decomposed into Heegaard splittings of the manifolds
obtained by cutting along those surfaces (see, e.g., [3] for the genus 1 case, and [2,8,9,17] and for the genus � 2 case).
There are many examples, however, of Heegaard splittings (such as strongly irreducible splittings) that are not of this
nature. In this paper we investigate the question of how many stabilizations are needed to make a Heegaard splitting
isotopic to an amalgamation along an incompressible torus.

The peculiarity of Heegaard splittings of 3-manifolds containing incompressible tori can be seen in the recent
establishment of the generalized Waldhausen conjecture [7,10], which states that a 3-manifold has only finitely many
Heegaard splittings of a given genus up to isotopy, assuming the 3-manifold contains no incompressible tori. If,
however, a 3-manifold contains an incompressible torus T , then taking a given Heegaard splitting and Dehn twisting
along T can yield infinitely many Heegaard splittings of the same genus (see, e.g., [1]). Hence, a question one may
ask is how many stabilizations are needed for these Heegaard splittings to become isotopic.

Upon consideration of these questions, we have the following results (see below for relevant definitions):

Theorem 1.1. Let M be a closed, orientable 3-manifold, and let T be a separating incompressible torus in M . If
V ∪S W is a Heegaard splitting of M that can be isotoped so that V ∩ T consists of k annuli, then after at most k

stabilizations, V ∪S W is isotopic an amalgamation along T .
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Fig. 1. A stabilization of V ∪S W .

In particular, if V ∪S W is strongly irreducible then (after possible isotopy) the hypotheses of the theorem are
satisfied as S can always be isotoped to intersect T in essential simple closed curves (see, e.g., [15]). We can further
refine the above bound by restricting our choice of T .

Corollary 1.2. Let M be a closed, orientable, irreducible 3-manifold, and let T be a separating canonical torus in the
JSJ decomposition of M . If V ∪S W is a genus g Heegaard splitting of M that can be isotoped so that V ∩ T consists
of annuli, then after at most 4g − 4 stabilizations V ∪S W is isotopic an amalgamation along T .

The assumption that M is irreducible is added here as it is required by the definition of the JSJ decomposition of
M (see Section 6). As an immediate consequence we obtain:

Corollary 1.3. Let M be a closed, orientable (irreducible) 3-manifold, and let T be a separating incompressible torus
(canonical torus in the JSJ decomposition) in M . Suppose V ∪S W and P ∪Σ Q are genus g Heegaard splittings
of M such that P ∪Σ Q is obtained from V ∪S W via any power of a Dehn twist along T . Moreover, assume that
V ∪S W can be isotoped so that V ∩ T consists of k annuli. Then V ∪S W and P ∪Σ Q are isotopic after at most k

stabilizations (4g − 4 stabilizations).

2. Definitions

Let M be a closed, orientable 3-manifold. Definitions of standard terms regarding 3-manifolds can be found, for
example, in [6] and [12].

Definition 2.1. A Heegaard splitting for M is a decomposition of M into two handlebodies V and W of the same
genus such that M is obtained as the identification space of V and W identified along their boundaries via some
homeomorphism from ∂V to ∂W .

The closed orientable surface S = ∂V = ∂W is called the splitting surface, and we write this Heegaard splitting as
V ∪S W . For convenience, we do not distinguish between V , W and S, and their respective embeddings in M . The
genus of V ∪S W is defined to be the genus of S. Two Heegaard splittings V ∪S W and P ∪Σ Q are said to be isotopic
if there exists an isotopy of M taking V to P .

Given a Heegaard splitting V ∪S W of M , one can generate new Heegaard splittings of M . Let α be a properly
embedded, boundary parallel arc in one of the handlebodies, say V . Create a new handlebody W ′ in M by attaching
a 1-handle X to W along the boundary such that α is the core of X. As α is boundary parallel in V , V ′ = V − X is
also a handlebody.

Definition 2.2. The Heegaard splitting V ′ ∪S′ W ′ resulting from the above process is called a stabilization of V ∪S W .
A Heegaard splitting which is obtained by a stabilization of another Heegaard splitting is called stabilized.

