
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 328 (2007) 767–779

www.elsevier.com/locate/jmaa

Invex sets and preinvex functions
on Riemannian manifolds ✩

A. Barani, M.R. Pouryayevali ∗

Department of Mathematics, University of Isfahan, PO Box 81745-163, Isfahan, Iran

Received 6 January 2006

Available online 3 July 2006

Submitted by A.V. Isaev

Abstract

The concept of a geodesic invex subset of a Riemannian manifold is introduced. Geodesic invex and
preinvex functions on a geodesic invex set with respect to particular maps are defined. The relation between
geodesic invexity and preinvexity of functions on manifolds is studied. Using proximal subdifferential,
certain results concerning extremum points of a non smooth geodesic preinvex function on a geodesic invex
set are obtained. The main value inequality and the mean value theorem in invexity analysis are extended
to Cartan–Hadamard manifolds.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Convexity plays a vital role in optimization theory. This concept in linear topological spaces
relies on the possibility of connecting any two points of the space by the line segment between
them. Since convexity is often not enjoyed by the real problems various approaches to the gen-
eralization of the usual line segment have been proposed to relax the convexity assumptions.

In 1981 Hanson [9] introduced the concept of invexity, generalizing the difference x −y in the
definition of convex function to any function η(x, y). Since then numerous articles have appeared
in the literature reflecting further generalizations and applications in this category. For a survey
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of recent advances in generalized convexity one can consult [14]. Ben-Israel and Mond [5] in-
troduced a new generalization of convex sets and convex functions and Craven [6] called them
invex sets and preinvex functions, respectively.

On the other hand, a manifold is not a linear space. Rapcsák [15] and Udriste [16] proposed
a generalization of convexity which differs from the others. In this setting the linear space is re-
placed by a Riemannian manifold and the line segment by a geodesic, see [15,16] and references
therein.

The organization of the paper is as follows: in Section 2 some concepts and facts from Rie-
mannian geometry are collected. In Section 3 we define geodesic invex sets, and motivated
by [13], we define the concepts of a geodesic invex function. Then geodesic preinvex functions
are defined and some examples of these notions on Riemannian manifolds are given.

In Section 4 we study the link between geodesic invexity and geodesic preinvexity for smooth
functions. We prove that a differentiable geodesic preinvex function is geodesic invex. Then, ap-
plying a natural condition on a geodesic invex function, we investigate whether geodesic invexity
implies preinvexity.

In Section 5 we apply the proximal subdifferential of preinvex functions (see [4]). We relax
the smoothness condition on geodesic preinvex functions and considering lower semicontinuity
we study the question of global minimum of these functions on Riemannian manifolds.

In Section 6 we extend the mean value theorem for differentiable functions defined on invex
sets in R

n to differentiable functions on invex subsets of Riemannian manifolds (see [1,2]).

2. Preliminaries

In this section, we recall some definitions and known results about Riemannian manifolds
which will be used throughout the paper. We refer the reader to [10,11] for the standard material
of differential geometry.

Throughout this paper M is a C∞ smooth manifold modelled on a Hilbert space H , either
finite dimensional or infinite dimensional, endowed with a Riemannian metric 〈·,·〉p on the tan-
gent space TpM ∼= H . The corresponding norm is denoted by ‖ ‖p . Let us recall that the length
of a piecewise C1 curve γ : [a, b] → M is defined by

L(γ ) :=
b∫

a

∥∥γ ′(t)
∥∥

γ (t)
dt.

For any two point p, q ∈ M , we define

d(p,q) := inf
{
L(γ ): γ is a piecewise C1 curve joining p to q

}
.

Then d is a distance which induces the original topology on M . On every Riemannian manifold
there exists exactly one covariant derivation called Levi-Civita connection denoted by ∇XY for
any vector fields X,Y on M . We also recall that a geodesic is a C∞ smooth path γ whose tan-
gent is parallel along the path γ , that is, γ satisfies the equation ∇dγ (t)/dt dγ (t)/dt = 0. Any
path γ joining p and q in M such that L(γ ) = d(p,q) is a geodesic, and it is called a mini-
mal geodesic. The existence theorem for ordinary differential equations implies that for every
v ∈ T M there exist an open interval J (v) containing 0 and exactly one geodesic γv :J (v) → M

with dγ (0)/dt = v. This implies that there is an open neighborhood T̃ M of the submanifold M

