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Abst rac t - -Dynamic  rent-seeking games with nonlinear cost functions are analyzed. The local 
asymptotic stability of the solution is first examined. We show that in the absence of a dominant 
agent, all eigenvalues of the Jacobian are real. Conditions are given for the local asymptotic stability 
as well as for the local instability of the equilibrium. In the presence of a dominant agent, complex 
eigenvalues are possible. Simple stability conditions ave presented for cases when all eigenvalues 
are real, and the possibility of limit cycles is analyzed in the case of complex eigenvalues. (~) 2001 
Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Cournot oligopolies are one of the most frequently studied models in mathematical economics 
since the middle of the nineteenth century, when the classical work of Cournot [1] was published. 

The major research areas have included the existence and uniqueness of the equilibrium, the 

asymptotic properties of the equilibrium in dynamic oligopolies, as well as different variants and 

extensions of the classical model of Cournot. A comprehensive summary of the most important 

research findings on single-product models can be found in [2], and the corresponding multi- 

product models are discussed in [3[. The extended research on oligopoly models has included 
group-equilibrium problems [4], labor-managed oligopolies [5], oligopsonies [6], multistage [7] and 
hierarchical models [8]. 

During the last two decades, increasing attention has been given to the analysis of rent-seeking 

games. The introductory paper of Tullock [9] has initiated a series of studies on the subject. A 
typical example of a rent-seeking game could be the process of applying for franchises, e.g., of 
well-known hamburger chains; these continually come up for renewal, and individuals wishing to 
bid for these typically would use professional bidding agents who could be viewed as the agents 
of our model. The basic model can be formulated in the following way. 

0898-1221/01/$ - see front matter (~) 2001 Elsevier Science Ltd. All rights reserved. Typeset by A h/~S-TEX 
PII: S0898-1221 (01)00281-4 
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Assume that n agents compete for a rent, which will earn a unit profit for the agent who 
actually wins the rent. Let xi denote the effort agent i spends in order to win the rent, and let 

X n ci(xi) be its cost. The probability of winning the rent for agent i is i/(:~-~j=l xj), and therefore, 
its expected profit is given as 

ci(xi). (1) n 

j = l  

Let Xi = ~+ be the set of feasible efforts of agent i; then an n-person noncooperative normal-form 
game F -- {n, X l , . . .  , X n ,  ~ 1 , . . . ,  ~ n }  is formally defined, and is called a rent-seeking game in 
which the agents are the players, and Xi and ~i are the strategy set and payoff function of agent i 
(i = 1, 2 , . . . ,  n). The existence of equilibrium of this game has been analyzed by several authors. 
Decreasing returns in rent-seeking technology as well as increasing returns were analyzed in [10] 
where the possibility of the agent's reaction function to be upward sloping was also examined. 
A systematic approach to establish the existence of an equilibrium has been also offered in this 
paper. Okuguchi [11] has pointed out that rent-seeking games are mathematically equivalent 
to profit maximizing Cournot oligopolies with hyperbolic price functions. He also proved the 
existence of a pure symmetric Nash equilibrium, when the agents have identical cost functions. 
These results have been extended to the nonsymmetric case in [12], where the existence of a 
unique equilibrium is proved with convex cost functions. The existence and uniqueness of the 
equilibrium in rent-seeking games is not implied by the corresponding results on the classical 
Cournot model, since the strategy sets are not compact and hyperbolic price functions are not 
concave. Therefore, model-oriented special methods have had to be developed. 

The dynamic extension of rent-seeking games has been first examined in [13] and later in [14], 
where the stability of the equilibrium was proved under certain convexity and monotonicity 
conditions. However, these conditions are not always satisfied for an important class of rent- 
seeking games. Therefore, a more general, systematic approach is needed to describe stability 
conditions, and such is the aim of this paper. 

There is no previous study investigating unstable equilibria and asymptotic behaviour that is 
more complex than asymptotical stability for rent-seeking games. Such study has been performed 
only for the classical Cournot model in [15] and [16] based on bifurcation theory. It is worth 
mentioning here that the types of dynamical systems we encounter below (as well as those in [15] 
and [16]) are not unrelated to those encountered in population dynamics in mathematical biology. 
In this regard, the monograph [17] provides an excellent summary of the relevant mathematical 
results and techniques. 