Note that V ′ ∪S′ W ′ has genus one larger than V ∪S W . Repeating the above process k times yields a k-times
stabilization of V ∪S W , or V ∪S W stabilized k times. It is a nice exercise to show that a Heegaard splitting being
stabilized is equivalent to the property that there exist properly embedded essential disks in each of the handlebodies
that intersect in a single point. Moreover, two Heegaard splittings obtained by stabilization of the same splitting are
isotopic. A classical theorem of Reidemeister and Singer [11,16] states that any two Heegaard splittings of the same
manifold can each be stabilized some indefinite number of times to become isotopic.
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Fig. 2. An amalgamation along F .

Definition 2.3. A Heegaard splitting V ∪S Wof M is said to be reducible if there exist essential disks D ⊂ V and
E ⊂ W such that ∂D = ∂E. Otherwise V ∪S W is called irreducible.

Definition 2.4. A Heegaard splitting V ∪S W is said to be weakly reducible if there are essential disks D ⊂ V and
E ⊂ W such that ∂D ∩ ∂E = ∅. Otherwise it is called strongly irreducible.

A reducible Heegaard splitting is easily seen to be weakly reducible. As referred to in the introduction, a useful
property of a strongly irreducible Heegaard splitting is that it can be isotoped to intersect an incompressible surface
in simple closed curves essential on both surfaces. A result of Haken [5] implies that irreducible Heegaard splittings
arise only in irreducible manifolds.

Definition 2.5. Let F be a separating incompressible surface in M . A Heegaard splitting V ∪S W of M is called an
amalgamation along F if (after isotopy) F is obtained from simultaneous compressions on both sides of S.

This definition of amalgamation only makes sense in the context that M is closed. The more general definition can
be found, e.g., in [14].

The condition that F is obtained from simultaneous compressions on both sides of S is equivalent to saying that S

can be obtained from F by a series of ambient 1-surgeries on pairwise disjoint arcs properly embedded in M cut along
F . Also note that amalgamation is not unique; V ∪S W can be an amalagamation along several different surfaces in M .
By [4], an irreducible Heegaard splitting is either strongly irreducible or an amalgamation along some incompressible
surface.

3. Amalgamations

The purpose of this section is to determine when a Heegaard splitting is an amalgamation along a given incom-
pressible torus. Let A be an annulus properly embedded in a handlebody V . We say A is essential in V if it is
incompressible and not boundary parallel in V . A spanning arc of A is an essential arc in A, i.e. a properly embedded
arc in A that cuts A into a disk. A spanning disk for A in V is a boundary compressing disk for A in V , i.e. a disk D

such that ∂D = a ∪ b where a = D ∩ A is a spanning arc of A and b = D ∩ ∂V . Note that this implies D is essential
in V cut along A.

Lemma 3.1. Any essential annulus A in a handlebody V has a spanning disk.

Proof. Using Van Kampen’s Theorem one can compute a presentation for π1(V ) using the components of V cut
along A. As π1(V ) is a free group, the generator of π1(A) must be mapped to a generator in the fundamental group
of one of the components of V cut along A. This implies that there exists an essential disk in this component which
meets A in a single spanning arc. Such a disk is a spanning disk of A in V . �
Lemma 3.2 (The Amalgamation lemma). Suppose T is a separating incompressible torus in M so that M = N0 ∪T N1
and let V ∪S W be a Heegaard splitting of M . Then V ∪S W is an amalgamation along T if and only if there is an
isotopy of S to a surface intersecting T in essential simple closed curves such that each (annulus) component of
V ∩ T has a spanning disk in V contained in Nε , and each (annulus) component of W ∩ T has a spanning disk in W

contained in Nε′ where {ε, ε′} = {0,1}.
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Fig. 3. A schematic for the Amalgamation lemma.

Fig. 4.

Fig. 5.

Proof. Assume first that V ∪S W is an amalgamation along T . Then S can be obtained from T by ambient 1-surgery
on pairwise disjoint arcs properly embedded in N0 and N1. These arcs can be isotoped by arc slides so that on each
side of T only one arc meets T in one of its ends (see Fig. 4). Thus after isotopy, S ∩ T = T − (D1 ∪ D2), where D1
and D2 are disks in T . Isotope S into N0 and N1 as in Fig. 5 so that S ∩ T consists of 2 simple closed curves essential
in T . They are essential in S as well by the fact that T is incompressible. The existence of spanning disks on opposite
sides of T for the resulting 2 annuli is then obvious, as in Fig. 5.