of T M such that for every v ∈ T̃ M the geodesic γv(t) is defined for |t | < 2. The exponential
mapping exp : T̃ M → M is then defined as exp(v) = Jv(1) and the restriction of exp to a fiber
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TpM in T̃ M is denoted by expp for every p ∈ M . We use the parallel transport of vectors along
geodesic. Recall that for a given curve γ : I → M , a number t0 ∈ I and a vector v0 ∈ Tγ (t0)M ,
there exists exactly one parallel vector field V (t) along γ (t) such that V (t0) = v0. Moreover,
the mapping defined by v0 �→ V (t) is a linear isometry between the tangent spaces Tγ (t0)M and
Tγ (t)M , for each t ∈ I . We denote this mapping by P t

t0,γ
and we call it the parallel translation

from Tγ (t0)M to Tγ (t)M along the curve γ . In the case when γ is a minimizing geodesic and
γ (t0) = x, γ (t1) = y, we denote this mapping by Lxy .

If f is a differentiable map from the manifold M to the manifold N , we shall denote by dfx

the differential of f at x.
We also recall that a simply connected complete Riemannian manifold of nonpositive sec-

tional curvature is called a Cartan–Hadamard manifold.

3. Geodesic invex sets and geodesic invex functions

Definition 3.1. Let M be a Riemannian manifold and η :M × M → T M be a function such that
for every x, y ∈ M , η(x, y) ∈ TyM . A nonempty subset S of M is said to be geodesic invex with
respect to η if for every x, y ∈ S there exists exactly one geodesic αx,y : [0,1] → M such that

αx,y(0) = y, α′
x,y(0) = η(x, y), αx,y(t) ∈ S, for all t ∈ [0,1].

Recall that a subset S of a Riemannian manifold is called geodesic convex if any two points
x, y ∈ S can be joined by exactly one geodesic of length d(x, y) which belongs entirely to S

(see [2,11]).

Remark 3.1. Let M be a Cartan–Hadamard manifold (either finite dimensional or infinite dimen-
sional). On M there exists a natural map η playing the role of the x − y in Euclidean space R

n,
for every x, y ∈ R

n. Indeed, we can define the function η as

η(p,q) := α′
p,q(0), for all p,q ∈ M, (1)

where αp,q is the unique minimal geodesic joining q to p defined (see [11, p. 253]) as follows:

αp,q(t) := expq

(
t exp−1

q p
)
, for all t ∈ [0,1]. (2)

Therefore, every geodesic convex set S ⊆ M is a geodesic invex set with respect to the η defined
in (1). Note that the converse does not hold in general, see Example 3.1.

On the other hand, if S ⊆ M is a geodesic invex set with respect to the η defined in (1) then,
for every p,q ∈ S there exists exactly one geodesic βp,q : [0,1] → M such that βp,q(0) = q ,
β ′

p,q(0) = η(p,q) and βp,q(t) ∈ S for each t ∈ [0,1]. Since αp,q defined in (2) and βp,q satisfy
the same initial conditions, hence by uniqueness of maximal geodesic passing through q with
initial velocity η(p,q), we have αp,q = βp,q on [0,1]. Therefore, S is a geodesic convex set.

Example 3.1. Let M be a Cartan–Hadamard manifold and x0, y0 ∈ M , x0 �= y0. Let B(x0, r1) ∩
B(y0, r2) = φ for some 0 < r1, r2 < 1

2d(x0, y0), where B(x, r) = {y ∈ M: d(x, y) < r} is an
open ball with the center x and the radius r . We define

S := B(x0, r1) ∪ B(y0, r2).

Then, S is not a geodesic convex set because, every geodesic curve passing x0, y0 is not com-
pletely lie in S. Now we define the function η :M × M → M by

η(x, y) :=
{

exp−1
y x, x, y ∈ B(x0, r1) or x, y ∈ B(y0, r2),

0 , otherwise.
y
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For every x, y ∈ M consider the geodesic α : [0,1] → M defined by

αx,y(t) = expy

(
tη(x, y)

)
, for all t ∈ [0,1].

Hence,

αx,y(0) = y, α′
x,y(0) = η(x, y).

We show that S is a geodesic invex set with respect to η. Let x, y ∈ B(x0, r1), since B(x0, r1) is
geodesic convex (see [11, p. 259]) therefore,

αx,y(t) = expy

(
t exp−1

y x
) ∈ B(x0, r1) ⊂ S, for all t ∈ [0,1].

Similarly, for the case x, y ∈ B(y0, r2), we have

αx,y(t) ∈ S, for all t ∈ [0,1].
If x ∈ B(x0, r1) and y ∈ B(y0, r2) or x ∈ B(y0, r2) and y ∈ B(x0, r1) then, we have

αx,y(t) = expy(t0y) = y ∈ S, for all t ∈ [0,1].
Hence, S is a geodesic invex set with respect to η.