This paper will provide a systematic stability analysis of rent-seeking games as well as consider 
the conditions under which the dynamics of such games can give rise to the birth of limit cycles. 

2. T H E  D Y N A M I C  M O D E L  

The existence of equilibrium is usually examined by determining the best response functions 
of each player and investigating its analytic properties. For each agent i, denote Qi -- ~j#~ xj. 
For each Qi ~ 0, the best response of agent i can be obtained as 

xi(Qi) = argmax ~ -  x~ t x~>o ( xi ÷ Qi ci(xi) • (2) 

We assume that for each agent i, the cost function ci is twice continuously differentiable. If 
xi(Qi) > 0, then the first- and second-order conditions can be written as 

- = 0, (3) + Q )2 



Dynamic Rent-Seeking Games 171 

and 
-2Q~ 

- c~'(x,(Qd) < O. (4) 

Notice that  relation (4) also guarantees that  the left-hand side of equation (3) is strictly mono- 
tonic, and therefore, for each Qi the quantity xi(Qi) is unique, and hence, xi(Qi)  is a properly 
defined function. 

Let now (Xl, . . .  ,x~) be a positive equilibrium that  satisfies both the first- and second-order 
?I 

conditions (3) and (4). Thus, with the notation Q~ = Y~4~ ~z and ~ = y'~j=~ ~.j, the first-order 
condition (3) may be rewritten as 

O, = ~'~(~)~2, (5) 

whilst the second-order condition (4) may be expressed as 

C,, {:~ .~ --2(~i 
i ~ *J > 7 " -  (6) 

We can easily show that  the last two relations characterise the equilibrium efforts and cost 
derivatives• Select any arbitrary positive numbers Xl,. .  , xn, and form the quantities g = Y~,=I i 
and (for all i), Qi = Y~4¢~xl • In addition, select any sequence ~{, . . .  , ~  of real numbers that  
satisfy inequality (6)• Then, there is a rent-seeking game in which (Xl , - . . ,  2~) is an equilibrium 
and for all i, c~'(£i) -- ~',  since for each i there is a strictly increasing cost function with given 
first and second derivatives at a single point. 

Assume next that  the time scale is continuous, and at each time period t > 0, each agent 
adjusts its effort proportionally to its marginal profit• The resulting dynamic model has the form 

Q' - c~(zd) (7) z i  = ki (x i  + Qi )  2 

where ki > 0 is given for each i = 1, 2 , . . . ,  n. The value of ki shows how fast agent i follows the 
profit changes. In the economic literature, ki is usually called the speed of adjustment. Notice 
that  any positive equilibrium ( e l , . . .  ,xn) is an equilibrium of this dynamic system as well as 
the consequence of the first-order conditions (5). Assume that  the initial vector x(0) is selected 
from a neighbourhood of this equilibrium. In the following sections, the local stability and the 
dynamic behaviour of the solution trajectory x_(t) will be investigated. 

3. S T A B I L I T Y  A N A L Y S I S  

In order to analyze the local asymptotic behavior of the solution of the dynamical system (7), 
its Jacobian at the equilibrium J has to be first determined. Simple differentiation shows that  
at the equilibrium 

kl (-2(~1 - S3Clt(Xl)) 

J = ~  

1 
= ~ (D + a V ) ,  

kl (:~1-(~1) "'" kl (X l - (~1 )  ] 

/ • ' ' .  i 
- - 3  t/ - k,~ (~,~ - O n )  . . .  k,~ ( - 2 Q , ,  - ~ ~,~(~,~)) J 

(8) 

with 
__D = d iag  (ki  ( - ~  - ~ 3 c I ' ( ~ 1 ) ) , . . . ,  k~ ( - ~  - ~ 3 c , ( ~ ) ) ) ,  

_a=  (kl  (ff:l - Q 1 )  ,•..,kn (~n - (~n) )  T , and  _1 T = (1, . . .  ,1)•  
(9) 
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Since the signs of the real parts  of the eigenvalues determine the asymptot ic  behavior of the 
solution, we ignore the positive factor 1/~ 3. The characteristic polynomial of D + _al T can be 

writ ten as 

det (D - A / +  _al -c) = de t (D - A/) det ( / +  (D - ~_/)-  la_l l-)  