For the other direction assume without loss of generality that each component of V ∩ T has a spanning disk in V

contained in N0, and each component of W ∩ T has a spanning disk in W contained in N1. Let A1, . . . ,An be the
components of V ∩ T with respective spanning disks D1, . . . ,Dn, and B1, . . . ,Bn the components of W ∩ T with
respective spanning disks E1, . . . ,En. By the definition of spanning disk and the fact that Di is contained in N0, it
follows that Di ∩ T is a single spanning arc of Ai , for 1 � i � n. Similarly, Ei ∩ T is a single spanning arc of Bi , for
1 � i � n.

By a standard innermost disk, outermost arc argument, we may assume that D1, . . . ,Dn,E1, . . . ,En are all pair-
wise disjoint. Each spanning disk Di defines an isotopy of S in the following way. Let N(Di) be a neighborhood
of Di such that N(Di) ∩ S = ∂N(Di) ∩ S is a neighborhood of ∂Di ∩ S in S, and N(Di) ∩ T = ∂N(Di) ∩ T is a
neighborhood of ∂Di ∩ T in T . Then S can be isotoped so that N(Di) ∩ S is replaced by ∂N(Di) − (N(Di) ∩ S).
After further isotopy, S intersects T in a punctured annulus (see Fig. 6). After performing such an isotopy for each of
the spanning disks D1, . . . ,Dn,E1, . . . ,En, S is such that T − S is a disjoint union of open disks.

If any such open disk U is such that ∂U bounds a disk US in S −T , then by the fact that a handlebody is irreducible,
U ∪ US bounds a ball. Isotope US through this ball so that its interior equals U . Now, for a remaining component V ′
of V ∩N0, V ′ ∩T is a disjoint union of disks whose interiors are a subset of the disks in T −S. As V ′ is a component
of V cut along disks, V ′ is a handlebody and hence has a spine. After arc slides, each arc of this spine has its endpoints
on T . Doing this for each component of V ∩ N0 and W ∩ N1 shows that S is obtained from T via ambient 1-surgery
along these slid arcs of the spines, implying that V ∪S W is an amalgamation along T . �
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Fig. 6. Isotoping S using the disk Di .

Remark 3.3. Suppose that a Heegaard splitting V ∪S W can be isotoped so that V ∩T consists of a disjoint union of k

annuli. Lemma 3.2 indicates that a 2k-times stabilization of V ∪S W is an amalgamation along T in the following way.
Add a 1-handle to either V or W such that its core is a spanning arc of a component of W ∩ T or V ∩ T , respectively.
The cocore of the 1-handle and a spanning disk for the annulus (which exists by Lemma 3.1) intersect in a single
point, showing that the resulting splitting is a stabilization of V ∪S W . By adding 1-handles disjoint from each other
in this manner for every component of T cut along S (of which there are 2k) and then pushing the handles added to
V into N1 and the handles added to W into N0, we get the spanning disks needed for Lemma 3.2 to apply.

The purpose of the next sections is to show that the k 1-handles added to one of the handlebodies in Remark 3.3
are in fact unnecessary to obtain an amalgamation.

4. Annuli in handlebodies

This section provides the necessary technical arguments used in the proof of Theorem 1.1 to find spanning disks
for annuli in a handlebody. Suppose a Heegaard splitting V ∪S W of M can be isotoped so that V ∩ T is a disjoint
union A of annuli. Then by removing any boundary parallel components via additional isotopy we can assume the
components of A are essential in V . Let Δ be a complete system of meridian disks for V .

Remark 4.1. Applying a standard cut and paste argument to Δ if necessary, we can assume that each annulus compo-
nent of A meets Δ nontrivially, and so that A∩Δ consists of arcs properly embedded in Δ, each arc being a spanning
arc of some annulus in A.

For D a component of Δ, D ∩A is a collection of properly embedded arcs α1, . . . , αr in D.

Definition 4.2. Suppose that γ is an arc in D ∩A. Then γ divides D into two disks D′ and D′′. Let B′ be the set of
properly embedded arcs in D′ with one endpoint on γ and the other endpoint on ∂D, intersecting each αi in at most
one point. Define

	D′(γ ) = max
β∈B′

{∣∣∣∣∣β ∩
(

r⋃
i=1

αi

)∣∣∣∣∣
}

.