Let S be a geodesic convex subset of a finite dimensional Cartan–Hadamard manifold
M and x ∈ M . Then, there exists exactly one point pS(x) ∈ S such that for each y ∈ S,
d(x,pS(x)) � d(x, y). The point pS(x) is called the projection of x onto S (see [8, p. 262]).

Example 3.2. Let S1 and S2 be nonempty closed geodesic convex subsets of a finite dimensional
Cartan–Hadamard manifold M and S1 ∩ S2 = φ. We set S := S1 ∪ S2 and define the function
η :M × M → M by

η(x, y) :=

⎧⎪⎨
⎪⎩

exp−1
y (pS1(x)), y ∈ S1, x ∈ M ,

exp−1
y (pS2(x)), y ∈ S2, x ∈ M ,

0y, otherwise.

Now, for all x, y ∈ S define

αx,y(t) := expy

(
tη(x, y)

)
, for all t ∈ [0,1].

Clearly αx,y(0) = y, α′
x,y(0) = η(x, y) and αx,y(t) ∈ S for all t ∈ [0,1]. Hence, S is a geodesic

invex set with respect to η.

In the next example we show that on every Riemannian manifold M there exists a function
η :M × M → T M and a subset S of M which is geodesic invex set with respect to η, but it is
not geodesic convex.

Recall that an open geodesic convex subset S of a Riemannian manifold M is called strongly
convex if every ε-ball B(x, ε) in S is a geodesic convex set. For each x ∈ M there exists a number
ε = ε(x) > 0 such that B(x, ε) is a strongly geodesic convex set (see [10, p. 84]).

Example 3.3. Let M be a Riemannian manifold and x0, y0 ∈ M , x0 �= y0 then, there exist two
disjoint open balls B(x0, ε) and B(y0, ε) which are strongly convex (see [10, p. 85]). Set

S := B(x0, ε) ∪ B(y0, ε).
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Clearly S is not a geodesic convex set. Now we define the function η :M × M → T M by

η(x, y) :=
{

α′
x,y(0), x, y ∈ B(x0, ε) or x, y ∈ B(y0, ε),

0y, otherwise,

where αx,y for x, y ∈ S is the unique geodesic joining x and y such that αx,y(0) = y, αx,y(1) = x.
Clearly S is a geodesic invex set with respect to η.

A real differentiable function f defined on manifold M is said to be η-invex (see [13]) if for
every x, y ∈ M ,

f (x) − f (y) � dfy

(
η(x, y)

)
.

Now we define the invexity of a function f which is defined on an open geodesic invex subset of
a Riemannian manifold.

Definition 3.2. Let M be a Riemannian manifold, S be an open subset of M which is geodesic
invex with respect to η :M ×M → T M and f be a real differentiable function on S. We say that
f is η-invex on S if the following inequality holds

f (x) − f (y) � dfy

(
η(x, y)

)
, for all x, y ∈ S.

The definition of a preinvex function on R
n is given in [17]. See also [12,18] for properties of

preinvex functions. Now we extend this notion to Riemannian manifolds and study some of its
properties in this setting.

Definition 3.3. Let M be a Riemannian manifold and S ⊆ M be a geodesic invex set with respect
to η :M × M → T M . We say that a function f :S → R is geodesic η-preinvex if for every
x, y ∈ S,

f
(
αx,y(t)

)
� tf (x) + (1 − t)f (y), for all t ∈ [0,1], (3)

where αx,y is the unique geodesic defined in Definition 3.1. If the inequality (3) is strict then, we
say that f is a strictly geodesic η-preinvex function.

Proposition 3.1. Let M be a Riemannian manifold and S ⊆ M be a geodesic invex set with
respect to η :M × M → T M . Suppose that the function f :S → R is geodesic η-preinvex then,
we have:

(i) Every lower section of f defined by

S(f,λ) := {
x ∈ S: f (x) � λ

}
, λ ∈ R,

is a geodesic invex set with respect to η.
(ii) The set K of solutions of problem

(P ) min f (x)

s.t. x ∈ S,

is a geodesic invex set with respect to η. Moreover, if f is a strictly geodesic η-preinvex
function, then M contains at most one point.
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Proof. (i) Let x, y ∈ S(f,λ). Since S is a geodesic invex set with respect to η, there exists exactly
one geodesic αx,y : [0,1] → M such that

αx,y(0) = y, α′
x,y(0) = η(x, y), αx,y(t) ∈ S, for all t ∈ [0,1].