= fi (ki ( - ~ - ~ 3 c : ' ( ~ i ) ) - A )  1 +  ~ ki ($--_~-~-q~-7(-~-.)) _ A . 
i=1 i=1 

(10) 

In order to simplify the notation, let di = k i ( -~-$3c~ ' (2 i ) )  and ei = k i ( 2 i - Q i )  for i = 1 , 2 , . . . ,  n, 

and assume tha t  the different di values are numbered so tha t  dl < d2 < .- .  < d~. Let It denote 
the set of agents with. the same dt value (1 = 1, 2 , . . . ,  r),  and let mt denote the number  of agents 
in set Il. Then, the eigenvalues are the solutions of the equation 

^/t = 0, (11) I ' I(dt- A) "~' 1 + dt- A 
l = l  = 

where "Yl = ~iez~ ei. The eigenvalues can be obtained in the following way. If  ml > 1, then 
A = dl is an eigenvalue with multiplicity mt - 1, and if m t =  1, then the corresponding factor 
cancels, so in this case A = dt is not an eigenvalue (l = 1, 2 , . . .  , r ) .  In this way, we have 
ml  + . . .  + mr  - r - n - r eigenvalues (included with multiplicities). The  other eigenvalues are 
the solutions of the nonlinear equation 

7----L--I = O. (12) I + ~ ~t A 
/=I 

Since this is equivalent to a polynomial equation of degree r, it has r real (or complex) roots. 

The  foregoing discussion may be summarized in the following theorem. 

T H E O R E M  1. 

(i) Assume that with some l, ml >_ 2 and dl > O. Then, the equilibrium is locally unstable. 
(ii) Suppose that for all l such that  mz k 2, dl < 0. Let A1, . . . ,A~ denote the roots of 

equation (12). 

I f  for at  least one i, 
Re Ai > 0, (13) 

then the equilibrium is locally unstable. I f  for all i, Re)h < 0, then the equilibrium is locally 
asymptotically stable. 

We note tha t  in the second case of Theorem 1 when for all roots, Re fli _~ 0 and for at least 
one root Re Ai = 0, no conclusion can be given based only on analysis of the eigenvalues, since 
the system is nonlinear. In order to apply the above theorem, the locations of the roots of 
equation (12) should be determined. We will consider two major  eases. 

CASE A. Assume tha t  for all l, 

7l -< 0. (14) 

Notice tha t  if for some 1 the value of 71 is zero, then the corresponding te rm is missing from 
the left-hand side of equation (12) without changing its structure. Therefore, in the following 
discussion we may assume that  inequality (14) is strict for all I. Introduce the function 

7, (15) 
l = l  
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Figure 1. The shape of g(A) in Case A. 

I t  is easy to see tha t  

lim g(A) -- c~, lim g(A) = - c~ ,  ~h~oog(A ) = 0, and g'(A) < 0, (16) 
~ - - * d l ~ 0  ) ~ - - * d l - - 0  

for all )~, except at the poles. The graph of g(),) is illustrated in Figure 1. Since equation (12) can 
be wri t ten as g(,k) = - 1 ,  we see that  all roots are real: one before dl, and one between each di 

and di+l (i = 1 , 2 , . . . , r -  1). 

Hence, we may state the following result. 

TItEOREM 2. Consider the case in which "Yl <- 0 for all l. 

(i) I f  for all l, dl <_ O, then a11 roots are negative implying the local asymptotic stability of 
the equilibrium. 

(ii) Assume that dr > 0 and all di < 0 (i = 1 ,2 , . . .  , r -  1). If  g(O) < -1 ,  then the equilibrium 
is locally asymptotically stable, and if g(O) > -1 ,  then the equilibrium is locally unstable. 

(iii) If  dr > 0 and dr-1 >_ 0, then the equilibrium is locally unstable regardless of the signs of 
the other di values (i =- 1, 2 , . . . ,  r - 2). 