Define 	D′′(γ ) similarly. Then we define the level of γ (in D) to be

	(γ ) = min
{
	D′(γ ), 	D′′(γ )

}
.

For A a component of A, define the level of A (with respect to Δ) to be

	(A) = min
{
	(γ )

}
,

where γ is an arc component of A ∩ Δ.

Note that an outermost arc for a disk D is a level one arc.
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Fig. 7. The level adjacent disk component and an arc β ∈B′ realizing γ as a level 4 arc in D.

Definition 4.3. Let A be a component of A and let D be a spanning disk for A such that D∩A = γ . Define the adjacent
disk component of γ with respect to D, denoted D(γ ), to be the component of D cut along A that contains γ .

Let γ be an arc in A∩ Δ, and suppose D is the disk component of Δ containing γ . Define the level adjacent disk
component of γ , denoted D	(γ ), to be the adjacent disk component of D′ or D′′, whichever one is where γ realizes
its level (if they both realize the level, choose one). See Fig. 7.

Given a separating incompressible torus T in M , T divides M into two components N0 and N1, where ∂N0 =
∂N1 = T . Since V ∩ T is assumed to be a disjoint union of essential annuli, and since T is separating in M , each
component of V ∩ T has an arbitrarily small neighborhood in V intersecting each of N0 and N1 nontrivially. This
gives rise to the following definition:

Definition 4.4. Let A be a disjoint union of annuli properly embedded in a handlebody V . We shall say that A is
mutually separating if V cut along A consists of two (possibly non-connected) 3-manifolds N0 and N1 such that each
annulus in A has an arbitrarily small neighborhood in V intersecting both N0 and N1 nontrivially.

Remark 4.5. The condition that A is mutually separating in V is equivalent to the statement that (A, ∂A) represents
the trivial element in H2(V , ∂V ;Z/2Z).

Note that A can be mutually separating even if some of its component annuli are themselves nonseparating in V .

Lemma 4.6. Let A be a mutually separating disjoint union of essential annuli properly embedded in a handlebody V .
Then there is an ordering A1, . . . ,Ak of the annuli in A such that for each 1 � i � k, Di is a spanning disk and γi is
a spanning arc for Ai , and

Di ∩ Aj =
⎧⎨
⎩

(a possibly empty set of ) arcs properly embedded in Di and parallel in Aj to γj if j < i,

γi ⊂ ∂Di if j = i,

∅ otherwise.
Furthermore, suppose α ( �= γi ) is an arc in A ∩ Di contained in ∂Di(γi), so α is parallel in Aj to γj for some

j < i. If Di(γi) ⊂ Nε , then Dj(γj ) ⊂ Nε′ where {ε, ε′} = {0,1}.

Proof. Let Δ be a complete system of meridian disks for V , such that A ∩ Δ is transverse and consists of spanning
arcs in the annuli (see Remark 4.1). We will order the annuli in A and construct the disks Di using the level of the
annuli with respect to Δ.

First suppose A is a component of A which is level one. That is, there is a level one arc γ in A ∩ Δ. Label A as
A1, γ as γ1, and take D1 to be the level adjacent disk component of γ (i.e. the outermost disk cut off by γ of the
component of Δ containing γ ). Continue this for all level one annuli which are components of A. We obtain a list of
annuli A1, . . . ,Ak1 with respective spanning arcs γ1, . . . , γk1 , and respective disks D1, . . . ,Dk1 . Note that each Di for
1 � i � k1 is contained in N0 or N1, thereby satisfying the conclusion of the lemma.

Continuing in an inductive manner, suppose that we have compiled a list A1, . . . ,Akm−1 of annuli of level � m− 1,
along with their corresponding spanning arcs γ1, . . . , γk and disks D1, . . . ,Dk . Proceeding as before, let A be
m−1 m−1
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Fig. 8. Dj (γj ) is in N0.

Fig. 9. Dj (γj ) is in N1.

a level m annulus in A, and let γ be a level m arc in A ∩ Δ. Set A = Akm−1+1, and set γ = γkm−1+1. It remains to
construct Dkm−1+1.