By the geodesic η-preinvexity of f we have

f
(
αx,y(t)

)
� tf (x) + (1 − t)f (y) � λ, for all t ∈ [0,1].

Therefore, αx,y(t) ∈ S(f,λ) for all t ∈ [0,1].
(ii) If α := infx∈S f (x) then, it is obvious that K = ⋂

λ>α S(f,λ), that is, K is an intersection
of geodesic invex sets with respect to η which is also a geodesic invex set with respect to η. If f

is a strictly geodesic η-preinvex function and x, y ∈ K then, by the geodesic invexity of K with
respect to η there exists exactly one geodesic βx,y : [0,1] → M such that

βx,y(0) = y, β ′
x,y(0) = η(x, y), βx,y(t) ∈ K, for all t ∈ [0,1].

Since f is a strictly η-preinvex function, we have

α = f
(
βx,y(t)

)
< tf (x) + (1 − t)f (y) � α, for all t ∈ [0,1],

which is impossible. �
The following proposition is a generalization of Lemma 4 in [3].

Proposition 3.2. Let M be a complete Riemannian manifold, S ⊆ M be a geodesic invex set
with respect to η :M × M → T M and F :S × S → R be a continuous geodesic (η, η)-preinvex
function, that is, F is η-preinvex with respect to each variable. Then, the function ψ :S → R

defined by

ψ(x) = inf
y∈S

F (x, y),

is geodesic η-preinvex.

Proof. Let x0, x1 ∈ S and ε > 0 is given. Since S is a geodesic invex set with respect to η, there
exists exactly one geodesic αx0,x1 : [0,1] → M such that

αx0,x1(0) = x1, α′
x0,x1

(0) = η(x0, x1), αx0,x1(t) ∈ S, for all t ∈ [0,1].
By the definition of ψ , there exist y0, y1 ∈ S such that

F(x1, y1) < ψ(x1) + ε, F (x0, y0) < ψ(x0) + ε.

By the geodesic invexity of S with respect to η, there exists exactly one geodesic βy0,y1 :
[0,1] → M such that

βy0,y1(0) = y1, β ′
y0,y1

(0) = η(y0, y1), βy0,y1(t) ∈ S, for all t ∈ [0,1].
It is clear that the curve γ = (αx0,x1 , βy0,y1) : [0,1] → M is a geodesic in S × S, with γ (0) =
(x1, y1) such that for each t ∈ [0,1] we have γ (t) = (αx0,x1(t), βy0,y1(t)) ∈ S × S and

γ ′(0) = (
α′

x0,x1
(0), β ′

y0,y1
(0)

) = (
η(x0, x1), η(y0, y1)

)
.

By the definition of ψ and the (η, η)-preinvexity of F we have
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ψ
(
αx0,x1(t)

) = inf
y∈S

F
(
αx0,x1(t), y

)
� F

(
αx0,x1(t), βy0,y1(t)

)
� tF (x1, y1) + (1 − t)F (x0, y0)

� t
(
ψ(x1) + ε

) + (1 − t)ψ
(
(x0) + ε

)
= tψ(x1) + (1 − t)ψ(x0) + ε.

Therefore,

ψ
(
α(t)

)
� tψ(x1) + (1 − t)ψ(x0). �

4. Preinvexity and differentiability

Motivated by [12] we introduce a condition on the function η :M × M → T M which verifies
the relation between geodesic invexity and preinvexity of functions on geodesic invex subsets of
Riemannian manifolds.

Definition 4.1. Let M be a Riemannian manifold. We say that the function η :M × M → T M

satisfies the condition (C), if for each x, y ∈ M and for the geodesic α : [0,1] → M satisfying
α(0) = y, α′(0) = η(x, y), we have

(C1) P 0
t,α

[
η
(
y,α(t)

)] = −tη(x, y),

(C2) P 0
t,α

[
η
(
x,α(t)

)] = (1 − t)η(x, y),

for all t ∈ [0,1].

In the following example we show that the function η defined in Example 3.1 satisfies the
condition (C).

