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Abstract

Consider the system of neutral functional differential equations

{
(x1(t) − cx2(t − r))′ = −F(x1(t)) + G(x2(t − r)),

(x2(t) − cx1(t − r))′ = −F(x2(t)) + G(x1(t − r)),

wherer > 0, c ∈ [0,1), F , G ∈ C(R1) andF is strictly increasing onR1. It is shown that ifF(x) � G(x)

for all x ∈ R1 or F(x) � G(x) for all x ∈ R1, then every bounded solution of such a system tends t
equilibrium. Our results improve and extend some corresponding ones already known.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In [2], Haddock conjectured that each solution of the following scalar neutral functiona
ferential equation

(
x(t) − cx(t − r)

)′ = −axγ (t) + axγ (t − r) (1.1)
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tends to a constant ast → ∞, wherec ∈ (0,1), a � 0, r � 0, andγ > 0. In [5], Wu investigated
the following scalar neutral equation(

x(t) − cx(t − r)
)′ = −F

(
x(t)

) + F
(
x(t − r)

)
, (1.2)

wherec ∈ (0,1), r � 0,F ∈ C(R1) andF(x) is strictly increasing onR1. It was shown that eac
solution of (1.2) converges to a constant ast → +∞ and hence the conjecture by Haddock
has been proven to be true. Later the same problem was investigated in a series of paper
and his collaborators (see, for example, Haddock et al. [3], Krisztin and Wu [4], and W
for some scalar neutral equations more general than (1.2). However, to our best knowle
results have been obtained for its vector forms. Motivated by this, in this paper, we consid
following system of neutral functional differential equations{

(x1(t) − cx2(t − r))′ = −F(x1(t)) + G(x2(t − r)),

(x2(t) − cx1(t − r))′ = −F(x2(t)) + G(x1(t − r)),
(1.3)

wherer > 0, c ∈ [0,1), andF , G ∈ C(R1). Moreover, it is assumed thatF is strictly increasing
onR1.

One can observe that system (1.3) includes the following scalar neutral functional diffe
equation:(

x(t) − cx(t − r)
)′ = −F

(
x(t)

) + G
(
x(t − r)

)
, (1.4)

as a special case, wherer > 0, c ∈ [0,1), andF andG are defined as in (1.3).
We then show that, using some comparison technique and the invariance of positiv

set, whenF(x) � G(x) for all x ∈ R1 or F(x) � G(x) for all x ∈ R1, every bounded solutio
of (1.3) tends to an equilibrium ast → ∞. This enables us to conclude that every boun
solution of (1.4) also tends to a constant ast → ∞. Therefore, our results improve and exte
the corresponding ones of [5], and also include the results of [1] as a special case. It sh
noted that our proofs are quite different than that of [1,5].

The paper is organized as follows. In Section 2, we establish some preliminary results,
tant in the proofs of our main results. In Section 3, we state and prove our main results.

2. Preliminary results

In this section, we will establish several important lemmas which are essential tools in p
our main results in Section 3.

Let us define

C = C
([−r,0],R2), C+ = C

([−r,0],R2+
)

and setK = {ϕ ∈ C+: ϕ1(0) − cϕ2(−r) � 0 andϕ2(0) − cϕ1(−r) � 0}. One can observe tha
K and C+ are order cones inC. Let ϕ ∈ C. We tacitly assume throughout this section t
ϕ = (ϕ1, ϕ2).

We now define several orderings as follows.ϕ �K ψ iff ψ − ϕ ∈ K, ϕ <K ψ iff ψ − ϕ ∈
K\{0}, ϕ �K ψ iff ψ − ϕ ∈ IntK, ϕ �K A iff ϕ �K ψ for anyψ ∈ A, ϕ <K A iff ϕ <K ψ for
anyψ ∈ A, ϕ �K A iff ϕ �K ψ for anyψ ∈ A, whereϕ,ψ ∈ C andA ⊆ C. Notations such a
ψ �K ϕ andψ �K ϕ can be defined analogously.

Let us definêα = ((α̂)1, (α̂)2), where(α̂)i(θ) = α, i = 1,2, θ ∈ [−r,0]. In what follows, we
assume thatϕ ∈ C and usext (ϕ) (x(t, ϕ)) to denote the solution of (1.3).

We need the following elementary result whose proof is contained in [1].
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Lemma 2.1. For any constants a and x0 ∈ R1, the initial value problem{
x′(t) = −F(x(t)) + a,

x(t0) = x0
(2.1)

has a unique solution x(t) on [0,+∞).

Lemma 2.2. Let r > 0 be given and a, b ∈ C([t0, t0 + r]). For any constant x0 ∈ R1, the initial
value problem{

x′(t) = −F(x(t) + a(t)) + b(t),

x(t0) = x0
(2.2)

has a unique solution x(t) on [t0, t0 + r].