Let D be the component of Δ containing γ . Assume without loss of generality that D	(γ ) is contained in N0. Let
α be an arc in ∂D	(γ )∩A other than γ . Then 	(α) < m and hence α is a spanning arc of some annulus Aj , j � km−1.
The annulus Aj has corresponding spanning arc γj . First assume that α is the only such arc other than γ contained in
∂D	(γ ) ∩A.

Assume first that Dj(γj ) is contained in N0. Since α and γj are spanning arcs of Aj , they cut off a rectangle in
Aj (if α = γj , then this rectangle is simply the arc α). Taking that rectangle and attaching Dj and D	(γ ) gives a
disk, which can be pushed slightly into N0. Take this disk as Dkm−1+1. Note that α has been eliminated as an arc of
intersection in Dkm−1+1 (see Fig. 8). Since the disk Dj satisfies the conclusion of the lemma, this implies Dkm−1+1

does as well.
Now assume that Dj(γj ) is contained in N1. If α = γj , set Dkm−1+1 = D	(γ ) ∪ Dj . If α �= γj , as above take a

rectangle in Aj bounded by α and γj . The rectangle, along with D	(γ ) and Dj , forms a disk. Isotope the disk by
pushing the subdisk formed by D	(γ ) and the rectangle slightly into N0, keeping Dj fixed. Take the resulting disk as
Dkm−1+1 (see Fig. 9). As before, Dkm−1+1 satisfies the conclusion of the lemma since Dj does.

Now suppose α′ is an arc in addition to γ and α in ∂D	(γ ) ∩ A. If α′ is not a spanning arc of the same annulus
component of A as α, then the above construction applies similarly to α′ to obtain Dkm−1+1. If, however, α′ is a
spanning arc of the same annulus as α, then a slight modification of the above argument is needed in order to attach
a disk to ∂D	(γ ) at α′. Let Aj be the annulus containing α and α′, and, as above, consider the disk Dj . As before,
attach Dj to D	(γ ) along a rectangle between α and γj , and then isotope appropriately off of Aj . Then for α′, take
a parallel copy D′

j of Dj in V cut along Aj , and a rectangle from α′ to the arc in ∂D′
j parallel to γj , and push off

into N0 as before, depending on whether Dj(γj ) is in N0 or N1. By choosing D′
j to be on the appropriate side of Dj ,

we can ensure that the rectangle between α′ and D′
j is disjoint from the rectangle between α and Dj . Repeating this

process for any additional arcs in ∂D	(γ ) ∩A (except for γ ), we obtain the desired disk Dkm−1+1 (see Fig. 10). �
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Fig. 10. ∂D	(γ ) ∩A contains more than one arc other than γ .

Fig. 11. V ∪S W and V ′ ∪S′ W ′ inside T × I .

5. Proof of the main theorem

Proof of Theorem 1.1. Note that both W ∩ T and V ∩ T are nonempty since T is incompressible and cannot be
contained in a handlebody. Let λ1, . . . , λk be spanning arcs of the components of W ∩ T . Attach k 1-handles to V so
that their cores are λ1, . . . , λk , respectively. As discussed in Remark 3.3 this yields a k-times stabilization V ′ ∪S′ W ′
of V ∪S W .

Let T × I be a regular neighborhood of T such that T ×{1/2} = T . Then V ∪S W and V ′ ∪S′ W ′ can be considered
identical except for inside T × I .

A tube τ in a handlebody V is a regular neighborhood D × I of a compressing disk D of V , so that ∂D × I ⊂ ∂V .
We refer to D ×{0} and D ×{1} as the feet of τ . Observe that two parallel annuli connected by a tube in M is isotopic
to a dual picture, as in Fig. 12. Performing this isotopy in T × I then yields a configuration of V ′ ∪S′ W ′ ∩ (T × I ) as
in the first part of Fig. 13. If we take a top–down view, we obtain the schematic picture in the second part of Fig. 13.
The tubes running through T × I are the “spokes” in this schematic.

Fig. 12. Isotopic pictures of annuli connected by a tube.
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Fig. 13. A schematic for V ′ ∪S′ W ′ inside T × I .

Fig. 14. Di(γi )
′ , τi , and γi .