Example 4.1. Let S ⊆ M and η be the same as the one given in Example 3.1, we show that η

satisfies the condition (C1). If x ∈ B(x0, r1) and y ∈ B(y0, r2) or x ∈ B(y0, r2) and y ∈ B(x0, r1)

then, the result is trivially hold. Suppose that x, y ∈ B(x0, r1) or x, y ∈ B(y0, r2). Fix t ∈ [0,1]
and set z := expy(tη(x, y)), v := tη(x, y) and w := η(y, z) = exp−1

z y. Consider the geodesic
β(s) := expy(sv), s ∈ [0,1], hence, β(0) = y, β(1) = z and β ′(0) = v. By the definition of
parallel translation it is clear that

Lyz(v) = P 1
0,β(v) = β ′(1). (4)

Now, consider the geodesic γ (s) := expz(sw), s ∈ [0,1], hence, γ (0) = z, γ (1) = y and
γ ′(0) = w. Indeed, γ (s) = β(1 − s) and so

γ ′(0) = −β ′(1). (5)

By (4) and (5) and the definition of η we have η(y, z) = γ ′(0) and

Lyz(v) = β ′(1) = −γ ′(0) = −η(y, z).

Therefore,

Lzy

(
η(y, z)

) = −v = −tη(x, y).

Hence, the condition (C1) is satisfied.
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Now, we show that η satisfies the condition (C2). Let

ᾱx,y(s) := αx,y(1 − s), for all s ∈ [0,1],
be the reverse curve of αx,y , hence z = ᾱx,y(1 − t). By a similar proof as above we have

Lzx

[
η(x, z)

] = P 0
(1−t),ᾱx,y

[
η(x, z)

] = −(1 − t)η(y, x)

= −(1 − t) exp−1
y x.

By property LxyoLzx = Lzy of parallel translation we get

LxyoLzx

[
η(x, z)

] = Lxy

[−(1 − t) exp−1
y x

] = −(1 − t)Lxy

[
exp−1

y x
]

= (1 − t)η(x, y).

Hence,

Lzy

[
η(x, z)

] = (1 − t)η(x, y).

Therefore, the condition (C2) is also hold.

Theorem 4.1. Let M be a Riemannian manifold and S be an open subset of M which is geodesic
invex with respect to η :M × M → T M . Assume that f :S → R is a differentiable and geodesic
η-preinvex function. Then, f is a geodesic η-invex function.

Proof. By the geodesic invexity of S with respect to η, for every x, y ∈ S there exists exactly
one geodesic αx,y : [0,1] → M such that

αx,y(0) = y, α′
x,y(0) = η(x, y), αx,y(t) ∈ S, for all t ∈ [0,1].

Since f is geodesic η-preinvex for t ∈ (0,1), we have

f
(
αx,y(t)

)
� tf (x) + (1 − t)f (y),

which implies

f
(
αx,y(t)

) − f (y) � t
(
f (x) − f (y)

)
.

Divide by t to obtain

1

t

[
f

(
αx,y(t)

) − f (y)
]
� f (x) − f (y).

Taking the limit as t → 0, we have

dfαx,y(0)

(
α′

x,y(0)
)
� f (x) − f (y).

Therefore, dfy(η(x, y)) � f (x) − f (y). �
Theorem 4.2. Let M be a Riemannian manifold and S be an open subset of M which is also
geodesic invex with respect to η :M × M → T M . Suppose that the function f :S → R is dif-
ferentiable. If f is geodesic η-invex on S and η satisfies the condition (C) then, f is geodesic
η-preinvex on S.
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Proof. By the geodesic invexity of S with respect to η, for every x, y ∈ S there exists exactly
one geodesic αx,y : [0,1] → M such that

αx,y(0) = y, α′
x,y(0) = η(x, y), αx,y(t) ∈ S, for all t ∈ [0,1].

Fix t ∈ [0,1] and set x̄ := αx,y(t). Then, we have

f (x) − f (x̄) � dfx̄

(
η(x, x̄)

)
, (6)

f (y) − f (x̄) � dfx̄

(
η(y, x̄)

)
. (7)

Now, multiplying (6) and (7) by t and (1 − t), respectively, and adding we have

tf (x) + (1 − t)f (y) − f (x̄) � dfx̄

(
tη(x, x̄) + (1 − t)η(y, x̄)

)
.

By the condition (C),

tη(x, x̄) + (1 − t)η(y, x̄) = t (1 − t)P t
0,αx,y

[
η(x, y)

] + (1 − t)(−t)P t
0,αx,y

[
η(x, y)

] = 0.

Hence,

tf (x) + (1 − t)f (y) � f (x̄). �
5. Preinvexity and semicontinuity

We recall the definition of a proximal subdifferential of a function defined on a Riemannian
manifold and refer the reader to [4,7] for the discussion of proximal calculus on such a manifold.

Definition 5.1. Let M be a Riemannian manifold and f :M → (−∞,+∞] be a lower semicon-
tinuous function. A point ζ ∈ TyM is a proximal subgradient of f at y ∈ dom(f ), if there exist
positive numbers δ and σ such that

f (x) � f (y) + 〈
ζ, exp−1

y x
〉
y

− σd(y, x)2, for all x ∈ B(y, δ),

where dom(f ) := {x ∈ M: f (x) < ∞}.