We note again tha t  in the case when the largest root is zero, no conclusion can be given, since 
the system is nonlinear. 

CASE B. Suppose that  for some l*, 

> 0. (17) 

We first show tha t  this relation can hold for only one value of l*. Notice, first, tha t  there is at 
most one dominant  agent p such that  ~p > Op. If set Ia does not contain this agent, then 

i E I a  
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showing that  agent p must belong to set Iz*. We show next that  necessarily dr* < 0. The 
second-order conditions (6) imply that  for the dominant agent p, 

- < - *  + 2 G  = G - 

and by multiplying this inequality by kp we have 

d, .  = kp < k .  ( G  - = - e ,  

Since for all other agents i E h*, ei _< 0, we see that  

dr. < - 2_, ei = - V l *  < 0 .  ( 1 8 )  

iEI~. 

For the sake of simplicity assume that  l* = r. We still keep the assumption that  dl < d2 < 
• . '  < d r - l ,  and note that  now dr is not necessarily the largest among the dL values. In this case, 
function g satisfies the following properties: 

lim g(A)=  cv, lim g ( A ) = - ~ ,  
A---*dl +0 A---*d1-0 

lim g ( A ) = - o c ,  lim g ( A ) = o o ,  
A---*d~+0 A--~d,.-O 

l =  1 , 2 , . . . , r - l ,  

(19 )  

and 
lira g(A) = 0. 

A-*q-co 

Notice that  no condition can be given on the sign of the derivative f ( A )  in this case. The shape 
of function g is illustrated in Figure 2, where dr is either the largest, or the smallest among the dt 
values, or it is in the middle. 

The above discussion allows us to state the following. 

THEOREM 3. Consider the case in which 7l* > 0 for some l*. 

(i) Assume first that dr > dl (l = 1, 2 , . . . ,  r - 1). I f  dr >_ O, then the equilibrium is unstable. 
I f  dr < O, then in the case of g(O) > - 1  the equilibrium is locally asymptotically stable, 
and i f  g(O) < -1 ,  the equilibrium is locally unstable. 

(ii) Assume now that dr < dz (1 = 1, 2 , . . .  , r  - 1) and there are real roots between dr and dl. 
I f  dr-2 >_ 0, then the equilibrium is unstable. I f  dr-2 < 0 < dr- l ,  then in the case 
of g(O) < - 1  the equilibrium is locally asymptotically stable, and if  g(0) > - 1 ,  the 
equilibrium is locally unstable. I f  dr_l <_ O, then the equilibrium is locally asymptotically 
stable. 

(iii) Assume next that dr-2 < dr  < d r - l ,  and there are real roots between dr-2 and dr-1. 
I f  dr-2 >_ O, then the equilibrium is locally unstable. I f  dr-2 < 0 < dr - l ,  then in 
the case when the roots between dr-2 and dr-1 are negative, the equilibrium is locally 
asymptoticedly stable, and if  at least one root between dr-2 and dr-1 is positive, the 
equilibrium is locally unstable. I[ dr-1 <_ O, then the equilibrium is locally asymptotically 
stable. 

(iv) Assume, finally, that di-1 < dr < di with some i < r - 2, and there are real roots between 
di-1 and di. I f  dr-2 > O, then the equilibrium is locally unstable. I f  dr-2 < 0 < dr - l ,  
then in the case of g(O) < -1  the equilibrium is locally asymptotically stable, and if 
g(0) > -1 ,  the equilibrium is locally unstable. I f  dr-I <_ O, then the equilibrium is locally 
asymptotically stable. 

Notice that  the theorem does not apply for cases when the largest real root is zero or there 
are no roots in the intervals indicated. In every case there are always (r - 2) real roots, and 
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Figure 2. The shape of g(A) in Case B. 

therefore, e i ther  all roots are real, or there  is exact ly one complex conjugate  pair  of roots. 

nex t  example  shows tha t  bo th  possibilit ies might  occur. 

EXAMPLE 1. Consider  the  special case when r = 2, kl = k 2  - -  1 ,  d 2  - -  - 1 ,  dl = 0. 