Let A be the disjoint union of annuli in V ∩ T . Apply Lemma 4.6 to obtain an ordering A1, . . . ,Ak of the annuli
in A, spanning arcs γ1, . . . , γk of the annuli, and spanning disks D1, . . . ,Dk satisfying the conclusion of the lemma.
Note that these disks can be chosen to miss the stabilizations added above, thus they exist for V ′.

As in the proof of Lemma 4.6, we may assume that any arcs in Di ∩A parallel in Aj to γj for j < i are arbitrarily
close to γj in Aj . Choose the Di so that they intersect T × I in γi × I , 1 � i � k. For notational purposes, if Di(γi)

is the adjacent disk component of γi with respect to Di , set Di(γi)
′ = Di(γi) ∩ (M − (T × I )). Let τi , 1 � i � k, be

the tubes in W ′ resulting from the stabilizations of V ∪S W as in Fig. 13, ordered so that τi is the tube immediately
counterclockwise in the schematic from γi . See Fig. 14.

We now use the disks Di to isotope the tubes τi as follows. First, consider τ1 and the disk D1. Note that D1 is
the adjacent disk component D1(γ1) and lies in either N0 or N1. Assume first that D1 ⊂ N0. As D1 intersects A
only at γ1, isotope the foot of τ1 lying on T × {0} across a regular neighborhood of D1(γ1)

′, and then down the tube
immediately clockwise from τ1 in the schematic. The result is that τ1 is isotoped so that its core is γ1 × {1} in T × I .
Push τi slightly into N1 (we say that τ1 is adjacent to γ1 × {1} after this isotopy). See Fig. 15.

If, on the other hand, D1 ⊂ N1, then by a symmetric argument the other foot of τ1 can be isotoped through a
neighborhood of D1(γ1)

′ so that it is adjacent to γ1 × {0}.
Given 2 � i � k − 1, isotope all tubes τj , j < i, to lie adjacent to γj × {0} or γj × {1} in T × I as above (note

that this depends on whether or not Dj(γj ) is in N1 or N0). To isotope τi , assume that Di(γi) is in N0 (as above a
symmetric argument applies if Di(γi) is in N1). By Lemma 4.6, each of the arcs α1, . . . , αm in (∂Di(γi) ∩ A) − γi

is parallel in Aj to γj for some j < i. Let j1, . . . , jn be this set of indices. For these jl , the latter conclusion of
Lemma 4.6 implies that Djl

(γjl
) is contained in N1. Hence, τjl

is adjacent to γjl
× {0}. Since we chose the arcs

α1, . . . , αm to lie arbitrarily close to the spanning arc γjl
of the annulus in which they lie, Di(γi) may be isotoped so

that it meets ∂τj1 ∪ · · · ∪ ∂τjn in place of α1 ∪ · · · ∪ αm. The upshot is that Di(γi)
′ is a disk in V ′ that meets T only in

the arc γi . Thus, as before, keeping one foot fixed isotope τi through a regular neighborhood of Di(γi)
′ until τi is in

T × I and the other foot of τi has reached the next section clockwise in the schematic picture (see Fig. 16).
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Fig. 15. Isotoping τ1.

Fig. 16. Isotoping τi through Di(γi )
′ .

Having isotoped the foot of τi through to the next section of the schematic, one of two things can occur. If the tube
τs originating in that section has not yet been isotoped (i.e. s > i), then as before the foot of τi may be isotoped along
τs causing τi to become adjacent to γi ×{1} as desired. If, on the other hand, s < i so that τs has already been isotoped,
then τs lies adjacent to γs × {ε} for ε = 0 or 1. But this implies that Ds(γs)

′ meets γs × {1 − ε} along its boundary
(i.e. Ds(γs) ⊂ N0 if ε = 1 or Ds(γs) ⊂ N1 if ε = 0). Lemma 4.6 ensures that any arc α in (∂Ds(γs)∩A)−γs is parallel
in Aj to γj for some j < s, so by the same argument as above, the corresponding components of (∂Ds(γs) ∩A) − γs

lie on already isotoped tubes. Therefore, we may continue to isotope τi across to the next section of the schematic,
either by sliding the foot of τi across τs or through a regular neighborhood of Ds(γs)

′.
Continue sliding across sections in this manner until reaching a tube τs′ that has not been isotoped (i.e. s′ > i).