The set of all proximal subgradients of f at y ∈ M is denoted by ∂pf (y) and is called the
proximal subdifferential of f at y.

Before going into a study of semicontinuous preinvex functions, let us prove the following
theorem which will be useful in the sequel.

Theorem 5.1. Let M be a Riemannian manifold and S be an open subset of M which is geodesic
invex with respect to η :M × M → T M . Suppose the function f :S → R is geodesic η-preinvex.
If x̄ ∈ S is a local optimal solution to the problem

(P ) min f (x)

s.t. x ∈ S,

then x̄ is a global minimum in (P ).

Proof. Suppose that x̄ ∈ S is a local minimum. Then, there is a neighborhood Nε(x̄) such that

f (x̄) � f (x), for all x ∈ S ∩ Nε(x̄). (8)
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If x̄ is not a global minimum of f then, there exists a point x∗ ∈ S such that

f (x∗) < f (x̄).

Since S is a geodesic invex set with respect to η, there exits exactly one geodesic α such that

α(0) = x̄, α′(0) = η(x∗, x̄), α(t) ∈ S, for all t ∈ [0,1].
If we choose ε > 0 small enough such that d(α(t), x̄) < ε then, α(t) ∈ Nε(x̄). By the geodesic
η-preinvexity of f we have

f
(
α(t)

)
� tf (x∗) + (1 − t)f (x̄) < f (x̄), for all t ∈ (0,1).

Therefore, for each α(t) ∈ S ∩ Nε(x̄), f (α(t)) < f (x̄) which is a contradiction to (8). This
complete the proof. �
Theorem 5.2. Let M be a Cartan–Hadamard manifold and S be an open subset of M which
is geodesic invex with respect to η :M × M → T M with η(x, y) �= 0 for x �= y. Suppose that
f :S → (−∞,+∞] is a lower semicontinuous geodesic η-preinvex function. Let y ∈ dom(f )

and ζ ∈ ∂pf (y). Then, there exists a number δ > 0 such that

f (x) � f (y) + 〈
ζ, η(x, y)

〉
y
, for all x ∈ S ∩ B(y, δ). (9)

Proof. By the definition of ∂pf (y), there are positive numbers δ and σ such that

f (x) � f (y) + 〈
ζ, exp−1

y x
〉
y

− σd(x, y)2, for all x ∈ B(y, δ). (10)

Fix x ∈ S ∩ B(y, δ). Since S is a geodesic invex set with respect to η, there exits exactly one
geodesic αx,y : [0,1] → M such that

αx,y(0) = y, α′
x,y(0) = η(x, y), αx,y(t) ∈ S, for all t ∈ [0,1].

Since M is a Cartan–Hadamard manifold then, αx,y(t) = expy(tη(x, y)), for each t ∈ [0,1] (see

[11, p. 253]). If we choose t0 = δ
‖η(x,y)‖y

then,

expy

(
tη(x, y)

) ∈ S ∩ B(y, δ), for all t ∈ (0, t0).

By the geodesic η-preinvexity of f , we have

f
(
expy

(
tη(x, y)

))
� tf (x) + (1 − t)f (y), for all t ∈ (0, t0). (11)

By combining (10) and (11) for each t ∈ (0, t0) we get

f
(
expy

(
tη(x, y)

))
� f (y) + 〈

ζ, exp−1
y expy

(
tη(x, y)

)〉
y

− σd
(
expy

(
tη(x, y)

)
, y

)2

= f (y) + 〈
ζ, tη(x, y)

〉
y

− σd
(
expy

(
tη(x, y)

)
, y

)2
. (12)

Since M is a Cartan–Hadamard manifold, for each t ∈ (0, t0),

d
(
expy

(
tη(x, y)

)
, y

)2 = ∥∥tη(x, y)
∥∥2

y
= t2

∥∥η(x, y)
∥∥2

y
. (13)

By (11) and (13) we have

tf (x) + (1 − t)f (y) � f
(
expy

(
tη(x, y)

))
� f (y) + 〈

ζ, tη(x, y)
〉 − t2

∥∥η(x, y)
∥∥2

.

y y



A. Barani, M.R. Pouryayevali / J. Math. Anal. Appl. 328 (2007) 767–779 777
Hence,

t
(
f (x) − f (y)

)
� t

〈
ζ, η(x, y)

〉
y

− t2
∥∥η(x, y)

∥∥2
y
,

divide by t to obtain

f (x) − f (y) �
〈
ζ, η(x, y)

〉
y

− t
∥∥η(x, y)

∥∥2
.