Proof. Sincea, b ∈ C([t0, t0 + r]), there existm1,m2, n1, n2 ∈ R1 such that

F(u + m1) + m2 � F
(
x + a(t)

) + b(t) � F(x + n1) + n2

for t ∈ [t0, t0 + r] andx ∈ R1.

Therefore, by comparison theorem and Lemma 2.1,x(t) exists and is unique on[t0, t0 + r]. The
proof is now complete. �
Lemma 2.3. Let ϕ ∈ C. Then xt (ϕ) exists and is unique on R1+.

Proof. First we will show thatxt (ϕ) exists and is unique on[0, r]. We only prove thatx1(t, ϕ)

exists and is unique on[0, r], the proof thatx2(t, ϕ) exists and is unique on[0, r] being similar.
Indeed leta(t) = cϕ1(t − r) andb(t) = ϕ2(t − r)) for t ∈ [0, r]. Consider the solutiony(t) of
the following system:{

y′(t) = −F(y(t) + a(t)) + b(t),

y(0) = ϕ1(0) − cϕ2(−r).
(2.3)

By Lemma 2.2,y(t) exists and is unique on[0, r]. Sincex1(t, ϕ) − cϕ2(t − r) satisfies (2.3)
x1(t, ϕ) exists and is unique on[0, r]. Therefore,xt (ϕ) exists and is unique on[0, r]. It follows
from induction thatxt (ϕ) exists and is unique onR1+. The proof is complete. �

Below, we callG � F (or G � F ) if G(x) � F(x) for all x ∈ R1 (or G(x) � F(x) for all
x ∈ R1).

Lemma 2.4. Let G � F , ϕ ∈ C, α ∈ R1 and ϕ �K α̂. Then xt (ϕ) �K α̂ for t � 0.

Proof. Let y1(t) = x1(t, ϕ)−cx2(t −r, ϕ) andy2(t) = x2(t, ϕ)−cx1(t −r, ϕ) for t � 0. Next we
will show thaty1(t) � (1−c)α for t ∈ [0, r]. Similarly,y2(t) � (1−c)α for t ∈ [0, r]. Otherwise,
there existst1 ∈ (0, r] such thaty1(t1) < (1 − c)α. By differential mean value theorem, the
existst2 ∈ (0, t1) such that

y1(t2) < (1− c)α and y′
1(t2) < 0.

From (1.3), we obtain

y′
1(t2) = −F

(
x1(t2, ϕ)

) + G
(
x2(t2 − r, ϕ)

)
.
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Again sincey1(t2) < (1− c)α, that is,

x1(t2, ϕ) < cx2(t2 − r, ϕ) + (1− c)α � x2(t2 − r, ϕ),

it follows thaty′
1(t2) � 0, which yields a contradiction. Hence,

xi(t, ϕ) � α for t ∈ [0, r],
wherei ∈ {1,2}. Thus,xt (ϕ) �K α̂ for t ∈ [0, r]. Therefore, by induction,xt (ϕ) �K α̂ for t � 0.
This completes the proof of the lemma.�
Remark 2.1. A similar conclusion of Lemma 2.4 holds for the caseG � F .

Lemma 2.5. Let G � F and ϕ � α̂. Then either xt (ϕ) �K α̂ or xt (ϕ) = α̂ for t � 5r .

Proof. Let y1(t) = x1(t, ϕ) − cx2(t − r, ϕ) andy2(t) = x2(t, ϕ) − cx1(t − r, ϕ). We next distin-
guish two cases to finish the proof.

Case 1. y1(t) = (1− c)α for t ∈ [0,3r]. From (1.3), we have

y′
1(t) = −F

(
x1(t, ϕ)

) + G
(
x2(t − r, ϕ)

)
,

which yields

G
(
x2(t − r, ϕ)

) = F
(
x1(t, ϕ)

)
for t ∈ [0,3r].

Thus,

x2(t − r, ϕ) � x1(t, ϕ) for t ∈ [0,3r].
Therefore,

y1(t) = x1(t, ϕ) − cx2(t − r, ϕ) � (1− c)x1(t, ϕ)

for t ∈ [0,3r]. From Lemma 2.4 and the fact thaty1(t) = α(1− c) for t ∈ [0,3r], it follows that
x1(t, ϕ) = α for t ∈ [0,3r], and hence,

x2(t − r, ϕ) = α for t ∈ [0,3r].
Therefore,

xt (ϕ) = α̂ for t ∈ [r,2r].
Consequently,

xt (ϕ) = α̂ for t � r.