Slide the foot of τi down τs′ , and then back through all the previous sections, this time on the other side. That is, if
the foot of τi was isotoped initially along T × {0} and across the isotoped τs , then after having been isotoped down
τs′ , τi can be isotoped along T × {1} and through a regular neighborhood of Ds(γs)

′. Continue the isotopy so that τi

becomes adjacent to γi ×{1} as desired (see Fig. 17). Having done this process for each of the tubes τi , 1 � i � k − 1,
we leave the remaining tube τk unmoved.

Suppose that Dk(γk) is in N0 (again, a symmetric argument applies if Dk(γk) is in N1). As above, we can take
Dk(γk)

′ to be completely in N0 so that it meets T only at γk . That is, Dk(γk)
′ is a spanning disk for Ak contained

in N0. Each of the tubes τi , 1 � i � k − 1, lies adjacent to either γi × {0} or γi × {1}. In the former case, there is
a disk between ∂τi and γi × {0} which is a spanning disk for Ai contained completely in N0. In the latter case, as
was argued above, Di(γi)

′ is a spanning disk for Ai contained completely in N0. Each of the annuli W ∩ T clearly
has a spanning disk contained in N1, as indicated in Fig. 18. Thus, by Lemma 3.2, V ′ ∪S′ W ′ is an amalgamation
along T . �
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Fig. 17. Isotoping τi to be adjacent to γi × {1}.

Fig. 18. Spanning disks for each of the annuli in V ′ ∩ T and W ′ ∩ T .

Dehn twisting and Corollary 1.3. Consider the torus T in M as the product S1 × S1, so that a point on T can be
written in the form (x, y). Define the map rθ :S1 → S1 to be a rotation of S1 of angle θ .

Definition 5.1. A Dehn twist along T is a homeomorphism h :M → M such that in a product neighborhood T × I

of T ,

h(x, y, t) = (
r2πpt (x), r2πqt (y), t

)
,

where p and q are relatively prime integers, and h|M − (T × I ) is the identity.

Remark 5.2. Any homeomorphism of M to itself which is the identity outside a product neighborhood T × I is
isotopic to a power of a Dehn twist along T .

Proof of Corollary 1.3. Suppose that V ∪S W and P ∪Σ Q are Heegaard splittings of M such that V ∪S W can be
isotoped so that V ∩ T consists of k annuli, and P ∪Σ Q is obtained from V ∪S W by any power of a Dehn twist
along T . Theorem 1.1 implies that both splittings are isotopic to amalgamations along T after at most k stabilizations.
Let V ′ ∪S′ W ′ and P ′ ∪Σ ′ Q′ be V ∪S W and P ∪Σ Q stabilized k times, respectively. Let J :M × I → M be the
isotopy of V ′ ∪S′ W ′ constructed in the proof of Theorem 1.1, and let h :M → M be a power of a Dehn twist along
T . Note that J ◦ (h × id) = h ◦ J , which implies that J ((P ′ ∪Σ ′ Q′),1) is obtained from J ((V ′ ∪S′ W ′),1) by a
power of a Dehn twist along T . It is a simple exercise to observe that a power of a Dehn twist along T of a Heegaard
splitting which is an amalgamation along T is isotopic in T × I to the original splitting. This implies that V ′ ∪S′ W ′
and P ′ ∪Σ ′ Q′ are isotopic. �
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6. Counting annuli in handlebodies

In this section we adapt arguments from [13] to prove Corollary 1.2. Recall a theorem of Jaco and Shalen and also
Johannson (see, for example, [6]) that states in a compact, orientable, irreducible 3-manifold M there exists a disjoint
union of incompressible tori Θ , unique up to isotopy, such that each component of M cut along Θ either is a Seifert
fibered space or is atoroidal. This decomposition of M is called the JSJ decomposition of M .

Definition 6.1. A component T of Θ is called a canonical torus in the JSJ decomposition of M .

Any incompressible torus in M is isotopic either to a canonical torus in the JSJ decomposition or to a torus con-
tained completely in one of the Seifert fibered components. The following definitions are taken from Section 4 of
[13].