Taking limit as t → 0 we obtain

f (x) − f (y) �
〈
ζ, η(x, y)

〉
y
.

Since x ∈ S ∩ B(y, δ) is arbitrary, thus (9) holds and the proof is complete. �
Corollary 5.1. Let M be a Cartan–Hadamard manifold and S be an open subset of M which is
geodesic invex with respect to η :M × M → T M . Suppose that f :S → R is a lower semicon-
tinuous geodesic η-preinvex function. Let y ∈ S and 0 ∈ ∂pf (y). Then, y is a global minimum
of f .

Proof. By Theorem 5.2, y is a local minimum of f and hence by Theorem 5.1, y is a global
minimum of f . �

It should be noted that if S is a subset of a Riemannian manifold M and f :S → (−∞,+∞] is
a lower semicontinuous function which has a local minimum at y ∈ S then, 0 ∈ ∂pf (y) (see [4]).

6. Mean value theorem

T. Antczak in [1] proved the mean value inequality and the mean value theorem in invexity
analysis. Now we extend these notions to Cartan–Hadamard manifolds.

Definition 6.1. Let S be a nonempty subset of a Riemannian manifold M which is geodesic invex
with respect to η :M × M → T M and x and u be two arbitrary points of S. Let α : [0,1] → M

be the unique geodesic such that

α(0) = u, α′(0) = η(x,u), α(t) ∈ S, for all t ∈ [0,1].
A set Puv is said to be a closed η-path joining the two points u and v := α(1) if

Puv := {
y: y = α(t); t ∈ [0,1]}.

An open η-path joining the points u and v is a set of the form

P 0
uv := {

y: y = α(t); t ∈ (0,1)
}
.

If u = v we set P 0
uv := φ.

Example 6.1. Suppose that M is a Cartan–Hadamard manifold and S is the geodesic invex
set with respect to η defined in Example 3.1. Let x and u be two arbitrary points of S and
α(t) := expu(t exp−1

u x). Then:

(i) If x,u ∈ B(x0, r1) or x,u ∈ B(y0, r2), then Puv = Pux is the unique geodesic with end points
u and x and velocity vector η(x, y) = exp−1

u x.
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(ii) If u ∈ B(x0, r1), x ∈ B(y0, r2) or u ∈ B(y0, r2), x ∈ B(x0, r1), then Puv = Puu = {u}, and
P 0

uv = φ.

Example 6.2. Suppose that M is a Cartan–Hadamard manifold and S is the geodesic invex
set with respect to η defined in Example 3.2. Let x and u be two arbitrary points of S and
α(t) := expu(tη(x,u)). Then, for u ∈ S1, x ∈ S2 we have v = α(1) = PS1(x) and Puv is the
unique geodesic with end points u and PS1(x).

Theorem 6.1 (Mean value inequality). Let M be a Cartan–Hadamard manifold and S ⊆ M be
a geodesic invex set with respect to η :M × M → T M such that η(a, b) �= 0 for all a, b ∈ S,
a �= b. Suppose that αb,a(t) = expa(tη(b, a)) for every a, b ∈ S, t ∈ [0,1], and c = αb,a(1).
Then, a necessary and sufficient condition for a function f :S → R to be geodesic η-preinvex is
that the inequality

f (x) � f (a) + f (b) − f (a)

〈η(b, a), η(b, a)〉a
〈
exp−1

a x, η(b, a)
〉
a

(14)

holds, for each x ∈ Pca .

Proof. Necessity. Let f :S → R be a geodesic η-preinvex function, a, b ∈ S and x ∈ Pca . If
x = a or x = c, then (14) trivially holds. If x ∈ P 0

ca , then x := expa(tη(b, a)), for some t ∈ (0,1).
By the geodesic η-invexity of S it follows that x ∈ S and

t = 〈exp−1
a x, η(b, a)〉a

〈η(b, a), η(b, a)〉a .

Since f is a geodesic η-preinvex function on S, we have

f (x) = f
(
expa

(
tη(b, a)

))
� tf (b) + (1 − t)f (a)

= f (a) + t
[
f (b) − f (a)

]

= f (a) + f (b) − f (a)

〈η(b, a), η(b, a)〉a
〈
exp−1

a x, η(b, a)
〉
a
.