2 £ 2  - -  $ = 3 '  > 0 be a parameter .  From equa t ion  (18) we mus t  have ~ < 1. Fur thermore ,  

231 - -  m 1 8  = 2(3 - x2) - m18 = - ( m i  - 2)3 - 2;~2 = - ( m i  - 1)3 - V. 

The  

Let 
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By introducing the notation c~ ---- ( m l  - 1)$ we see tha t  a can take on any nonnegative value. 
Then, equation (12) has the form 

which simplifies as 

The discriminant is 

- a  - 7 + 7 _ - 1 ,  

O - A  - 1 - A  

A 2 + A(I + a)  + (a + 7) = 0. 

D = (1 + a )  2 - 4(a  + 7 )  = (1 - a)2 _ 47, 

showing tha t  the cases of both real and complex roots are possible. | 

We have seen in the above discussion that  Case B may occur only in the case of a dominant  
agent such that  2p > Qp. This inequality shows that  at the equilibrium, agent p spends more 
effort than all other agents combined. In the case of an asymptotical ly stable equilibrium, this 
is the case for all t large enough. This assumption is therefore not very realistic, since anti trust  
constraints usually prohibit this kind of behaviour in the long run. 

4 .  T H E  E M E R G E N C E  O F  L I M I T  C Y C L E S  

We have seen in the previous section tha t  there are many plausible situations in which the 

equilibrium of the rent-seeking game may be locally unstable. The question arises as to what  
is the fate of the dynamic rent-seeking game in such situations. One possibility is tha t  the 
outcome of the game cycles around the equilibrium. This could, for instance, be the case if 
the speeds of reaction, ki, are relatively large so tha t  there is continual overshooting of the 
equilibrium. Such could be the situation in the case of a locally unstable equilibrium if we could 
demonstra te  the existence of limit cycle motion by applying the Hopf bifurcation theorem (see, 

for example, [18]). To this end we need to determine the regions in the parameter  space where 
pure complex eigenvalues exist. Letting A = i s ,  then equation (12) has the form 

r - 1  

7~ + 7~ - 1, (20) 
l=1  

where 7z < 0 (i = 1 , 2 , . . . ,  r - 1), and % > 0. By equating the real and imaginary parts,  we have 

r - -1  7tdl 7rdr r--1 71i(~ 7 r i~  
d 2 + a - - - - - ~  + d~ + c~ --------~ - - 1 ,  and ~ d 2 + a - - - - ~  + d~ + (~-----~ = O. (21) 

l=l 1=1 

Since we assume tha t  a ¢ 0, the second equation implies tha t  

r - -1  

71 (22) 7 r  = -  + + 

/=1  

and combining this relation with the first equation of (21) leads to a simple equation for (~  

r - 1  7 l ( d i  - d r )  

l = l  

Notice that  this is a polynomial equation of degree r - 1 for (~2, which can be solved by routine 
methods (see, for example, [19]). Notice tha t  in case (i) of Theorem 3, the left-hand side is always 
positive, so no real root exists. This observation coincides with the corresponding results when 
we saw tha t  all roots of equation (12) are real, so no pure complex root exists. The  existence of 
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real roots  in equat ion  (23) depends  on the  signs and the  orders of  magni tudes  of  the  differences 

d l -  dr. T h e  following example  i l lustrates the possibil i ty of  real roots  and  hence the  possibi l i ty  
of  l imit  cycles. 

EXAMPLE 2. Consider  the  case of  r = 3, 71 = - a ,  72 = - b  (where a and  b are posi t ive 
pa ramete r s ) ,  73 ----- 7 > 0 is the  bifurcat ion variable,  and dl = - 2 ,  d2 = 1, d3 -- - 1 .  Then ,  
equa t ion  (20) has the  form 

- a  - b  7 
- 2  ------~ + ~ + -1-- - A -- - 1 .  (24) 

I f  A = i a ,  t hen  
- a  - b  7 

- 2  - i - - - - - - -~  + 1 ---Z-~a + - 1  - i - - - - - - -a  - - 1 .  