Definition 6.2. Let A be a disjoint union of properly embedded essential annuli in a handlebody V . A component Z

of V cut along A is called toral if Z is a solid torus.
Define the complexity of a toral component Z to be c(Z) = |∂V ∩ Z| − ε, where ε = 1 if the annuli A ∩ Z are

longitudes of Z and ε = 0 otherwise.
The complexity of a union of toral components is defined to be the sum of the complexities of the individual

components.

Definition 6.3. Suppose V ∪S W is a Heegaard splitting of M and that N is a Seifert fibered component obtained by
cutting M along the JSJ decomposition of M . N is called aligned with respect to V ∪S W if S intersects ∂N only in
fibers.

The following theorem, due to Waldhausen, characterizes incompressible, ∂-incompressible surfaces in Seifert
fibered spaces. The interested reader is referred to [6], Theorem VI.32 for a proof.

Theorem 6.4. A properly embedded incompressible and ∂-incompressible two-sided surface in an orientable Seifert
fibered space N can be properly isotoped so that either it is vertical (a union of fibers) or it is horizontal (transverse
to the fibering). If it is horizontal, then N is the union of two copies of an I -bundle ξ over a surface E, glued along
their ∂I -bundles ξ ′, and the incompressible surface consists of parallel copies of ξ ′.

We now prove the first of three results that will establish an upper bound for the number of annuli in V ∩ T . This
proof can be found in the proof of a more general result, Theorem 4.7 in [13]. We include it here for completeness.

Lemma 6.5. If T is a separating canonical torus in the JSJ decomposition of M and V ∪S W is a Heegaard splitting of
M isotoped so that V ∩ T consists of a minimal number of essential annuli, then each component of V ∩ T intersects
at most one toral component of V cut along V ∩ T .

Proof. Suppose N is a component of M cut along the JSJ decomposition of M , and that T is a component of ∂N .
Suppose N contains a toral component of V cut along T . The incompressibility of T and the hypothesis that |V ∩T | is
minimal imply that N contains an essential annulus, and hence is Seifert fibered. If N is non-aligned, then the annulus
cannot be vertical. By Theorem 6.4, the annulus must therefore be horizontal. Moreover, Theorem 6.4 implies that
N is an I -bundle over an annulus or a Möbius band. In both cases, N can be refibered to be aligned. Note that this
follows since T is separating, and hence does meet N on both sides.

Hence, if two adjacent components of V cut along T were toral, they would have to be in aligned Seifert fibered
spaces. But this implies that T is incident to Seifert fibered spaces that are aligned on both sides, implying T is not a
canonical torus in the JSJ decomposition. �
Lemma 6.6. Let A be a disjoint union of essential annuli in a handlebody V , and let Z be the union of toral
components of V cut along A. Suppose that at most one of the components of V cut along A on either side of a
component of A is toral, and let α be the number of annuli which do not meet toral components (on either side). Then
c(Z) + α � 2g − 2, where g is the genus of ∂V .
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This is Lemma 4.4 in [13].

Lemma 6.7. Let T be a canonical torus in the JSJ decomposition of M and let V ∪S W be a Heegaard splitting of M

isotoped so that V ∩ T consists of a minimal number k of essential annuli. Then k � 4g − 4.

Proof. Let α be the number of annuli in A = V ∩ T which are not incident to toral components of V cut along A
on either side, and let β be the number of annuli which meet a toral component. Then k = α + β . Let Z1, . . . ,Zn be
the toral components of V cut along A, and let βi be the number of components of A incident to Zi , 1 � i � n. Then
c(Zi) = βi − 1 if Zi ∩A are longitudes, and c(Zi) = βi otherwise. Since by Lemma 6.5 no two adjacent components
of V cut along A are toral, we have

β =
n∑

i=1

βi �
n∑

i=1

(
c(Zi) + 1

) = c(Z) + n,

where Z = ⋃n
i=1 Zi .

Now, observe that for each toral component Zi , we have c(Zi) � 1. For if some Zi were such that c(Zi) = 0, then
Zi would have one longitudinal annulus on its boundary in ∂V , implying that the sole annulus in Zi ∩A is boundary
parallel and hence not essential. Therefore, n � c(Z), and from the above we conclude that

β � 2c(Z).

Hence,

k = α + β � α + 2c(Z) � 2α + 2c(Z) � 4g − 4

by Lemma 6.6. �
The proof of Corollary 1.2 follows readily from Theorem 1.1 and Lemma 6.7.
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