Sufficiency. Assume that the Mean value inequality (14) holds. Let a, b ∈ S and x :=
expa(tη(b, a)), for some t ∈ [0,1]. Then, x ∈ S and we have

f (x) = f
(
expa

(
tη(b, a)

))

� f (a) + f (b) − f (a)

〈η(b, a), η(b, a)〉a
〈
exp−1

a x, η(b, a)
〉
a

= f (a) + f (b) − f (a)

〈η(b, a), η(b, a)〉a
〈
exp−1

a

(
expa

(
tη(b, a)

))
, η(b, a)

〉
a

= f (a) + f (b) − f (a)

〈η(b, a), η(b, a)〉a t
〈
η(b, a), η(b, a)

〉
a

= tf (b) + (1 − t)f (a).

We conclude that f is a geodesic η-preinvex function. �
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Theorem 6.2 (Mean value theorem). Let M be a Cartan–Hadamard manifold and S ⊆ M be a
nonempty, open geodesic invex set with respect to η :M × M → T M . Suppose that f :S → R is
differentiable on S. Then, for every a, b ∈ S there exists c ∈ P 0

ab such that

f
(
expa

(
η(b, a)

)) − f (a) = dfc

[
(d expa)u

(
η(b, a)

)]
,

where u := t0η(b, a), t0 ∈ (0,1), and (d expa)u :Tu(TaM) ∼= TaM → TcM is the differential
of expa at u.

Proof. We define the function g : [0,1] → R as follows:

g(t) := f
(
expa

(
tη(b, a)

)) − f (a) − t
[
f

(
expa

(
η(b, a)

)) − f (a)
]
. (15)

Since g(1) = g(0) = 0 then, using Rolle’s theorem, it follows that there exists t0 ∈ (0,1) such
that g′(t0) = 0. Let c := expa(t0η(b, a)) then, by (15), we have

0 = g′(t0) = dfc

[
(d expa)u

(
η(b, a)

)] − f
(
expa

(
η(b, a)

)) − f (a).

Since t0 ∈ (0,1), by definition c ∈ P 0
ab and the proof is complete. �

References

[1] T. Antczak, Mean value in invexity analysis, Nonlinear Anal. 60 (2005) 1471–1484.
[2] D. Azagra, J. Ferrera, F. Lopez-Mesas, Nonsmooth analysis and Hamilton–Jacobi equation on Riemannian mani-

folds, J. Funct. Anal. 220 (2005) 304–361.
[3] D. Azagra, J. Ferrera, Inf-convolution and regularization of convex functions on Riemannian manifolds of nonpos-

itive curvature, Rev. Mat. Complut., in press.
[4] D. Azagra, J. Ferrera, Proximal calculus on Riemannian manifolds, with applications to fixed point theory, Mediterr.

J. Math. 2 (2005) 437–450.
[5] A. Ben-Israel, B. Mond, What is invexity?, J. Aust. Math. Soc. Ser. B 28 (1986) 1–9.
[6] B.D. Craven, Duality for generalized convex fractional programs, in: S. Schaible, W.T. Zimba (Eds.), Generalized

Concavity in Optimization and Economic, Academic Press, New York, 1981, pp. 437–489.
[7] O.P. Ferreira, Proximal subgradient and characterization of Lipschitz function on Riemannian manifolds, J. Math.

Anal. Appl. 313 (2006) 587–597.
[8] O.P. Ferreira, P.R. Oliveira, Proximal point algorithm on Riemannian manifolds, Optimization 51 (2002) 257–270.
[9] M.A. Hanson, On sufficiency of the Kuhn–Tucker conditions, J. Math. Anal. Appl. 80 (1981) 545–550.

[10] W. Klingenberg, Riemannian Geometry, Walter de Gruyter Studies in Math., vol. 1, Walter de Gruyter, Berlin, 1982.
[11] S. Lang, Fundamentals of Differential Geometry, Grad. Texts in Math., vol. 191, Springer, New York, 1999.
[12] S.R. Mohan, S.K. Neogy, On invex sets and preinvex function, J. Math. Anal. Appl. 189 (1995) 901–908.
[13] R. Pini, Convexity along curves and invexity, Optimization 29 (1994) 301–309.
[14] R. Pini, C. Singh, A survey of recent [1985–1995] advances in generalized convexity with applications to duality

theory and optimality conditions, Optimization 39 (1997) 311–360.
[15] T. Rapcsák, Smooth Nonlinear Optimization in Rn , Kluwer Academic, 1997.
[16] C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, Math. Appl., vol. 297, Kluwer

Academic, 1994.
[17] T. Weir, B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl. 136 (1988) 29–38.
[18] X.M. Yang, D. Li, On properties of preinvex functions, J. Math. Anal. Appl. 256 (2001) 229–241.