Equa t ing  the  real and imaginary  par ts ,  

2a - b  - 7  
4 + a------5 + ~ + 1 + a-- - - -  5 - - 1 ,  

and 
- a i a  - b i a  v i a  

- - +  - - +  - -  - 0 .  
4A-(~ 2 l + g r  2 1 + a  2 

Not ice  t h a t  we are interested in the case of  a ~ 0. So, solving bo th  equat ions  for 7 / (1  + a2) ,  we 
ger~ 

7 2a b a b 
I+OL 2 -- 4 + a-------- ~ 1 + a--------~ + 1 = 4 + a2 + 1 + a--------~. (25) 

A four th-order  equat ion  is therefore obta ined  for a 

a 4 + a2(5 + a -- 2b) + (4 + a - 8b) = 0. (26) 

Not ice  t h a t  this equat ion will have posit ive roots  if 4 + a - 8 b  < 0. In  order  to  sat isfy relat ion (18), 
we have to  guaran tee  t ha t  7 < 1, t ha t  is, 

7 a b 1 
l + a  2 4 + c ~  2 1A-oL 2 l + a 2 '  

which can be rewri t ten  as 

a 2 ( a + b  - 1) < 4 - a - 4 b .  

For example ,  by selecting a -- 0.15, b -- 0.75, this inequali ty is satisfied for all a 2 > 0; fu r thermore ,  
f rom equat ion  (26) we have 

a 2 ~ 0.451, and a 2 ~ -4 .101 ,  

f rom which we see t h a t  the  real roots  are 

al ,2 ~ ±0.672. 

Subs t i tu t ing  these values into equat ion (25), we see t ha t  7 ~ 0.799. By  differentiat ing equa- 
t ion (24) wi th  respect  to 7, we have the  derivat ive value 

dA 1/(1 + A) 

d7 - a / ( - 2 -  A) 2 - b/(1 - A) 2 + 7 / ( 1 +  A) 2 '  

which has  the  approx ima t ing  value (0.468 + 0.719i) at  A = i a  wi th  the  above values of  a and 7. 
Hence,  the  real pa r t  is nonzero showing the  existence of a limit cycle. | 

We have establ ished the  possibil i ty of  limit cycle mot ion  in the  case of local instabili ty.  Our  
analysis  does not  enable  us to say anyth ing  abou t  the  s tabi l i ty  of  such limit cycles. In  order  
to do so, we would need to specify in some detail  the  nonlinear  s t ruc tu re  of  the  dynamic  rent-  
seeking game  and app ly  normal  form theory  (see [18]). However,  very  often these  calculat ions 
are in t rac tab le  and  it becomes necessary to resort  to numerical  me thods  as in [15]. Such analysis  
war ran t s  a pape r  in its own right,  and  we leave this task  for future  research. 
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5. C O N C L U S I O N S  

In this paper,  nonlinear rent-seeking games were analyzed where the cost  functions were as- 

sumed to  be nonlinear. A dynamic  adjus tment  process in which each agent adjusts  its ou tpu t  

propor t ional ly  to  its marginal  profit was examined. The  local asymptot ic  stabil i ty of  the  equi- 

l ibrium was first examined.  In the absence of a dominan t  agent, it turns  out  t ha t  all eigenvalues 

are real. Condi t ions  for the  local asymptot ic  stabil i ty and also for the local instabil i ty of the  

equil ibrium were then  derived. In  the presence of  a dominant  agent, complex eigenvalues are 

also possible. Simple conditions were presented for the stabil i ty and also for the instabil i ty of 

the equilibrium in the case of  real eigenvalues. If  complex eigenvalues are possible, then we have 

shown the possibility of  limit cycles via the use of  the Hopf  bifurcation theorem. 

Future  research could focus on the specific nature  of nonlinearities and analyse the  stabil i ty of 

the limit cycle mot ion  tha t  emerges when the equilibrium becomes locally unstable.  A further  

avenue of research would be how agents come to learn the  opt imal  effort of all o ther  agents. Here, 

we have assumed tha t  each agent knows instantaneously the opt imal  effort of  all o ther  agents. 

However, it would be more realistic to assume tha t  this is learnt with some t ime delay. Such 

learning could, for example, be modelled using the continuously dis t r ibuted lags employed in [15] 

and [16] to analyse such learning in oligopoly models. 
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