Case 2. y1(t1) > (1 − c)α for somet1 ∈ [0,3r]. Next we will prove thaty1(t) > (1 − c)α for
t ∈ [t1,∞). Consider the solutionz(t) of the following system:{

z′(t) = −F(z(t) + cx2(t − r)) + F(x2(t − r)),

z(t1) = (1− c)α.
(2.4)

By Lemma 2.2 and induction,z(t) exists and is unique on[t1,∞]. We will show thatz(t) �
(1− c)α for t � t1. Otherwise, there existst2 > t1 such that

z′(t2) < 0 and z(t2) < (1− c)α.
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By Lemma 2.4,

z(t2) + cx2(t − r) < x2(t − r).

Therefore, from (2.4), we obtain

z′(t2) � 0,

which is a contradiction. Again from (1.3), we have

y′
1(t) = −F

(
x1(t, ϕ)

) + G
(
x2(t − r, ϕ)

)
� −F

(
y1(t) + cx2(t − r)

) + F
(
x2(t − r, ϕ)

)
andy1(t1) > (1 − c)α. Therefore, from the standard comparison theorem and the existenc
uniqueness of the solution of (2.4), we have

y1(t) > z(t) � (1− c)α for t � t1.

We claim that there existst ′1 ∈ [0,3r] such thaty2(t
′
1) > (1 − c)α. Suppose the above asserti

is false. Theny2(t) = (1− c)α for t ∈ [0,3r]. Using a similar argument to that of Case 1, we
obtain

xt (ϕ) = α̂ for t � r.

Thus, y1(t) = (1 − c)α for t � 2r , a contradiction. This contradiction establishes the ab
assertion, which, together with the above discussion in Case 2, implies that

y2(t) > (1− c)α for t � t2.

Therefore,

yi(t) > (1− c)α for t � 3r,

wherei ∈ {1,2}. It follows thatxi(t, ϕ) > α for t � 3r , wherei ∈ {1,2}. Consequently,

xt (ϕ) �K α̂ for t � 5r.

The proof of the lemma is now complete.�
Remark 2.2. A similar conclusion of Lemma 2.5 holds for the caseG � F .

3. Main results and their proofs

Before stating and proving our main results, we need some definitions and notations.
Let ϕ ∈ C. We defineO(ϕ) = {xt (ϕ): t � 0}. If O(ϕ) is bounded, thenO(ϕ) is compact inC,

whereO(ϕ) denotes the closure ofO(ϕ), and in this case we define

ω(ϕ) =
⋂
t�0

O
(
xt (ϕ)

)
.

One can observe thatω(x) is nonempty, compact and invariant.
Our main results are the following.

Theorem 3.1. Let G(x) � F(x) for all x ∈ R1 and ϕ ∈ C. If O(ϕ) is bounded, then there exists
α∗ ∈ R1 such that ω(ϕ) = {α̂∗}.
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Proof. Let α∗ = sup{α ∈ R1: α̂ �K ω(ϕ)}. Sinceω(ϕ) is compact, we obtainα∗ ∈ R1. We will
show thatω(ϕ) = {α̂∗}. Otherwise,ω(ϕ)\{α̂∗} 	= φ. According to the invariance ofω(ϕ), we
havex5r (ω(ϕ)) = ω(ϕ). It follows that

x5r

(
ω(ϕ)

)\{α̂∗} 	= φ

and hence there existsψ ∈ ω(ϕ) such that

x5r (ψ) >K α̂∗.

Hence, from Lemma 2.5 and the fact thatψ �K α̂∗, we obtain

x5r (ψ) �K α̂∗.

Therefore, there existsα∗∗ > α∗ such that

x5r (ψ) �K α̂∗∗.

Again by the invariance ofω(ϕ) and its definition, there existst1 > 0 such that

xt1(ϕ) �K α̂∗∗ �K α̂∗.

By Lemma 2.4,

xt

(
xt1(ϕ)

)
�K α̂∗∗ �K α̂∗ for t � 0.

Thus,

ω(ϕ) �K α̂∗∗ �K α̂∗.

This contradicts the definition ofα∗. The proof of the theorem is now complete.�
Theorem 3.2. Let G(x) � F(x) for all x ∈ R1 and ϕ ∈ C. If O(ϕ) is bounded, then there exists
α∗ ∈ R1 such that ω(ϕ) = {α̂∗}.

Proof. By a similar argument to that in the proof of Theorem 3.1, the conclusion of Theore
follows immediately by applying Remarks 2.1 and 2.2.�

Putting Theorems 3.1 and 3.2 together, we obtain the following result.

Corollary 3.1. Let G = F and ϕ ∈ C. Then there exists α∗ ∈ R1 such that ω(ϕ) = {α̂∗}.

Proof. From Lemma 2.4 and Remark 2.1, it follows thatO(ϕ) is bounded. Therefore, by The
rems 3.1 or 3.2, the conclusion of Corollary 3.1 holds.�
Remark 3.1. If G � F (or G � F ), then by Theorems 3.1 and 3.2, each bounded solutio
(1.4) tends to a constant ast → +∞, which extends and improves the main theorem in [1,5]
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